用户名: 密码: 验证码:
吉林省西部地区盐渍土水分迁移及冻胀特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吉林省西部地区属于典型的季节性冻土地区,水分、盐分的迁移加剧了该地区土壤的盐渍化及冻胀程度。为掌握吉林省西部地区盐渍土的水分迁移和冻胀特性,从而为有效控制该区土壤盐渍化及冻胀不断加剧的趋势进一步提供理论依据,本文以吉林省西部地区碳酸盐渍土为研究对象,在国家自然科学基金项目“东北季冻区路基土水分迁移的微观机理研究”、国家自然科学基金国际合作项目“不同气候带几种表生特殊土的形成环境及演化趋势”资助下,通过对研究区不同季节、不同深度土样的室内常规试验、研究,分析了平面及纵向剖面上土体的物理化学性质分布特征及其随季节的变化规律;然后对土样进行了直接法和冻融法的室内水分迁移大型模拟试验,通过对单次和多次冻融前后土样的含水率、含盐量的对比分析,研究了单次和多次冻融循环过程中土的水分迁移及盐分运移特征。研究表明:由于该区大部分土体含有大量的交换性钠,孔隙主要以细毛管孔隙为主,所以直接法试验中毛细现象微弱,冻融法试验中温度界限附近存在的水分迁移现象主要是温度梯度作用引起的土中薄膜水的迁移,盐分的迁移现象是温度梯度、浓度梯度共同作用的结果。
     由于实际工程中渠道、堤坝、支撑结构物等工程的土体填料,受条件限制有时采用碳酸盐渍土,这种具有一定击实度的土体较易引起工程冻胀破坏,本文结合水分迁移模拟试验的研究结果及对冻结过程中不同冻结温度、不同击实度土样的微观结构的分析结果,对吉林省西部地区碳酸盐渍土的冻胀影响因素进行分析,并对研究区土样进行击实条件下的室内冻胀试验,研究了大安市和镇赉县三支沟地区碳酸盐渍土在不同含盐量、不同含水率、不同击实度、不同温度下的冻胀特性。在以上试验数据的基础上,利用灰色关联度法和粗糙集理论对土体粉粒含量、粘粒含量、比表面积、阳离子交换容量、含盐量、含水率、击实度、温度8个影响因素与冻胀率之间的关系进行研究,探讨了各因素对碳酸盐渍土冻胀特性的影响程度大小,并结合两种方法确定了对该区土体冻胀性影响较大的5个因素:温度、含水率、击实度、含盐量、粘粒含量。最后,采用冻胀率和已确定的对冻胀性最具影响意义的5个因素:温度、含水率、击实度、含盐量、粘粒含量,建立了BP神经网络冻胀模型,并通过试验值和模型计算值的对比对模型进行验证,结果表明建立的模型能较好的描述和预测碳酸盐渍土冻胀特性,是研究碳酸盐渍土冻胀特性的比较可行的方法。
The west area of Jilin province is the typical seasonal frost region in northeast area. The area is one of the worst areas with land salinization, and saline soil is mainly distributed in Zhenlai, Qian’an, Da’an, Changling, Tong yu, Qianguo and other regions. The soil salt primarily composed with NaHCO_3 and Na_2CO_3, and local area contains a little chloride and sulfate. According to the soluble salt content and salt composition, the saline soil in this area belongs to carbonic acid (alkaline) saline soil.
     The area researched is the seasonal frost region ,with poor soil physical and chemical properties , high pH value, high salt content, soil sticky heavy, poor permeability, vegetation serious degeneration are the characteristics of this area. In the high salinity regions, in the process of soil freezing in winter, the water transfers to the freeze front simultaneously with salt. When it is melting in the spring, in the influence of the surface strong evaporation, salt deposited explosively in soil, water and salt migration caused by the freeze-thaw sharpened the region soil salinization degree. Salinity-alkalinity and drought have always been the main factors of the agriculture development in this region. Therefore, in order to effectively control the soil salinization rising trend, researching on the action of freeze-thaw the soil water and salt migration has important theoretical and practical significance. Usually, highway subgrade uneven settlement, expansion, road pumping frost heaving and other bad roads disease of the saline soil area, also concerns with the saline soil salt frost heaving and other special properties. The consolidation project of the west land of Jilin province launched in 2008, by irrigateing the salinity-alkalinity wastland and transforming the middle-and-low-yielding fields, but a lot of diversion channels appear different degree of frost heaving disruption questions in winter, which caused many problems of channel management and operation. So the research on moisture migration and frost heaving of saline soil in west Jilin should immediately start, it is the theoretical basis of the regional governance salinity-alkalinity wasteland and ecological environment protection, which playing a positive role in speeding up the salt-alkalization treatment process.
