用户名: 密码: 验证码:
基于支持向量机的时间序列组合预测模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然科学、社会科学等领域积累了大量的时间序列数据特别是多维时间序列数据,往往既受多个环境因子的影响(需采用回归分析),又自身隐含动态时序特征(需采用自相关分析),同时呈非线性(需采用非线性分析)。预测是认识和决策的依据,发展高精度的时间序列特别是多维时间序列非线性预测分析方法意义重大。当前时间序列分析方法主要沿经典时间序列分析和相空间重构两个方向发展。
     本文第一部分沿经典时间序列分析方向深入。
     经典时间序列分析的关键环节为:拓阶、定阶、变量筛选、回归模型选择,前三个环节实际上常与回归模型选择耦联在一起。早期经典的多维时间序列分析模型,如带控项的自回归滑动平均模型(Controlled Autoregressive Integrating Moving Average, CARMA)及其简化模型—带控项的自回归模型(Controlled Autoregressive, CAR)均属线性模型,因而其实际预测能力较弱。基于经验风险最小的人工神经网络如前馈神经网络(Back-propagation Neural Networks, BPNN)具有较好的非线性逼近能力,但存在易陷入局部最小、可解释性差、带有较强的经验性等缺陷。基于结构风险最小的支持向量机(Support Vector Machine, SVM)以统计学习理论为基础,较好地解决了局部最小、过学习、非线性等难题,泛化能力优异,因此,本文回归模型选用SVM作为基本建模工具。
     1、SLR-LSSVM组合预测模型。
     利用逐步线性回归(Stepwise Linear Regression, SLR)对因子进行线性筛选,获得保留因子后用最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)进行非线性建模预测,即为SLR-LSSVM多维时间序列组合预测模型。二代玉米螟百株幼虫虫量与8个气象因子关系的拟合与独立预测表明,SLR-LSSVM优于SLR-MLR、SLR-BPNN、MLR、BPNN、LSSVM等参比模型,说明因子筛选、基于结构风险最小的SVM非线性建模有助于提高预测精度。
     2、CAR-LSSVM组合预测模型
     SLR-LSSVM仅考虑了环境因子的影响,未考虑自身隐含的动态时序特征(未拓阶),且其变量筛选基于SLR是线性的。CAR虽同时考虑了环境因子影响与自身动态时序特征,但其拓阶、定阶是线性的(基于MLR),变量筛选也是线性的(基于SLR)。借用CAR的思想,本文发展了非线性的CAR-LSSVM多维时间序列组合预测模型:先基于LSSVM以均方误差(Mean Squared Error, MSE)最小原则实施模型非线性拓阶、非线性定阶,再基于LSSVM对定阶后自变量进行非线性筛选获得保留自变量,最后基于LSSVM以保留自变量建模预测。大豆食心虫虫食率与5个影响因子关系的独立预测表明,CAR-LSSVM预测性能明显优于MLR、SNR(基于LSSVM的非线性逐步回归模型)、LSSVM、SLR-LSSVM、CAR等参比模型,说明非线性地统一考虑环境因子影响与自身时序特征、非线性定阶与非线性筛选变量是必要的。
     3. GS-LSSVM组合预测模型
     CAR基于F测验线性定阶和CAR-LSSVM基于MSE最小原则非线性定阶的共同缺陷包括:一是由低阶到高阶逐步拓阶,过程繁琐。二是因变量连带自变量同时拓阶,既易造成信息冗余、变量筛选时间增加,又易造成拓阶提前终止,降低模型预测精度。本文基于地统计学(Geostatistics, GS)与LSSVM,建立了一种快速定阶、既反映样本集动态特征又体现环境因子影响的高精度非线性时间序列组合预测模型GS-LSSVM:先基于地统计学后效时间长度进行因变量快速、充分拓阶、定阶;然后采用主成分分析消除自变量之间的信息冗余;最后以一步预测法检验GS-LSSVM的有效性。小样本松毛虫发生面积一维时间序列实例独立预测表明,GS-LSSVM模型明显优于LSSVM、GS-BPNN等参比模型。晚稻第五代褐飞虱发生量与4个气象因子的多维时间序列实例独立预测表明,GS-LSSVM预测精度高于GS-BPNN等参比模型,且稳定性最好,定阶快速准确。GS-LSSVM既反映样本集动态特征又体现环境因子影响,并避免过拟合、避免局部最小缺陷,具有非线性、泛化能力优异等优点,在时间序列预测领域有较广泛的应用前景。
     4、ARIMA-DSVM组合预测模型
     随着时间的推移,训练样本将越来越大,LSSVM占用的训练时间相当长,更为重要的是,对给定的某一步预测,此前历史所有样本均参与训练不一定合适,且每一个样本对预测结果的影响不一样,动态s-SVM (Dynamic s-insensitive Cost Function Support Vector Machine, DSVM)根据“近大远小”的原理,依时间动态调整不敏感损失函数参数(ε)值,保证了距离预测点时间越近的数据对预测结果影响越大,距离预测点时间越远的数据对预测结果影响则越小。差分自回归滑动平均模型(Autoregressive Integrating Moving Average, ARIMA)线性预测能力优异。当研究体系是线性或非线性未知时,本文综合线性ARIMA与动态非线性DSVM发展了ARIMA-DSVM组合预测模型:首先采用ARIMA提取、预测时间序列中的线性组分,然后采用DSVM对ARIMA预测残差进行非线性动态修正。松毛虫发生面积一维时间序列实例独立预测表明,ARIMA-DSVM模型优于ARIMA、DSVM等参比模型。
     本文第二部分沿相空间重构方向深入。
     基于相空间重构与LSSVM的时间序列预测包括两个关键环节:相空间重构中时间延迟τ和嵌入维m的确定、LSSVM模型王则化参数γ和核函数宽度参数σ的确定。以往研究中,相空间重构(确定τ和m)与LSSVM建模预测(确定γ和σ)是分步进行的,通过相空间重构确定的τ和m并不总能保证LSSVM有最优的预测精度。因此,不基于任何先验知识、纯粹从数据驱动实施τ和m以及LSSVM参数的联合优化是颇具吸引力的选择。然而,多因素多水平的遍历搜索优化极为耗时。
     5、GA-LSSVM组合预测模型
     多因素多水平的遍历搜索寻优极为耗时,而遗传算法(Genetic Algorithm, GA)是一种启发式、快速、并行搜索算法。本文发展的GA-LSSVM组合预测模型以LSSVM为基本建模工具,以GA实现τ、m、γ和σ的联合优化。对Mackey-Glass、加噪Mackey-Glass等一维时间序列实例的独立预测表明,GA-LSSVM稳定有效。
     6、UD-LSSVM组合预测模型
     GA是一种启发式算法,易陷入局部最优。均匀设计(Uniform Design, UD)在实验范围内选择具有低偏差趋于均匀分布的好格子点集来安排试验点,可大幅度降低实验次数到允许范围。LSSVM基于结构风险最小,较好地解决了局部最小、非线性等问题,泛化能力优异。本文针对相空间重构的延迟时间、嵌入维、LSSVM参数联合寻优问题,结合均匀设计与自调用LSSVM发展了组合预测模型UD-LSSVM,并对Mackey-Glass、Lorenz、年太阳黑子数等时间序列实例进行了仿真预测,结果表明UD-LSSVM计算复杂度低、预测精度高且优于文献报道,是一种基于数据驱动、快速有效的延迟时间-嵌入维-支持向量机参数联合优合的组合预测模型。
There are a great deal of time series data especially multi-dimensional time series data in natural science and social science. Time series which are affected by environmental factors have inherent dynamic and nonlinear features. It is of great significance to develop high precision time series analysis method especially for nonlinear multi-dimensional time series because prediction is the foundation for understanding and decision-making. There are mainly two development directions for time series analysis:classical time series analysis and phase space reconstruction.
     The first part of this paper studies the direction of classical time series analysis method
