用户名: 密码: 验证码:
LPG单燃料BSH轿车国4排放控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油供求矛盾加剧和环境保护两个严峻的问题下,为了优化能源结构,减少排放污染物,单一燃料LPG轿车的开发就显得意义更加重大。随着日益严格的排放法规与全面实行国4排放标准的临近,研究国4的排放技术成为一个日趋严谨的问题。
     本文针对一汽-大众公司的BSH1.6发动机进行LPG电控喷射系统加装,进行催化器最佳转化窗口试验,燃料切换条件选择试验,整车转毂国4测试循环,得出试验结果如下:
     1. BSH原车载催化器在燃用LPG后的催化转化窗口范围0.950≤λ≤1.005,基于催化器的全工况电控系统标定达到与原汽油机相同水平并制取基本MAP图。
     2.冷却水温度是燃料切换过程影响排放数值的最主要的因素。
     3.燃料切换过程的失火发生在冷却水温度较低,扭矩较低的工况下。
     4.加装LPG系统的BSH轿车,经优化标定后排放达到国4排放标准。
Along with the rapid growth of the production scale and the population of global vehicles, the supply and demand relationship of the petroleum has become increasingly tense with the development of the national economy in China. Facing to National Emission Regulation StageⅣimminently implemented, the strict emission control has also become an increasingly serious problem. However, liquefied petroleum gas is considered as a clean alternative fuel for automobiles that has the most mature technology available and most likely to be promoted for using. Since the country started“‘Ninth Five-Year-Plan’Technological Breakthrough Action for clean vehicle”in 1999, LPG-vehicles have been developed comparatively well. The number of LPG-vehicles has already reached to 200,000 in 2004, and the application promotion of LPG-vehicles has experienced a tortuous process. Under the background of China’s energy security endangered by the shortage of energy sources, and with more and more rigorous emission regulations, it is an effective measure without fail to focus and to promote application of the mature alternative fuels, which is in order to adjust the energy structure, reduce the emission quantity of greenhouse gas, and realize sustainable development. Based on“National Regulation StageⅣ– the development of Single-LPG-BSH”in the“863”Project of National Ministry of Science and Technology, research on the emission control technology of Single-LPG-Engine was performed, and analysis results are as follows:
     1. The best conversion window range of BSH’s catalytic converter is 0.950≤λ≤1.005. When excess air ratio is in this range, the conversion efficiency of three kinds of emission pollutants were all over 95 percent. Based on BSH’s original catalytic converter, we carried out the calibration for its electronic control system on total operation conditions and made the Maps.
     2. When gasoline was switched to LPG for the engine, the experiment results are as follows:
     a) In the process of switching to LPG, and on the condition of same engine speed and same torque, the main influencing factor was the coolant temperature. During the fuel switching process, the lower the coolant temperature was, the greater the fluctuation of emission numerical values was. With the increase of coolant temperature, the fluctuation of emission numerical values declined.
     b) On the same torque and temperature condition, the fluctuation of emission numerical values during low-speed switching process was smaller than the one of high-speed switching process.
     c) On the same engine speed and same temperature condition, the lower the torque was, the smaller the emission quantity and fluctuation of emission numerical values was during the switching process. Moreover, because calorific values of gasoline and LPG are different and the one of LPG is lower, engine power declined in a fuel-switching instant. On the same engine speed condition, the engine torque declined, which resulted in working-instability of engine. So we should avoid switching fuel as far as possible on high-torque operation condition.
     d) Since misfire problem was existing in the switching process, we should avoid switching fuel as far as possible when Tcoolant=30℃and Ttq=20N?m, which is in order to avoid premature aging of catalytic converter, and reduce unburned HC emission.
     e) During fuel switching from gasoline to LPG, it is in a condition that fuel can be switched automatically, namely, N=1600r/min, Tcoolant=50℃and Ttq=50N·m.
     3. During fuel switching from gasoline to LPG, the test results show that we should avoid switching fuel as far as possible when Tcoolant=30℃and Ttq=20N?m due to misfire problem. And when Tcoolant=30℃, we should also avoid switching fuel because of greater fluctuation of emission numerical values.
     4. The circulation-test experiment of National Regulation StageⅣwas carried out on the chassis dynamometer. Test results indicate that the Maps made on the test bench and the requirement of fuel switching are comparatively reasonable, which made Single-LPG-BSH pass the circulation-test of National Regulation StageⅣsmoothly.
引文
[1] 吴冠京、付兴国、朱明慧.车用清洁燃料.石油工业出版社,2004 年 7 月,第一版.