     At present scholars have researched the chlorine saline soil and sulfuric acid soil of coastal,Xinjiang, Qinghai and Gansu etc .They have achieved many valuable research results. For Jilin western regions mainly contain carbonate in saline soil, scholars also have done some field tests and indoor researches, but the research mainly on agriculture and ecological environment field. Suffered the freezing effect, carbonic acid saline soil of this area water-salt transporting and frost heaving has its special laws. At present, the results of the research from the aspect of the changes of the soil basic properties and soil temperature etc. Analysis the rules of soil moisture transfer and frost heaving rules through internal and external factors are relatively fewer. In this paper, we had taken the carbonate saline soil samples in spring, summer, autumn of Da’an city and Zhenlai town in the western of Jilin province, combining indoor basic test and moisture transfer of large-scale simulation experiment to research the characteristics of the water and salt migration. Meanwhile by indoor test, the frost heaving properties of different salinity, moisture content and compaction degree and the soil samples of different temperature of carbonate saline soil were investigated. On the basis of using gray relation analysis method and rough set theory, ensure the influence factors of carbonate saline soil frost heaving characteristics, set up the BP neural network of carbonate saline soil frost heaving forecast model, and add to verify this model.
     This paper mainly focused on the following job:
     1.Soil composition, physical and chemical properties and pore distribution characteristics of saline soil, moisture transfer of carbonate and frost heaving characteristics have important influence. Through researching the areas of different seasons, different depth of the soil routine test and research in this artical, we analysis the physical and mechanical properties of soil mass distribution features and the change rules of according to the season of the soil on a flat and longitudinal profile, at the same time the test research of its pore distribution characteristics. Test results show that:
     The soil particle size is mainly distributed between 0.005~0.075 mm powder particle range of the research area. Some soils with disperser or not have no serious differences of powder and the viscous grain content. And some soil samples have many differences, with the "false powder sexual" phenomenon. Study found that the reason for this kind of phenomenon is that the salt content of different depths soil is different, and the exchangeabal sodium content is relatively bigger. Soluble salt content of the most soil samples about 30cm away from the surface is total more than 0.3%, and itself contains much exchangeable sodium, so the‘false powder’phenomenon is not obvious. Poor soil reunion properties, when they dissolve in water, particle itself has strong dispersion, there is much thicker integrating-water film around the particles, which obstructs the rise of the capillary water. Meanwhile, the deep soil has poor permeability and good holding water permeability because of the higher viscous grain content of soil. The depth away from the surface 50~100cm soil salt content is low, exchangeable sodium content is less,‘false powder’phenomenon is obvious. The soluble soil samples themselves have weaker soil particle dispersion, thinner bound water film around the particles formed, thus the pores of the soil provides channels for the rose of the capillary water.
     The soil porosity of the research area is lower, which is between 26.6442%~39.1387% range. Most soils samples of research areas mainly have the capillary pores of aperture<0.1 mm, the micro pore of fuzz pipe diameter<0.002 mm can reach the highest content 56.7602%. Bound water film surrounding the soil particles will be full of pore and prevent capillary water migration, so the capillarity phenomenon is very weak. Through researching the soil samples of the research area in different seasons, different depth, the results show that: in the spring, because of the drought windy climate, the evaporation is hard so the water goes with the salt left and the soil salt content has large accumulation on the surface; In summer, duo to the rain eluviation, surface salt migration with moisture goes down. But the soil depth away from the surface 30cm has poor permeability, so the soil in depth of 30cm is in the higher salt content level; In Autumn, because of the influence of evaporation, the salt adds to the surface; In Winter, the deep freeze function makes the lower water migrating to the freeze cover, constantly with salt migration. When the spring coming again, strong evaporation makes salt accumulate to the surface again .
     2. Adopting the temperature controlled fine water locator ,we have the indoor water transferring of large simulation test of direct method and freeze-thaw method in the research areas, through the contrast analysising of the soil which has been freeze-thaw for once or many times, researching the characteristics of the water transferring of single and multiple process of freeze-thaw cycles. Research indicates that because of the high viscous grain content of the study area ,so the clay soil porosity mainly Hansen pore , the soil tube containing a lot of exchangeable sodium, and the cationic exchange function makes the thicker integrating-water film around the particles, the overlap water film continuing to expand, blocking the capillary water rising channel, so the direct method test capillarity is seriously weak. In the freeze-thaw tests, multiple freeze-thaw cycles and a single freeze-thaw cycle of the capillary water rising test shows that the changing rules of moisture content changes with height is not obvious and the water content curves has not significant differences. The water transferring near the temperature are mainly the film water transferring caused by temperature gradient. But the salt transferring phenomena are the results of the temperature gradient and concentration gradient. The compaction degree is bigger, the salt migration rule relatively obvious.