     It is the key to extend order, determine order, filter variables and select regression model in classical time series analysis, the formers are often coupled with selecting regression model together. The traditional classical multidimensional time series analysis methods are modeled linearly, such as controlled autoregressive integrating moving average (CARMA) and controlled autoregressive (CAR), but their prediction abilities are poor. The back-propagation neural networks (BPNN) which is based on the empirical risk minimization has good nonlinear prediction ability, but falls into local minimum easily and has poor interpretation and strong empirical defects. Support vector machine (SVM) which is based on statistical learning theory has solved the local minimum, overfitting, and nonlinear problems, and has the advantage of global optimization and strong generalization ability, so support vector machine is used as the basic modeling tool in this paper.
     1 Combination prediction model—SLR-LSSVM
     This paper proposes a combination prediction model (SLR-LSSVM) which the impact factors are filtered by stepwise linear regression (SLR), and then the model is established based on least squares support vector machine (LSSVM). The simulation experiment is carried out on the second generation corn borer larvae occurrence which has eight meteorological factors, and the prediction results show that SLR-LSSVM's performance is superior to reference models, which indicates that the proposed model based on the factors filtered and SVM can improve the time series prediction precision.
     2 Combination prediction model—CAR-LSSVM
     SLR-LSSVM only considers the affects of environment factors, without considering time series'inherent dynamic feature (without extending order), and the variables are filtered by SLR. Although CAR considers the effects of environmental factors and dynamic features, its order is determined by multiple linear regression (MLR) and variables are filtered by SLR too. This paper proposes a combination prediction model (CAR-LSSVM) Firstly, the optimal order is determined by minimum mean squared error (MSE) with LSSVM, and then the retained variables are obtained by nonlinear filtering after extending the order, lastly, the prediction model is established on the retained variables by LSSVM and the CAR-LSSVM's performance is tested on the data of the moth-eaten ration of Leguminivora glycinivorella Mats which has five factors. The prediction results show that CAR-LSSVM's performance is superior to reference models, such as MLR, SNR, LSSVM, SLR-LSSVM, and CAR, which indicates that it is necessary to consider environmental factors, dynamic features, nonlinear determining order and nonlinear filtering factors together.
     3 Combination prediction model—GS-LSSVM
     CAR's order determined by F test and CAR-LSSVM's order determined by minimum MSE have common defects:one is that the optimal order is obtained from low to high gradually is time-consuming, another is that the optimal order obtained by extending with the dependent and independent variables together is easy to cause information redundancy, while variables filtering are time-consuming and determining order is terminated before obtaining the optimal easily may reduce model's performance. This paper proposes a high precision and determinatiion order fastly combination prediction method (GS-LSSVM), which can reflect time series'dynamic features and the affect of environmental factors. Firstly, the time series structure are analyzed by semivariogram of geostatistics (GS) and the optimal order is determined by variable range fastly, secondly, the redundancy information and dimension are reduced by principal component analysis, finally, the model is established on LSSVM. GS-LSSVM is applied to predicting the Dendrolimus punctatus occurrence area and the fifth generation brown planthopper for late-season rice. The prediction results show that GS-LSSVM's performance is superior to LSSVM, GS-BPNN and has the advantage of determining order fastly and accurately. GS-LSSVM not only reflects the dynamic features and the affect of environmental factors, but also has good generalization ability. Therefore GS-LSSVM has a broad range of applications in the time series prediction field.