    [2] 范华伟.高油价下中国液化石油气行业形势及应对策略.当代石油化工,2005,11.
    [3] 邓宝清,刘巽俊,王振锁,李理光,杨淑华.液化石油气摩托车性能与排放..吉林大学学报.2002 年 10 月.
    [4] 高莹,李君,杨世春.LPG 汽车的发展历程及未来.2006 代用燃料汽车国际学术会议.
    [5] 王秉刚.中国清洁汽车行动的成就与展望.电动汽车、清洁燃料汽车及汽车环保技术交流研讨会 论文集,2004 年 2 月,上海.
    [6] Industry Technology & Strategy Study Group. Report on Technologies and Strategies in the Automobile Industry. JSAE, March 2000.
    [7] 赵猛 蒋炎坤 吴峰胜.LPG 发动机的研究现状和发展前景.柴油机设计与制造.2007 年第 1 期第 15 卷.
    [8] 章建华.清洁汽车燃料 LPG 的应用研究.华东理工大学硕士论文.
    [9] James T. Winebrake. The Alternative Fuel Vehicle Market. Strategic Planning for Energy and the EnviroNment. Vol.19,No.4,2000.
    [10] 周龙保.内燃机学.机械工业出版社.2000.7
    [11] 杨超雄.LPG 发动机的实验与研究.上海交通大学硕士论文.
    [12] 杨世春,于秀敏,唐睿,刘乐.液化气单一燃料电控发动机的起动控制策.吉林大学报.2006 年 9 月.
    [13] 邓宝清,刘巽俊,王振锁,李理光,杨淑华.液化石油气摩托车性能与排放.吉林大学学报.2002 年 10 月.
    [14] 北京市环保局.北京市环境保护局关于实施国 IV 机动车排放标准有关事项的通知.2005.12.
    [15] 国家环境保护总局.国家质量监督检验检疫总局轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段).GB 18352.3-2005.
    [16] 孙济美.天然气和液化石油汽车.北京理工大学出版社, 1999(9~11).
    [17] 姜奎华.中国汽车工业的发展和对环境的影响.武汉汽车工业大学学报. 1999,4.
    [18] 卢青伟.中国汽车工业市场和展望.汽车研究与开发.1995,4.
    [19] 吴冠京、付兴国、朱明慧.车用清洁燃料.石油工业出版社,2004 年 7月,第一版.
    [20] 赵丹平 孟昭晰.车用 LPG 燃料特性参数的计算研究.内燃机.2005 年 8月.
    [21] 徐奎礼 赵珊挥.LPG 汽车发展与技术.行业科技应用.
    [22] Liguang Li and Zhimin Liu.Development of a Gas-Phase LPG Injection System for a Small SI Engine.SAE 2003-01-3260.
    [23] 岳伟,张益群,周伟,马建新.液化石油气(LPG)机动车的尾气排放与控制.化学世界.2000 年 428 页.
    [24] 苏 菱.LPG 发动机的排放性能研究.数字化制造及其它先进制造技术.2005 年专题学术会议.
    [25] Sierence R. An Experimental and Theoretical Study of LPG Injection. SAE Paper 922363.
    [26] 杨世春.基于模型的液化石油气单一燃料发动机电控系统的研究.吉林大学博士论文,2004.
    [27] Liguang Li and Zhimin Liu.Development of a Gas-Phase LPG Injection System for a Small SI Engine.SAE 2003-01-3260.
    [28] Toshiyuki Suga,Benjamin Knight Arai. Near-Zero Emission Natural Gas Vehicle. Honda CIVIC GX. SAE 97264.
    [29] Liguang Li, Zhensuo Wang, Baoqing Deng, Yongqiang Han, Huiping Wang, A Study of LPG in Emission Characteristics for Small SI Engine, ICAE2001E08, 2001.8.
    [30] HarryWatson,MohammadAliKhan,GordonLiew,PaulBaker.Opportunities for making LPG a clean and low greenhouse emission fuel.SAE 2005-01-2217.
    [31] Automotive LPG – Today’s Fuel for a Cleaner Tomorrow. The World LPG Association, Paris, November 1995, 2nd Edition, June 1996.
    [32] Sierence R. An Experimental and theoretical Study of LPG Injection. SAE Paper 922363.
    [33] 周毅,杨帅,姚喜贵,李秀元.电控气体喷射式 LPG 发动机的研究与开发.内燃机工程.2006 年 8 月第 4 期.