     3. After researching the microstructure changes of soil freezing process in the study areas, we know that: once soil frozen, the soil particles becomes the flocculation shape or reunion shape structure, the pores between grains are larger and there are salt crystallization in them. And the style of the connection is mainly cementation links link form. Through the analysis of the same compaction degree, different freezing temperature microstructure pictures, we found that the lower freezing temperature, the looser of the structure of the body of the cell. If pore volume arranged inflation, the soil becomes looser and the change rules of different compaction degree soil sample appears somewhat different morphological rules. After researching the pore diametersize changes of the soil samples frozen or not, we found on the condition of the compaction degree 90%, the soil distortion ability is stronger. This is mainly because the development of the salt crystals and ice crystals influence the different compaction degree soil samples under the process of the soil freezing.
     4. According to the results of the physical and chemical properties, moisture transfer simulated test and the changes of the characteristics of microstructure, we comprehensively analysised the frost heaving influence factors in west Jilin province. We also proceeded the indoor frost heaving experiment of the closed system with carbonate saline soil and studied the influence of the different properties to the two areas on the temperature, moisture content, compaction degree and salt content factors. During the test process, we found that the salt expansion phenomenon of carbonate saline soil is relatively weak, which is caused by the temperature dropping. Under the certain salinity and certain moisture content, frost heaving rate of soil sample increases with the higher compaction degree, and the compaction degree has large influence of the soil samples with smaller moisture content while smaller influence of the soil samples with larger moisture content. The changes of temperature seriously affected the soil freezing expansion rate, with the temperature gradually reducing, the frost heaving deformation of soil with the salinity increases gradually. When the temperature dropped to -10℃, the deformation is basic stable, but the temperature range of frost heaving deformation of each salinity soils is drastically different. Different soil salt content, so the eventually frozen rate obviously different, the larger salinity, the lower freezing point , the duration time of freezing function also longer, so the final frost heaving rate is also bigger. The frost heaving rules of soil samples in Sanzhigou (spring) and Da’an (spring) are similar, but on the whole, the frost heaving rules of soil samples in Sanzhigou (spring) region is slightly lower than that of soil samples in Da’an (spring). One reason is that the test is indoor closed system frost heaving test, and the viscous grain content of soil sample in Da’an (spring) is high, spicific surface is high, hold water ability of soil is strong , so its final frozen bilge rate than Sanzhigou (spring) soil samples. It also shows that the soil powder viscous grain content and specific surface area influence soil frost heaving characteristics. Overall, the lower freezing temperature, higher salt concentration, higher moisture content and larger compaction degree made final soil frozen bilge rate increase.
     5. By using the gray relational analysis method and the rough set theory to analysis the correlation of the powder content, viscous grain content, cation exchange capacity, specific surface area, salinity, moisture content, compaction degree and freezing temperature of these eight factors with the freezing expansion rate, obtained that freezing temperature, moisture content and compaction degree, salinity and viscous grain content largely influence freezing expansion rate. Because most of the studied soil samples were from the same longitudinal profile, their physical properties were relatively close, and three other factors (specific surface area, powder content, cation exchange capacity) and viscous grain content have overlap function to frost heaving properties, so the specific surface area, cation exchange capacity and powder grain content were reducted in the evaluation and analysis of the affecting factors.
     6. We chose five main parameters that influence soil sample frost heaving rate through the gray connectedness method and rough set theory: Salinity, moisture content and compaction degree, viscous grain content and temperature as the input layer, frozen bilge rate as the output layer to establish three layers of BP neural network frost heaving forecast model. We chose 90 samples of BP neural network model among the 1218 test samples to train. And then select 20 samples with larger frost heaving rate to verify. The results show that the freezing expansion rate produced by the frost heaving trials is very close to the frozen bilge rate predicted with actual model, and the error between them is smaller, high precision of convergence results, this reveals that using gray relational method and rough sets theory to certain the relationship between the temperature, moisture content, compaction degree, salinity, viscous grain content these five parameters and the freezing expansion rate is precise, so the model based on this can well descript and predict carbonated saline soil frost heaving characteristics.
引文
[1]徐攸在.盐渍土地基[M].北京:中国建筑工业出版社,1993.
    [2]新疆公路学会.盐渍土地区公路设计与施工指南[S].北京:人民交通出版社,2006.
    [3]王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [4]中国科学院南京土壤研究所编制.中华人民共和国土壤图[S].北京:地图出版社,1978.
    [5]张建峰.盐碱地的生态修复研究[J].水土保持研究,2008,15(4):74-78.
    [6]中华人民共和国建设部.岩土工程勘查规范(GB 50021-2001,2009修订版)[S].北京:中国建筑工业出版社,2009.
    [7]唐大雄,刘佑荣,张文殊,等.工程岩土学[M].北京:地质出版社,1999.
    [8]柴箔之.盐渍土的工程性质[J].工程勘察,1983,6(6):12-14.