     4 Combination prediction model—ARIMA-DSVM
     The training samples will be larger as time passed, the training time of LSSVM will too long to be accepted. More importantly, all history samples are involved in training unreasonable and each sample impact on the prediction results is different. Dynamic insensitive cost function support vector machines (DSVM) can adjust insensitive loss function parameters (ε) dynamically whereby the recentε-insensitive errors are penalized more heavily than the distantε-insensitive errors. This paper proposes a combination prediction model (ARIMA-DSVM) to predict the time series which characteristic is unknown. Firstly, the linear component of time series is predicted by ARIMA, and then the ARIMA prediction errors are corrected by DSVM. The result on Dendrolimus punctatus occurrence area shows that ARIMA-DSVM's performance is superior to reference models such as ARIMA and DSVM.
     The second part of this paper studies the direction of phase space reconstruction
     Time series prediction model based on phase space reconstruction and LSSVM includes two key steps:determining the time delay (τ) and embedding dimension (m) in phase space reconstruction, and selecting the regularization parameter (y) and the kernel function width parameter (σ) of LSSVM. In previous studies, phase space reconstruction and LSSVM parameters are determined independently, so the determined r and m can not always ensure that LSSVM has the optimal prediction precision. Therefore, joint optimization forτ, m,γand a is a very attractive choice, which is driven purely from data and need not any priori knowledge of the time series. However, a multi-factor and multi-level joint optimization by exhaustive search algorithm is very time-consuming.
     5 Combination prediction model—GA-LSSVM
     A multi-factor and multi-level joint optimization by exhaustive search algorithm is very time-consuming, while genetic algorithm (GA) is a heuristic algorithm, which has parallel search ability. This paper proposes a combination prediction model (GA-LSSVM) in which theτ、m、γandσare jointly optimized by GA. The simulation experiment are carried out on Mackey-Glass and Mackey-Glass with noise, the prediction results show that GA-LSSVM is a stable and effective time series prediction model.
     6 Combination prediction model—UD-LSSVM
     GA is a heuristic algorithm which falls into local optimal easily. Uniform design (UD) arranges the experimental numbers by selecting good lattice points to reduce the experimental numbers greatly, which tends to distribute uniformly with low bias. LSSVM based on the structural risk minimization can solve the local minimum and nonlinear problems, and has excellent generalization ability. This paper proposes a combination prediction model (UD-LSSVM) to solve theτ、m、γandσjoint optimization problem by UD and self-calling LSSVM. The simulation experiments are carried out on Mackey-Glass, Lorenz and yearly sunspot time series, and the results show that the UD-LSSVM reduces the computational complexity and obtains high prediction precision, and the prediction results are superior to the results reported in the literature. The results indicate that UD-LSSVM is a fast and efficient jointτ-m-SVM parameter optimization prediction model for time series based on data driven.
引文
[1]王海燕,卢山.非线性时间序列分析及其应用[M].北京:科学出版社,2006,1-112.
    [2]范剑青,姚琦伟.非线性时间序列—建模、预测及应用[M].北京:高等教育出版社,2005,1-20.
    [3]Rossi A, Gallo G M. Volatility estimation via hidden Markov models. Journal of Empirical Finance, 2006,13(2):203-230.
    [4]Dilli R A, Wang Y W. Time-series analysis with a hybrid Box-Jenkins ARIMA and neural networks model[J]. Journal of Harbin Institute of Technology,2004,11(4):413-421.
    [5]Li C, Andersen S V. Efficient blind system identification of non-Gaussian autoregressive models with HMM modeling of the excitation[J]. IEEE Transactions on Signal Processing,2007,55(6): 2432-2445.
    [6]Brockwell P J, Davis R A,田铮(译).时间序列的理论与方法(第二版)[M].北京:高等教育出版社,2001.
    [7]谢景新.非线性多步预测与优化方法及其在水文预报中的应用[D].大连理工大学,2006.
    [8]Box G E P, Jenkins G. M. Time series analysis, forecasting and control[M]. San Francisco: Holdenday,1976.
    [9]杨叔子,吴雅.时间序列分析的工程应用(上、下册)[M].武汉:华中理工大学出版社,1992.
    [10]Liu P, Zang W. Incentive-based modeling and inference of attacker intent, objectives and strategies[J]. ACM Transactions on Information and Systems Security,2005,56(3):283-298.
    [11]Pandit S M, WU X M.Time series and system analysis with applications[M]. New York:John Wiley and Sons Press,1983.
    [12]唐启义.DPS数据处理系统—实验设计、统计分析及数据挖掘[M].北京:科学出版社,2010.
    [13]刘颖.严军.基于时间序列ARMA模型的振动故障预测[J].化工自动化及仪表,2011,7:841-843.
    [14]张海勇.非平稳信号的一种ARMA模型分析方法[J].电子与信息学报,2002,24(7):992-996.
    [15]王宪杰.多变量CAR模型的递推辨识[J].烟台大学学报(自然科学与工程版),2001,14(1):23-25.
    [16]张鑫,元红妍.CAR模型的递推估计及仿真[J].电气传动自动化,2005,27(4):64-66.
    [17]向昌盛,周子英.基于支持向量机的多维害虫时间序列预测[J].计算机应用研究,2010,27(10):3694-3698.
    [18]常军,路振广,竹磊磊,等.CAR模型在武陟站水文年型预测中的应用[J].人民黄河,2010,32(8):34-35.
    [19]管孝艳,王少丽,高占义.基于多变量时间序列CAR模型的地下水埋深预测[J].农业工程学报,2011,27(7):64-69.
    [20]Wu C Z, Hong W. A proposed multidimensional time series model of individual age and diameter in tsuga longibracateata[J]. Acta Phytoecologica Sinica,2002,26(4):403-407.
    [21]Tong H. Nonlinear time series:A dynamical systems approach[M].Oxford:Oxford University Press, 1990.
    [22]Granger C W J, Andersen A P. An Introduction to bilinear time series models[M]. Gottingen: Vandenhoek and Ruprecht,1978.