    [34] 陈贤章,王学合.车用 LPG 电控发动机排放控制的研究.汽车工程.2004年第 4 期.
    [35] 白哲南.我国液化石油气和 LNG 发展前景分析.石油与天然气化工,2005,1.
    [36] 刘巽俊.汽车发动机在节能和排放领域的新进展.汽车技术. 2001,4.
    [37] 周龙保.内燃机学.机械工业出版社.2000.7
    [38] 王桂洋.轿车车载诊断系统失火检测研究.2007 年硕士论文.
    [39] 朱洪涛、王建昕等.车用催化器性能的台架评价试验方法和试验装置的研究.汽车工程.1999 年 2 期,Vol.21 (81~86).
    [40] 王务林、赵航、王继先.汽车催化器系统概论.人民交通出版社,1999年 10 月,第 1 版,(1,3,84~87).
    [41] 汪映,吴筱敏,关勇.一种新型发动机失火检测方法的探讨.内燃机学报. 2002 年第 1 期.
    [42] 意大利 OMVL 公司车用液化石油气供给系统原理与说明. 北京恩吉威车辆新技术发展有限公司,2007.
    [43] 闫大方,范冰,康佳.LPG 供给系统的结构,工作原理介绍.内燃机.2006年 12 月第六期.
    [44] 李俊、王建昕等.闭环控制系统空燃比波动对三效催化器活性的影响.汽车工程,2000 年 2 期,Vol.22 (134~138).
    [45] 王务林,赵 航,王继先.汽车催化转化器系统概论.北京:人民交通出版社,1999.67~85.
    [46] 李 青.汽车排气系统材料的研究.世界汽车,1997,(11):56~59.
    [47] 杨 遇 春 , 蔡 有 胜 . 稀 土 在 汽 车 尾 气 净 化 中 的 应 用 . 稀 有 金属,1998,22(5):261~368.
    [48] 王务林、赵航、王继先.汽车催化器系统概论.人民交通出版社,1999年 10 月,第 1 版,(1,3,84~87).
    [49] 朱洪涛、王建昕等.车用催化器性能的台架评价试验方法和试验装置的研究.汽车工程,1999 年 2 期,Vol.21 (81~86).
    [50] Harry C. Watson David R. R. Gowdie.The Systematic Evaluation of Twelve LPG Fuels for Emissions and Fuel Consumption.SAE 2000-01-1867.
    [51] Roberto Cipollone and Carlo Villante.A/F and Liquid-Phase Control in LPG Injected Spark Ignition ICE.SAE 2000-01-2974.
    [52] Chetan S. Mistry and Anish H. Gandhi.Experimental Investigation on Multi-cylinder Engine Using Petrol and LPG as A Fuel.SAE 2004-01-1653.
    [53] Liguang Li,Zhensuo Wang, Baoqing Deng, Zongcheng Xiao, Yan Su and Huiping Wang.Characteristics of Particulate Emissions Fueled with LPG and Gasoline in a Small SI Engine.SAE 2004-01-2901.
    [54] 张振东,王伯年,韩百顺,王祝炜.汽车发动机失火检测与评价方法. 内燃机.1999 年第 6 期.
    [55] 汪映,吴筱敏,关勇.一种新型发动机失火检测方法的探讨.内燃机学报. 2002 年第 1 期.
    [56] Roberto Cipollone and Carlo Villante .A/F and Liquid-Phase Control in LPG Injected Spark Ignition ICE.SAE 2000-01-2974.
    [57] Sierence R. An Experimental and theoretical Study of LPG Injection. SAE Paper 922363.
    [58] Markus Willimowski, Rolf Isermann .A Time Domain Based Diagnostic System for Misfire Detection in Spark-Ignition Engines by Exhaust-Gas Pressure Analysis.SAE 2000-01-0366.
    [59] V. Mahieu,P. Duponcheele etc. Misfire Detection on S.I. Engines by Instantaneous Torque Analysis.SAE 2000-01-0367.
    [60] Martin Klenk, Wintried Moser,Werner Muetler,Wolfgang Wimmer. Misfire Detection by Evaluating Crankshaft Speed-A Means to Comply with OBDII.SAE.930399.
    [61] Lee Detal. Detection of Partial Misfire in IC Engines Using Measurement of Crankshaft Angular Veloci2ty. SAE 951070.
    [62] 王永军.车车载 OBD 核心技术研究.2007 年博士论文.
    [63] 王桂洋.轿车车载诊断系统失火检测研究.2007 年硕士论.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700