    [9] B.A.柯夫达著,席承藩译.盐渍土的发生与演变[M].北京:科学出版社,1957.
    [10] B.A.柯夫达.盐渍土的发生与改良[J].土壤,1958,3:15-16.
    [11] B.A.柯夫达,吴汮.新疆盐渍土的发生及其改良原则[J].土壤,1958,2:17-18.
    [12] B.B.巴干诺夫,H.A.催托维奇著,赵诚斋,徐松龄译.土壤物理学[M].北京:科学出版社,1986.
    [13] A.A.穆斯塔法耶夫著,中国科学院土壤研究所盐渍地球化学研究室译.土壤盐化和碱化过程的模拟[M].北京:科学出版社,1986.
    [14] H.D.Blaser,O.J.Scherer. Simultaneous transport of solutes and water under transient unsaturated flow conditions[J] .Water Resour.Res.1973,2:16-23.
    [15]祝寿泉.国际盐渍土动态学术讨论会在南京举行[J].地球科学进展,1990,3:54-56.
    [16]熊毅.中国盐渍土分区[J].土壤学报,1957,1:50-60.
    [17]卢肇钧.兰新线张掖地区盐渍土路基的研究报告[R].铁道研究通讯,1954.
    [18]卢肇钧,杨灿文.盐渍土工程性质的研究[J].铁道研究通讯,1956,2(3):15-20.
    [19]罗伟甫.盐渍土地区公路工程[M].北京:人民交通出版社,1980.
    [20]周亮臣.柴达木盆地西部盐渍土及其工程地质特性,中国建筑学会第二届岩土工程勘察术交流会议论文选集[C].北京:中国建筑工业出版社,1984:58-60.
    [21]盐渍土地区建筑规定编制组.新疆盐渍土的危害与处理措施调查报告[R].乌鲁木齐铁路局,1992.
    [22]徐学祖,王家澄,邓友生,等.土体冻胀和盐胀机理[M].北京:科学出版社,1995.
    [23]新疆公路学会.新疆盐渍土地区公路路基路面设计与施工规范[S].新疆维吾尔自治区交通厅,2001.
    [24]包卫星.盐渍土公路工程分类的现状与思考[J].公路,2008,11:119-123.
    [25]张文,张彬,慎乃齐.盐渍土岩土工程特性研究现状与进展[J].勘察科学技术,2008,03:7-11.
    [26]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):838-845.
    [27] Philip J R, De Vries D A.Moisture movement in porous materials under temperature radients[J].Eos Trans.AGU,1957,38(2):222-232.
    [28] De Vries D A.Simultaneous transfer of heat and moisture in porous media[J]. Eos Trans.AGU,1958,39(5):909-916.
    [29] Mahrer Y,Katan J.Spatial soil temperature regime under transparent polythylene mulch:Numerical and reperimental studies[J].Soil Sci.,1981,131:82-87.
    [30] Milly P C.Moisture and heat transport in hysteretic inhomogeneous porous media[J].Water Resour.Res.,1982,18(3):489-498.
    [31] Chung S,Horton R. Soil heat and water flow with a partial surface mulch[J].Water Resour.Res.,1987,23(12):2175-2186.
    [32] Nielsen D R,Biggar J W. Miscible displacement in soils:ⅠExperimental information [J]. Soil Sci Soc Am Proc,1961,25:1-6.
    [33] Nielsen D R,Biggar J W. Miscible displacement in soils:ⅢTheoretical consideration [J]. Soil Sci Soc Am Proc,1962,26:216-221.
    [34] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil.[J]. Water Resources Researeh,1973,9(5):1314-1323.
    [35] Taylor G S,Luthin J N. Amodel for coupled heat and moisture transfer during soil freezing [J]. Can. Geotech.J.,1978,15:345-357.
    [36] Cary J W,Mayland H F. Salt and water movement in Unsaturated frozen soil [J]. Proceedings of the Soil Science Society of America ,1972,36(4):549-555.
    [37] F.J.Radd,D.H.Oertle. Experimental pressure studies frost heave mechanisms and the growth fusion behavior. In 2th Intermational Conference on Permafrost[J].Washington D.C. national Academy Press,1973:12-15.
    [38] Miller R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Report,1972,393:1-11.
    [39] J.P.G.Loch, R.D.Miller. Tests of the concept of secondary frost heaving [J].Soil Sci Soc.,1975,39:1036-1041.
    [40] Akagawa.S. Experimental study of frozen fringe characterstics[J]. Cold Regions Sci- ences and Technology,1988,15:209-223.
    [41] Bear J,Gilman A. Migration of salts in the unsaturated zone caused by heating[J]. Transport in Porous Media,1995,19 (2):139-156.
    [42] Noam Weisbrod,Michael R,Mark L. Rockhold,et al. Migration of saline solutions in variably saturated porous media[J].Journal of Contaminant Hydrology.2004,72:109-133.