    [23]Ozaki T, Oda H. Non-linear time series model identification by Akaike's information criterion[J]. Information and Systems,1978,83-91.
    [24]甘敏.基于状态相依模型的非线性时间序列建模及其优化方法研究[D].中南大学,2010.
    [25]黄润生.混沌及其应用[M].武汉大学出版社,2000,第二版.
    [26]Wang J, Sun L, Fei X Y, et al. Chaos analysis of the electrical signal time series evoked by acupuncture[J]. Chaos,Solitons&Fractals,2007,33(3):901-907.
    [27]Samya E, Jacques T, Bassem B. Genetic algorithms to solve the cover printing problem[J]. Computers&Operations Research,2007,34(11):3344-3361.
    [28]Takens F. Determing strange attractors in turbulence[J]. Lecture notes in Math,1981,898:361-381.
    [29]程广平,汪波.基于神经网络的混沌系统状态预测[J].系统仿真学报,2007,19(5):1173-1175.
    [30]姜桂仁.混沌时序的特征量分析及相空间重构[D].江苏大学硕士学位论文,2005.
    [31]李爱国.滑动窗口二次自回归模型预测混沌时间序列[J].系统工程理论与实践,2004,10:104-109.
    [32]刘隽,周涛,周佩玲.GA优化支持向量机用于混沌时间序列预测[J].中国科学技术大学学报,2005,35(2):258-263.
    [33]Suzuki T, Ikeguchi T, Suzuki M. Multivariable nonlinear analysis of foreign exchange rates[J]. Physica A-Statistical Mechanics and Its Applications,2003,323:591-600.
    [34]Daniels M J, Pourahmadi M. Bayesian analysis of covariance matrices and dynamic models for longitudinal data[J]. Biometrika,2002,89:553-566.
    [35]Kitoh S, Kimura M, Mori T, et al. Afundamental bias incalculating dimensionfrom finite data sets[J]. Phys D,2000,141(10):171-182.
    [36]Ma J H, Chen Y S. An analytic and application to state space reconstruction about chaotic time series[J]. Applied Mathematics and Mechanics (English Edition),2000,21(11):1237-1245.
    [37]Castillo O, Melin P. Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory[J]. IEEE Trans, Neural Networks,2002,13:1395-1408.
    [38]Niu L, Zhao J G, Du Z G, Jin X L. Application of time series forecasting algorithm via support vector machines to power system wide-area stability forecast[C]. Transmission and Distribution Conference and Exhibition,Asia and Pacific,2005:1-6.
    [39]Louis M, Linda M, Jonathan N, Thomas L. A unified approach to attractor reconstruction[J]. 2009,10:3-19.
    [40]Zhang G P, Patuwo B E, Hu M Y. A simulation study of artificial neural networks for nonlinear time-series forecasting[J]. Computers&Operations Research,2001,28(3):381-396.
    [41]Cowper M R, Mulgrew B, Unsworth C P. Nonlinear forecast of chaotic signals using a normalized radial basis function network[J]. Signal Processing,2002,82(5):775-789.
    [42]Tseng F M, Yu H C, Tzeng G H. Combining neural network model with seasonal time series ARIMA model[J].Technological Forecasting and Social Change,2002,(69):71-87.
    [43]Harpham C, Dawson C W. The effect of different basis functions on a radial basis function network for time series prediction:a comparative study[J]. Neurocomputing,2006,69(16):2161-2170.
    [44]肖方红,阎桂荣,韩宇航.混沌时序相空间重构参数确定的信息论方法[J].物理学报,2005,54(2):550-556.
    [45]樊重俊.多个动态序列之间非线性相关性度量方法[J].系统工程学报,2010,25(4):433-438.
    [46]丁晶,王文圣,赵永龙.以互信息为基础的广义相关系数[J].四川大学学报(工程科学版),2002,34(3):1-5.
    [47]张胜,刘红星,高敦堂,等.ANN非线性时间序列预测模型输入延时τ确定[J].东南大学学报(自然科学版),2002,32(6):905-908.
    [48]Han M, Xi J, Xu S. Chaotic system identification based on Kalman filter[C]. Proc. of 2002 World Congress on Computational Intelligence,2002,675-680.
    [49]马红光,李夕海,王国华,等.相空间重构中嵌入维和时间延迟的选择[J].西安交通大学学报,2004,38(4):335-338.
    [50]Bakker R, Schouten J C, Giles C L. Learning chaotic attractors by neural networks[J]. Neural Computation,2002,12(10):2355-2383.
    [51]陈关荣,吕金虎.Lorenz系统族的动力学分析、控制与同步[M].北京:科学出版社,2003.
    [52]吕金虎,陆均安,陈士华.混沌时间序列分析及其应用[M].武汉大学:武汉大学出版社,2002.
    [53]Gu H, Wang H W. Fuzzy forecast of chaotic time series based on singular value decomposition[J]. Applied Mathematics and Computation,2007,185(2):1171-1185.
    [54]Gautama T, Hulle M. A differential entropy based method for determining the optimal embedding parameters of a signal[C]. Proc of the Int Conf on A coustics, Speech and Signal Processing, 2003,6:29-32
    [55]Yuan Z J, Ren B, Zhang H X, et al. Time series forecast via new support vector machines[C]. Proceedings of ICMLC, IEEE,2002:364-366
    [56]Yano M, Homma N, Sakaim K. Phase space reconstruction from observed time series using Lyapunov spectrum analysis[C]. Proc of SICE Annual Conference Osaka,2002:721-726.
    [57]周创兵,陈益峰.基于相空间重构的边坡位移顶测[J].岩石力学,2000,21(3):205-208.
    [58]闫华,魏平,肖先赐.基于Bernstein多项式的自适应混沌时间序列预测算法[J].物理学报,2007,56(9):5111-5118.
    [59]陈益峰,吕金虎,周创兵.基于Lyapunov指数改进算法的边坡位移预测[J].岩石学与工程学报,2001,20(5):671-675.
    [60]Leung H, Lo T, Wang S C. Forecast of noisy chaotic time series using an optimal radial basis function neural network[J]. IEEE Transactions on Neural Networks,2001,12(5):1163-1172.
    [61]Jaeger H, Haas H. Harnessing nonlinearity:Predicting chaotic systems and saving energy in wireless communication[J]. Science,2004,304(2):78-80.
    [62]Zhang J S, Xiao X C. Predicting chaotic time series with recurrent neural networks[J]. Chinese Physics Letter,2000,17(2):88-90.
    [63]Zhang J S, Xiao X C. Fast evoving multilayer perceptions for modeling and forecast of noisy chaotic time series[J]. Chinese Physics.2000,9(6):408-413.
    [64]Gu H, Wang G. Fuzzy prediction of chaotic time seriesbased on singular value decomposition[J]. AppliedMathematics and Computation,2007,185(2):1171-1185.
    [65]Valenzuela O, Rojas 1, Rojas F, et al·Hybridization of intelligent techniques and ARIMA models for time series prediction[J]-Fuzzy Sets and Systems,2008,159(7):821-845.
    [66]Chen Y, Yang B, Dong J-Time series prediction using a local linear wavelet neural network [J]-Neurocomputing,2006,69(6):449 465·
    [67]Du H, Zhang N-Time series prediction using evolving radial basis function networks with encoding scheme [J]-Neurocomputing,2008,71 (7):1388-1400.
    [68]Zhu B Z, Lin J. A novel feature extraction-based selective & nonlinear neural network ensemble model for economic forecasting[J]. International Journal of Computer Science and Network Security, 2007,7(2):142-145.
    [69]叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报,2005,54(6):2568-2573.
    [70]Shi Z W, Han M. Support vector echo-state machine for chaotic time-series forecast[J]. Transactions on Neural Networks,2007,18(2):359-372.
    [71]Lu Z B, Cai Z M, Jiang K Y. Determination of embedding parameters for phase space reconstruction based on improved C-C method[J]. Journal of System Simulation,2007,19(11):2527-2538.
    [72]Rojas I, Gonzalez J, Canas A, et al. Short-term forecast of chaotic time series by using RBF network with regression weights[J]. International Journal of Neural Systems,2000,10(5):353-364.
    [73]Karlene A H, Eric D S, Michael J P. Improvement in the predictive capability of neural networks[J]. Journal of Process Control,2002,12:193-202.
    [74]张森,肖先赐.混沌时间序列全局预测新方法-连分式法[J].物理学报,2005,54(11):5062-5068.
    [75]赵鲲鹏,丛伟,赵亮.基于尺度UKF小波网络的混沌时间序列预测[J].火力与指挥控制,2010,35(5):114-117.
    [76]Oliveira K A, Vannucci A, Silva E C. Using artificial neural networks to forecast chaotic time series[J]. Physica A,2000,284(4):393-404.
    [77]Zhang J, Lam K C, Yan W J, et al. Time series forecast using Lyapunov exponents in embedding phase space[J]. Computers and Electrical Engineering,2004,30(1):1-15.
    [78]谭文,王耀南,周少武,刘祖润.混沌时间序列的模糊神经网络预测[J].物理学报,2003,52(4):795-801.
    [79]王海燕,盛昭瀚,张进.多变量时间序列复杂系统的相空间重构[J].东南大学学报(自然科学 版),2003,33(1):115-118.
    [80]Yu L, Wang S Y, Lai K K.A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates[J]. Computer &Operation Research,2005,(32):2523-2541.
    [81]Du H, Zhang N.-Time series forecast using evolving radial basis function networks with encoding scheme[J].-Neurocomputing,2008,71 (79):1388-1400.
    [82]Chen L, Chen G. Fuzzy modeling, forecast, and control of uncertain chaotic systems based on time series[J]. IEEE Transactions on Circuits and Systems:Fundamental Theory and Applications 2000,47(10):1527-1531.
    [83]刘立霞.多变量混沌时间序列的最小二乘支持向量机预测[J].统计与决策,2008,16:16-18.
    [84]任韧,徐进,朱世华.最小二乘支持向量域的混沌时间序列预测[J].物理学报,2006,55(2):555-558.
    [85]Soltani S. On the use of the wavelet decomposition for time series forecast[J]. Neurocomputing, 2002,48(1):267-277.
    [86]Chen S M, Hwang J R. Temperature forecast using fuzzy time series[J]. Transactions on Systems, Man and Cybernetics-PartB,2000,30(2):263-275.
    [87]甘建超,肖先赐.基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅰ)线性自适应滤波[J].物理学报,2003,52(5):1096-1101.
    [88]甘建超,肖先赐.基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅱ)非线性自适应滤波[J].物理学报,2003,52(5):1102-1107.
    [89]张家树,肖先赐.混沌时间序列的Volterra自适应预测[J].物理学报,2000,49(3):403-408.
    [90]甘敏,彭辉.基于带回归权重RBF-AR模型的混沌时间序列预测[J].系统工程与电子技术,2010,32(4):820-824.
    [91]李鹤,杨周,张义民,闻邦椿.基于径向基神经网络预测的混沌时间序列嵌入维数估计方法[J].物理学报,2011,60(7):70512-070517.
    [92]尹新,周野,何怡刚.基于混合算法优化神经网络的混沌时间序列预测[J].湖南大学学报(自然科学版),2010,27(6):41-45.
    [93]Yazdizadeh A, Khorasani K. Adaptive time delay neural network structures for nonlinear system identification[J]. Neurocomputing,2002,47(4):207-240.
    [94]张国云,彭仕玉.混沌时间序列的最小二乘支持向量机预测[J].湖南理工学院学报(自然科学版),2006,19(3):26-30.