    [43] S. Miyamoto,Arturo Chacon,Manwar Hossain,et al.Soil salinity of urban turf areas irrigated with saline water spatial variability[J].Landscape and Urban Planning ,2005,71:233–241.
    [44] S.A.C. Furquim,R.C. Graham,L. Barbiero,et al.Soil mineral genesis and distribution in a saline lake landscape of the Pantanal Wetland [J]. Brazil S.A.C. 2010,154:518–528.
    [45]杨国荣,高德良,倪邵印.吉林省梨树灌区盐渍土之特性及其改良利用问题[J].土壤通报,1956,2:14-21.
    [46]刘文政.我国盐渍土改良状况[J].土壤学报,1959,2:22-24.
    [47]冷福田,赵守仁.江苏省沿海地区盐渍土发生过程及盐渍特性的转化[J].土壤学报,1957,3:195-205.
    [48]张庆乡.苏北盐渍土的冲洗改良与农业利用[J].土壤通报,1962,3:28-37.
    [49]王遵亲,刘文政,尤文瑞,等.河网化与排水种稻是改良我国平原地区盐渍土的主要方向[J].土壤,1961,3:25-26.
    [50]祝寿泉.国外盐渍土研究工作简介[J].土壤,1978,4:140-146.
    [51]韩振学.盐碱涝洼地区林业生产的几个问题[J].辽宁林业科技,1979,1:32-33.
    [52]俞仁培,蔡阿兴.盐渍土分类及改良分区专题讨论概况[J].土壤,1978,4:132-135.
    [53]石元春,辛德惠.《黄淮海平原的水盐运动和旱涝盐碱综合治理》[M].石家庄:河北人民出版社,1983.
    [54]石元春,李韵珠,陆锦文,等.《盐渍土的水盐运动》[M].北京:北京农业大学出版社,1986.
    [55] ChengGuodong.The mechanism of repeated-segration for the formation of thick layered ground ice[J]. Cold Region and Technology,1983,8:57-66.
    [56]张蔚榛.地下水非稳定流计算和地下水资源评价[M].北京:科学出版社,1983.
    [57]尤文瑞.盐碱土水盐动态的研究[J].土壤学进展,1984,12(3):1-14.
    [58]徐学祖.土水势未冻水含量和温度[J].冰川冻土,1985,7(1):l-14.
    [59]徐学祖.国内外对冻土中水分迁移课题的研究[J].冰川冻土,1982,4(3):97-104.
    [60]吕殿青,王文焰,王全九.入渗与蒸发条件下土壤水盐运移的研究[J].水土保持研究,1999,6(2):61-66.
    [61]李朝刚,杨虎德.干旱高扬黄灌区盐碱地恢复治理[J].干旱区研究,1999,16(1):22-25.
    [62]张蕾娜,冯永军,张红,等.滨海盐渍土水盐运动规律模拟研究[J].山东农业大学学报(自然科学版),2000,31(4):381-384.
    [63]刘杰.松嫩平原红旗灌区水盐运动规律与土壤次生盐渍化[J].土壤学,2001,3:22-25.
    [64]尹建道,姜志林,曹斌,等.滨海盐渍土脱盐动态规律及其效果评价-野外灌水脱盐模拟实验研究[J].南京林业大学学报(自然科学版),2002,26(4):15-18.
    [65]基于人工神经网络理论的区域水-土(盐)环境预测研究[D].呼和浩特:内蒙古农业大学,2003.
    [66]张志权.不同粉粘粒含量盐渍土工程性质研究[D].西安:长安大学,2004.
    [67]邓友生,何平,周成林.含盐土导热系数的试验研究[J].冰川冻土,2004,26(3),319- 323.
    [68]张殿发,郑琦宏,董志颖.冻融条件下土壤中水盐运移机理探讨[J].水土保持学报,2005,25(6):14-18.
    [69]郑冬梅.松嫩平原盐渍土水盐运移的节律性研究[D].长春:东北师范大学,2005.
    [70]包卫星,谢永利,杨晓华.天然盐渍土冻融循环时水盐运移规律及强度变化试验研究[J].工程地质学报,2006,14(3):380-385.
    [71]原国红.季冻区水分迁移的机理及数值模拟[D].长春:吉林大学,2006.
    [72]王全九,邵明安,郑纪勇.土壤中水分运动与溶质迁移[M].北京:中国水利水电出版社,2007.
    [73]邵爱军,彭建平.土壤水盐运移数值模拟[M].北京:地质出版社,2007.
    [74]罗金明,许林书,邓伟,等.盐渍土的热力构型对水盐运移的影响研究[J].干旱区资源与环境,2008,22(9):118-123.
    [75]李亮.内蒙古河套灌区耕荒地间土壤水盐运移规律研究[D].呼和浩特:内蒙古农业大学,2008.