    [95]Liang J, Cao J. Boundedness and stability for recurrent neural networks with variable coefficients and time-varying delays[J]. Physics Letters A,2003,318(2):53-64.
    [96]Silva C G.-Time series forecasting with a nonlinear model and the scatter search meta-heuristic[J].Tnformation Sciences,2008,178(16):3288-3299.
    [97]李应红,尉询楷,刘建勋.支持向量机的工程应用[M].北京:兵器工业出版社,2004.
    [98]尉询楷,李应红,张朴,路建明.基于支持向量机的时间序列预测模型分析与应用[J].系统工程与电子技术,2005,27(3):429-432.
    [99]Baailay V L. On domain knowledge and feature selection using a support vector machines[J]. Pattern Recognition Letters,2004,20(5):475-484.
    [100]Steve G. Support vector machines for classification and regression[J]. Southampton University, 2006,16(4):325-329.
    [101]田盛丰.回归型支持向量机的简化算法[J].软件学报,2002,6(13):1169-1172.
    [102]朱志宇,姜长生,张冰.基于支持向量回归的混沌序列预测方法[J].电工技术学报,2005,20(6):57-61.
    [103]杨一文,杨朝军.基于支持向量机的金融时间序列预测[J].系统工程理论方法应用,2005,14(2):176-181.
    [104]王大鹏.基于支持向量机的公路车流量数据分析与预测模型[D].哈尔滨工程大学硕士学位论文,2006.
    [105]Ganapathiraju A, Hamaker J E, Picone J. Applications of support vector machines to speech recognition[J]. IEEE Trans on Signal Processing,2004,52(8):2348-2355.
    [106]Smola A J, Scholkopf B. A tutorial on support vector regression[J]. Statistics and Computing,2004, 14(3):199-222.
    [107]Mujtaba I M, Hussain M A. Application of neural networks and other learning technology in process engineering[M]. London, Imperial College Press,2001.
    [108]Russel E, Chiang L H, Bratz R D. Data-driven models for fault detection and diagnosis in chemical process[M]. Berlin,Springer-Veriag,2000.
    [109]Zafeiriou S, Tefas A, Pitas I. Minimum Class variance support vector machines[J]. IEEE Trans on Image Processing,2007,16(10):2551-2564.
    [110]杨国为,王守觉,闰庆旭.分式线性神经网络及其非线性逼近能力研究[J].计算机学报,2007,30(2):189-199.
    [111]Ha C H, Kuo W. Reliability redundancy allocation:An improved realization for nonconvex nonlinear programming problems[J]. European Journal of Operational Research,2006,171(1): 24-38.
    [112]周志华,曹存根.神经网络及其应用[M].北京:清华大学出版社,2004.
    [113]邓乃扬,田英杰.数据挖掘中的新方法—支持向量机[M].北京:科学出版社,2004.
    [114]Vapnik V N. Statistical learning theory[M]. New York:Wiley,2001.
    [115]李昆仑.支持向量机学习的扩展及其应用研究[D].北京交通大学博士论文,2004.
    [116]黄东远,陈晓云.一种新的支持向量回归机的模型选择方法[J].福州大学学报(自然科学版),2011,39(4):527-532.
    [117]Wang H Y, Zhu M. A forecast comparison between univariate and multivariate chaotic time series[J]. Journal of Southeast University (English Edition),2003,19(4):414-417.
    [118]朱学峰,顾世清.深沪证券市场股价波动的混沌度及其调控方法[J].管理科学学报,2000,3(1):53-56.
    [119]王永生,孙瑾,王吕金,范洪达.变参数混沌时间序列的神经网络预测研究[J].物理学报,2008,57(10):6120-6121.
    [120]李军,刘君华.一种新型广义RBF神经网络在混沌时间序列预测中的研究[J].物理学报,2005,54(10):4569-4577.
    [121]Poggio T, Rifkin R, Mukherjee S, Niyogi P.General conditions for predictivity in learning theory[J]. Nature,2004,428:419-422.
    []22]Andras P. The equivalence of support vector machine and regularization neural networks[J]. Neural processing Letters,2002,15(2):97-104.
    [123]Kwok T Y. The evidence frame work applied to support vector machines[J]. IEEE Transactions on Neural Networks,2000,11 (5):162-117.
    [124]Keerthi S S, Shevade S K, Bhattcharyya C, Murthy K R. Improvements to Piatt's SMO algorithm for SVM classifier design[J]. Neural Computation,2001,13(3):637-649.
    [125]Keerthi S S, Gilbert E G. Convergence of a generalized SMO algorithm for SVM classifier design[J]. Machine Learning,2002,46(1-3):351-360.
    [126]Suykens J A K, Vandewalle J. Weighted least squares support vector machines:Robustness and sparse approximation[J]. Neurocomput,2002,48:85-105.
    [127]Li Y M, Gong S G, Sherrah J, Liddel H. Support vector machine based multi-view face detection and recognition[J]. Image and Vision Computing,2004,22(5):413-427.
    [128]Dong J X, Krzyzak A, Suen C Y. An improved handwritten Chinese character recognition system using support vector machine[J]. Pattern Recognition Letters,2005,26(12):1849-1856.
    [129]Wan V, Renals S. Speaker Verification Using sequence discriminate support vector machines[J]. IEEE Transactions on Speech and Audio Processing,2005,13(2):203-210.
    [130]Liu Y, Loh H T, Tor S B. Comparison of extreme learning machine with support vector machine for text classification[C]. Innovations in Applied Artificial Intelligence, Lecture Notes in Artificial Intelligence,2005,3:390-399.
    [131]Anghelescu A V, Muchnik 1 B. Combinatorial PCA and SVM methods for feature selection in learning classifications[C]. International Conference on Integration of Knowledge Intensive Multi-Agent Systems,2003,12:491-496.