    [76]申建梅.酒泉东盆地盐池地区地下水碱化成因及古气候特征研究[D].北京:中国地质科学院,2008.
    [77]牟玉娟.滨海公路地基的盐分运动规律与处置技术研究[D].济南:山东大学,2009.
    [78]武建军,韩天一.饱和正冻土水-热-力耦合作用的数值研究[J].工程力学,2009,26(4):246-251.
    [79]陈丽湘.土壤次生盐渍化及其防治的模型与实验研究[D].武汉:华中科技大学,2009.
    [80]张静.吉林省西部地区分散性季冻土的分散机理[D].长春:吉林大学,2010.
    [81]王颖.吉林西部粘性土分散性判别及冻融试验研究[D].长春:吉林大学,2010.
    [82]范晓梅,刘高焕,唐志鹏,等.黄河三角洲土壤盐渍化影响因素分析[J].水土保持学报,2010,24(1):140-144.
    [83]王力.科尔沁沙地坨甸相间地区冻融期土壤水热运移野外试验模拟[D].呼和浩特:内蒙古农业大学,2010.
    [84] Miller R D.Freezing and heaving of saturated and unsaturated soils[J].Highway Research Report,1972,393:1-11.
    [85] Nixon JF,Lem.Creep and strength testing of frozen saline fine-grained soils[J].G Can Geotech,1984,21(3):518–529.
    [86] Ayorinde O A. Laboratory methods for preparing low-density frozen saline soil samples for strength tests[J].Cold Regions Engineering,1991,02:32-43.
    [87] Wijeweera H,Joshi R C.Creep behavior of saline fine-grained frozen soil[J].Journal of Cold Regions Engineering,1993,7( 3):77-89.
    [88] L. T. Roman. Effect of chemical composition of soils on the strength and deformability of frozen saline soils[J].Soil Mechanics & Foundation Engineering,1995,31(6):205–210.
    [89] Chernousenko GI,Oreshnikova NV, Ukraintseva NG.. Soil salinization in coastal areas of he Arctic and Pacific regions of Russia[J].NEurasian Soil Science.2001,34(10):1062-1076.
    [90] Arenson L U, Sego D C , Biggar K W. Change in ice lens formation for saline and non-saline devon silt as a function oftemperature and pressure[J]. Proceedings of the International Conference on Cold Regions Engineering,2007,4:45-49.
    [91] Ustun Sahin,Ilker Angin, Fatih M. Kiziloglu. Effect of freezing and thawing processes on some physical properties of saline–sodic soils mixed with sewage sludge or fly ash [J].Soil and Tillage Research,2008,99(2):254-260.
    [92] Sinitsyn A O,Loset S. Equivalent cohesion of frozen saline sandy loams at temperatures close to their freezing point [J].Soil Mechanics and Foundation Engineering ,2010,47 (2):68-73.
    [93]邱国庆,张伯伦.莫玲粘土冻结过程中的离子迁移、水分迁移和冻胀[J].冰川冻土,1986,01:1-14.
    [94]冯挺.盐渍土的冻胀特性[J].水力水电技术,1989,06:57-61.
    [95]李善皋.《铁路特殊土路基设计规范》专题报告—盐渍土地区毛细水强烈上升高度[R].路基工程,1989.
    [96]陈肖柏,邱国庆,王雅卿,等.重盐土在温度变化时的物理、化学性质和力学性质[J].中国科学(A辑),1988(2),245-25.
    [97]陈肖柏,邱国庆,王雅卿,等.降温时之盐分重分布及盐胀试验研究[J].冰川冻土,1989,11(3),232-238.
    [98]费学良,李斌,王家澄.不同密度硫酸盐渍土盐胀规律的试验研究[J].冰川冻土.1994,16(3):245-250.
    [99]石兆旭,李斌,金应春.硫酸盐渍土膨胀规律及影响因素的试验分析[J].西安公路学院学报.1994,14(2),15-21.
    [100]杨丽英,李斌.氯与硫酸根比值对硫酸盐渍土工程性质影响的研究[J].冰川冻土.1997,19(1),84-89.
    [101]彭铁华,李斌.硫酸盐渍土在不同降温速率下的盐胀规律[J].冰川冻土.1997, 9(3),252-257.
    [102]褚彩平,李斌,侯仲杰.硫酸盐渍土在多次冻融循环时的盐胀累加规律[J].冰川冻土.1998,20(3),8-11.
    [103]徐学祖,邓友生,王家澄,等.含盐正冻土的盐胀和冻胀,第五届全国冰川冻土学大会论文集[C].兰州:甘肃文化出版社,1996.
    [104]袁红,李斌.硫酸盐渍土起胀含盐量及容许含盐量的研究[J].中国公路学报,1997,8(3):10-14.
    [105]高江平,吴家惠,邓友生.等硫酸盐渍土膨胀规律的综合影响因素的试验研究[J].冰川冻土.1996,18(2):170-177.
    [106]高江平,吴家惠.硫酸盐渍土盐胀特性的单因素影响规律研究[J].岩土工程学报.1997,19(1),37-42.
    [107]高江平,吴家惠,杨荣尚.硫酸盐渍土盐胀特性各影响因素交互作用规律的分析[J].中国公路学报,1997,10(1),10-15.
    [108]刘娉慧,王俊臣,蒋剑,等.硫酸盐渍土盐胀特性试验及分析[J].吉林大学学报(地球科学版),2005,35(1),74-77.
    [109]王俊臣,李劲松,王常明.硫酸(亚硫酸)盐渍土单次盐胀和冻胀发育规律研究[J].吉林大学学报(地球科学版),2006,36(3):411-416.
    [110]习春飞.击实硫酸盐渍土的盐-冻胀性研究[D].长春:吉林大学,2005.
    [111]陈肖柏,刘建坤,刘鸿绪,王雅卿.土的冻结作用与地基[M].北京:科学出版社,2006.
    [112]陈炜韬,王鹰,王明年,等.冻融循环对盐渍土黏聚力影响的试验研究[J].岩土力学,2007,28(11):2344-2347.
    [113]周永祥,阎培渝.固化盐渍土抗冻融性能的研究[J].岩土工程学报,2007,29(1):14-19.
    [114]刘军柱,李志农,刘海洋,等.新疆公路盐渍土路基盐胀力的数值模拟分析[J].公路交通技术,2008,2(1):1-4.
    [115]包卫星,李志农.喀什地区不同盐渍土冻融变形特性试验[J].长安大学学报,2008,28(2):26-30.
    [116]牛玺荣,高江平.硫酸盐渍土纯盐胀期盐胀关系式的建立[J].岩土工程学报,2008,30(7):1058-1061.
    [117]邓友生,周成林.硫酸钠溶液的盐胀与冻胀[J].冰川冻土,2009,31(5):920-924.
    [118]贾磊,候征,王维早.冻融条件下硫酸盐渍土的膨胀机理及抑制措施[J].安徽农业科学,2009,37(7):3330-3331,3344.
    [119]李国玉,愈文兵,马巍等.甘肃省公路沿线典型地段含盐量对冻胀盐胀特性影响的试验研究[J].岩土力学,2009,08(2):26-30.
    [120]张莎莎,谢永利,杨晓华,等.典型天然粗粒盐渍土盐胀微观机制分析[J].岩土力学,2010,31(1):123-127.
    [121]苌亮.硫酸盐渍土地区路基路面盐胀特性的室内大型试槽试验研究[D].西安:长安大学2010.
    [122]陈恩凤,王汝槦,胡思敏,等.吉林省郭前旗灌区苏达盐渍土的改良[J].土壤学报,1962,2:12-14.
    [123]曾昭顺,王汝庸,等.东北苏达盐渍土微域分布的特点及其与造林的关系[J].土壤通报,1962,1:22-27.
    [124]陈恩凤,王汝庸,王春裕,等.吉林省郭前旗灌区苏打盐渍化的成因及其累积过程[J].土壤通报,1962,1:9-22,8.
    [125]程伯荣,王汝庸.东北松嫩平原盐渍土的盐分累积[J].土壤通报,1963,11(1):19-24.
    [126]李昌华,何万云.松嫩平原盐渍土主要类型、性质及其形成过程[J].土壤学报,1963,2:88-101.
    [127]李昌华.松嫩平原地下水和土壤的近代积盐过程[J].土壤学报,1964,1:34-42.
    [128]王汝庸,王春裕.东北盐渍土种稻[M].沈阳:辽宁人民出版社,1973,8-15.
    [129]黑龙江省农科院土肥所盐碱土组.松嫩平原苏打盐碱土的特性及改良途径[J].土壤通报,1979,2:8-11.
    [130]周有才,赵洪书.松嫩平原土壤水分动态的研究[J].土壤学报,1979,3:302-305.
    [131]杨豁林,王翔,梁红.松嫩平原西部土壤盐碱化特点及其改良途径[J].土壤通报,1984,6:250-253.
    [132]杨国荣,孟庆秋,王海岩.松嫩平原苏打盐渍土数值分类的初步研究[J].土壤学报,1986,4:291-298.
    [133]郑慧莹,李建东,祝廷成.松嫩平原南部植物群落的分类和排序[J].植物生态学与地植物学丛刊,1986,3:171-179.
    [134]王春裕,王汝镛,张素君,等.东北苏打盐渍土的性质与改良[J].土壤通报,1987,2:57-60.
    [135]宋长春.松嫩平原土壤次生盐渍化过程模型研究[J].水土保持学报,1992,16(5):23-26.