    [132]Kim K I, Jung K, Park S H, Kim H J. Support vector machine-based text detection in digital video[J]. Pattern Recognition,2001,34(2):527-529.
    [133]Chi M M, Bruzzone L. Semisupervised classification of hyperspectral images by SVMs optimized in the primal[J]. Transactions on Geoscience and Remote Sensing,2007,45(6):1870-1880.
    [134]Melgani F, Bruzzone L. Classification of hyperspectral remote sensing Images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1778-1790.
    [135]Yang Y, Chen S, Ye Z B. Combination of particle-swarm optimization with least-squares support vector machine for FDTD time series forecasting[J]. Microwave and Optical Technology Letters, 2006,48(1):141-144.
    [136]Gestel T V, Suykens J. Financial time series forecast using least squares support vector machines within the evidence framework[J]. IEEE Trans Neural Networks,2001,4:809-821.
    [137]Li H C, Zhang J S. Local forecast of chaotic time series based on support vector machine[J].Chinese Physics Letters,2005,22(11):2776-2779.
    [138]Osowski S, Hoai L T, Markiewicz T. Support vector machine-based expert system for reliable heartbeat recognition[J]. IEEE Transactions on Biomedical Engineering,2004,51(4):582-589.
    [139]Naqa I, Yang Y Y, et al. A support vector machine approach for detection of microcalcifications[J]. IEEE Transactions on Medical Imaging,2002,21(12):1552-1563.
    [140]Chen S, Hanzo L Block-adaptive kernel-based CDMA multiuser detection[C]. IEEE International Conference on Communications,2002,2:682-686.
    [141]向吕盛,周子英,张林峰.相空间重构和支持向量机参数联合优化[J].湖南科技大学学报(自然科学版),2010,25(4):81-85.
    [142]彭晓琴,杨敬锋,胡月明,等.基于半监督学习的黄曲条跳甲预警方法[J].农机化研究,2005,15(3):150-152.
    [143]张真,李典谟,查光济.马尾松毛虫种群动态的时间序列分析及复杂性动态研究[J].生态学报,2002,22(7):1061-1067.
    [144]岑冠军,黄寿山,肖莉,钟谭卫.ARIMA模型在小菜蛾幼虫种群动态中的应用[J].华南农业大学学报,2008,29(1):109-114.
    [145]贾春生.ARIMA模型在马尾松毛虫发生面积预测中的应用[J].安徽农业科学,2007,35(19):5672-5673.
    [146]李战江,曹海燕.使用ARIMA模型对内蒙古GDP进行时序建模及预测[J].内蒙古农业大学学报,2008,29(2):173-175.
    [147]刘新宇,张红涛.模糊识别技术在大田害虫检测系统中的应用[J].农机化研究,2008,12(3):192-194.
    [148]邢美凤,冯斌,邓篙.模糊神经网络在病虫害诊断中的应用初探[J].晋中学院学报,2005,22(3):44-47.
    [149]陈顺立,张华峰,张潮巨,等.神经网络在松墨天牛发生量预报中的应用[J].福建林学院学报,2006,26(2):6-9.
    [150]马飞,许晓风,张夕林,程遐年.相空间重构与神经网络融合预测模型及其在害虫测报中的应用[J].2002,22(8):1297-1301
    [151]向昌盛,周子英,张林峰.支持向量机在害虫发生量预测中的应用[J].生物信息学,2011,9(1):28-31.
    [152]田有文.基于纹理特征和支持向量机的玉米病害的识别[J].沈阳农业大学学报,2005(06):63-69.
    [153]张永生.支持向量机在害虫预测预报中的应用[J].现代农业科技,2009,14:147-148.
    [154]朱军生,翟保平,刘英智.基于小波分解的害虫发生非平稳时间序列分析和预测[J].南京农业大 学学报,2011,34(3):61-66.
    [155]马飞,许晓风,张夕林,等.神经网络预警系统及其在害虫预测中的应用[J].昆虫知识,2002,39(2):115-19.
    [156]罗盛健.基于人工神经网络的刚竹毒蛾发生面积的预测模型[J].华东昆虫学报,2006,15(1):37-39.
    [157]石晶晶,刘占宇,张莉丽,黄敬峰.基于支持向量机的稻纵卷叶螟危害水稻高光谱遥感识别[J].中国水稻科学,2009,23(3):331-334.
    [158]Salgado R M, Pereira J J F, Ohishi T. A hybrid ensemble model applied to the short-term load forecasting problem[C]. International Joint Conference on Neural Networks, Vancouver, B C Canada,2006,10:2627-2634.
    [159]Vila J P, Wagner V, Neveu P. Bayesian nonlinear model selection and neural network:A conjugate prior approach[J]. IEEE Trans on Neural Networks,2000,11(2):265-278.
    [160]陈斌.利用主要气象因子对二代玉米螟预测预报研究[D].济南:山东农业大学,2007,6.
    [161]王海燕,杨方廷,刘鲁.标准化系数与偏相关系数的比较与应用[J].数量经济技术经济研究,2006,9:150-155.
    [162]袁哲明,张永生,熊洁仪.基于SVR的多维时间序列分析及其在农业科学中的应用[J].中国农业科学,2008,41(8):2485-2492.
    [163]许晓风,马飞,丁宗泽,程遐年.褐飞虱发生的相空间线性回归预测模型[J].昆虫学报,2002,45(4):548-55.
    [164]张永生,袁哲明,熊洁仪,周铁军.基于SVR和CAR的多维时间序列分析及其在生态学中的应用[J].生态学报,2007,27(6):2419-2425.
    [165]徐丹,邓华玲.投影寻踪回归模型在大豆食心虫虫食率预测中的应用[J].东北农业大学学报,2009,40(2):98-101.
    [166]谭泗桥,林雪梅,陈渊,等.基于地统计学的多维时间序列模型及其在生态学中的应用[J].湖南农业大学学报(自然科学版),2009,35(4):433-436.
    [167]侯景儒,郭光裕.矿床统计预测及地质统计学的理论与应用[M].北京:冶金工业出版社,1993.
    [168]吕昭智,包安明,陈曦,等.地统计学软件在害虫管理中的应用[J].生态学杂志,2003,22(6):132-136.
    [169]马宁远,王惠卿,张伟,等.基于地统计学的新疆棉田烟粉虱危害动态与时空分布[J].生态学报,2006,28(6):2654-2662.
    [170]骆社周,申维,郑晖,等.基于GS的松毛虫管理系统的设计与开发[J].江西农业大学学报,2006,28(2):308-311.
    [171]宗世祥,骆有庆,许志春,等.沙棘木蠹蛾卵和幼虫空间分布的地统计学分析[J].生态学报,2005,25(4):831-836.
    [172]袁哲明,李方一,胡湘粤,张中霏.基于地统计学的二化螟种群时间格局分析[J].应用生态学报,2006,1(4):673-677.
    [173]刘青松.时间序列分析方法在预测松毛虫发生面积中的应用[J].河北农业科技,2008,12:58-59.
    [174]陈水校.简易多级法预测晚稻第五代褐飞虱发生量[J].江苏农业科学,2006,4:48-50.
    [175]周子英,段建南,向昌盛,陈茜.基于PCA-SVM的区域经济预测研究[J].计算机仿真,2011,28(4):375-378.
    [176]Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing,2002,48(4),847-861.
    [177]黄宇翔,王百禄.ARIMA与适应性SVM之混合模型于股价指数预测之研究[J].电子商务学报,2008,10(4):1041-1066.
    [178]王海燕,盛昭瀚.混沌时间序列相空间重构参数的选取方法[J].东南大学学报(自然科学版),2000,30(5):113-117.
    [179]王小平,曹立明.遗传算法-理论,应用与软件实[M].西安:西安交通大学出版社,2002.
    [180]谢胜利,董金祥,黄强.基于遗传算法的车间作业调度问题求解[J].计算机工程与应用,2002,10:79-82.
    [181]许建强,李高平.基于遗传算法的支撑向量机的特征选取[J].计算机工程,2004,30(24):1-3.
    [182]张凤斌,杨永田,江子扬.遗传算法在基于网络异常的入侵检测中的应用[J].电子学报,2004,4:875-876.
    [183]王海英,蔡向东,尤波,张礼勇.基于遗传算法的移动机器人动态路径规划研究[J].传感器与微系统,2007,26(8):32-34.
    [184]董敏,霍剑青,王晓蒲.基于自适应遗传算法的智能组卷研究[J].小型微型计算机系统,2004,25(1):82-85.
    [185]袁玉萍,胡亮,周志坚.基于遗传算法对支持向量机模型中参数优化[J].计算机工程与设计,2008,29(19):5016-5018.
    [186]Chen P W, Wang J Y, Lee H M. Model selection of SVM using GA approach[C]. Proceedings of the International Joint Conference on Neural Networks,2004,7:2035-2040.
    [187]Sanchez A. D. Advanced support vector machines and kernel methods[J].Neuro Computering, 2003,55(1):5-20.
    [188]Francis E H, Cao L J. Application of support vector machines in financial time series forecasting[J]. The International Journal of Management Science,2001,29:309-317.
    [189]陈果.基于遗传算法的支持向量机时间序列预测模型优化[J].仪器仪表学报,2006,27(9):]080-1084.
    [190]施建中,韩璞,王东风,焦篙鸣.基于混合聚类算法的模糊函数系统辨识方法[J].信息与控制,2011,40(3):387-393.
    [191]Xiang C S, Zhou W, Yuan Z M, et al. A new parameters joint optimization method of chaotic time series prediction[J]. International Journal of the Physical Sciences,2011,6(10):2565-2571.
    [192]方开泰.均匀设计一数论方法在试验设计中的应用[J].应用数学学报,1980,3(4):363-372.
    [193]李伟红,刘丽娟,龚卫国,辜小花.人脸识别中基于均匀设计的SVM超参数调节方法[J].光电子·激光,2009,20(10):1342-1348.
    [194]朱志宇,王建华,刘维亭.基于均匀设计的神经网络结构优化设计方法[J].华东船舶工业学院学报(自然科学版),2003,17(5):61-65.
    [195]崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3311.
    [196]崔万照,朱长纯,保文星,刘君华.基于模糊模型支持向量机的混沌时间序列预测[J].物理学报,2005,54(07):3009-3018.
    [197]Tong H, Lim K. Threshold autoregession, limit cycles and cyclical data[J]. Journal of the Royal Statistical Society,1980,42(3):245-292.
    [198]Weigend A, Huberman B, Rumelthart D. Predicting the future:a connectionist approach[J]. Journal of Neural Systems,1990,1:93-209.
    [199]Cao L. Support vector machines experts for time series forecasting[J]. Neuroeomputing, 2003,51:321-339.
    [200]李红星.基于统计学习理论的正则化最小二乘回归在时间序列建模和预测中的应用—太阳黑子、原油、汇率的预测[D].中国科学技术大学博士论文,2007.
    [201]马飞,李红兵,程遐年.褐飞虱(Nilaparvata lugens)发生的分形性质研究[J].生态学报,2001,21(2):179-285.
    [202]陈绘画,朱寿燕,周泽华.基于遗传神经网络混合模型预测马尾松毛虫发生量的研究[J].安徽农业科学,2009,37(12):5548-5551.
    [203]童清,王鸿斌.基于Markov链模型方法的松毛虫发生面积预测[J].林业实用技术,2009,6:68-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700