    [136]裘善文,孙酋石.松嫩平原盐碱地与风沙地农业综合发展研究[M].北京:科学出版社,1997:102-112.
    [137]杨建强,罗先香.土壤盐渍化与地下水动态特征关系研究[J].水土保持通报,1999,7(6):1-11.
    [138]宋长春,邓伟.吉林西部地下水特征及其与土壤盐渍化的关系[J].地理科学,2000.20(3):246-25.
    [139]宋长春,何岩,邓伟.松嫩平原盐渍土壤生态地球化学[M].北京:科学出版社,2003.
    [140]刘兴土.松嫩平原退化土地整治与农业发展[M].北京:科学出版社,2001.
    [141]张晓平,李梁.吉林省大安市盐渍化土壤特征及现状研究[J].土壤通报,2001,32(so):26-29.
    [142]杨玉建,杨劲松.土壤水盐运动的时空模式化研究[J].土壤,2004,36(3):283-288.
    [143]王志春,李取生,李秀军,等.松嫩平原盐碱化土地治理与农业持续发展对策[J].中国生态农业学报,2004,12(2):161-163.
    [144]罗金明.松嫩平原盐碱土水盐运移的热力学机制研究[D].长春:东北师范大学,2005.
    [145]郑冬梅.松嫩平原盐渍土水盐运移的时间节律研究[D].长春:东北师范大学,2005.
    [146]孙婉.松嫩平原苏达盐渍土强度特性研究[D].北京:中国地质大学,2006.
    [147]王文玲.松嫩平原碳酸盐渍土工程改性研究[D].北京:中国地质大学,2007.
    [148]李彬,王志春,迟春明.吉林省大安市苏打碱土碱化参数与特征[J].西北农业学报,2006,15(1):16-19.
    [149]罗金明,邓伟,张晓平,等.盐渍土系统土壤水-地下水转化规律研究[J].生态环境,2007,16(6):1742-1747.
    [150]于青春,孙婉,陈波,等.松嫩平原苏达型盐渍土强度特性研究[J].岩土力学,2008,29(7):1794-1801.
    [151]张宁霞.东北松嫩平原地区碳酸盐渍土特性研究[D].西安:长安大学,2008.
    [152]任圆圆.松嫩平原碳酸盐渍土的变形和强度特性研究[D].北京:中国地质大学,2009.
    [153]罗金明,邓伟,张晓平,等.从小尺度探讨苏达盐渍土的特征以及演变规律[J].干旱区资源与环境,2009,02(7):1794-1801.
    [154]杨建峰,章光新.松嫩平原西部水文情势变化下土壤盐渍化过程研究[J].干旱区资源与环境,2010,09(7):1794-1801.
    [155]姜世成.松嫩盐碱化草地水盐分布格局及盐碱裸地植被快速恢复技术研究[D].长春:东北师范大学,2010.
    [156]王春裕,武志杰,石元亮,等.中国东北地区的盐渍土资源[J].土壤通报,2004,35(5):643-647.
    [157]石玉林.《中国1∶100万土地资源图》土地资源数据集[S].北京:中国人民大学出版社,1991.
    [158]魏国强.松原至金宝屯公路盐渍化性质研究[D].北京:中国地质大学,2006.
    [159]李述训,程国栋.冻融土中的水热运输问题[M].兰州:兰州大学出版社,1995.
    [160]张喜发,辛德刚,张冬青,等.季节冻土区高速公路路基土中的水分迁移变化[J].冰川冻土,2004,26(4):454-459.
    [161]徐学祖,邓友生.冻土中水分迁移的试验研究[M].北京:科学出版社,1991.
    [162] Williams.P.J. Propertiesand behavior of freezing soils[J]. Norwegian Geotechnical Institute,1967,72:1-119.
    [163]罗金明,杨帆,邓伟,等.苏打盐渍土的微域特征及土壤表层积盐机理探讨[J].水土保持学报,2008,4:88-92.
    [164]徐学祖,王加澄,张立新.冻土物理学[M].北京:科学出版社,2001:69-75.
    [165]唐亚莉.典型试验区土壤水盐运移模型的建立及数值模拟[D].新疆乌鲁木齐:新疆农业大学,2007.
    [166]冯晓腊.论深圳淤泥类软土微观结构对工程性质的影响[J].中国地质灾害与防治学报,1996,7(3):34-39.
    [167]周萃英.土体微观结构研究与土力学的发展方向[J].中国地质大学学报,2000,25(2):215-220.
    [168]王家澄,张学珍,王玉杰.扫描电子显微镜在冻土研究中的应用[J].冰川冻土, 1996,18(2):184-188.
    [169]张世银,汪仁和.土壤冻胀特性的试验研究[J].岩土工程,2004,(2):72-73.
    [170]陈肖柏,邱国庆,王雅卿.温降时之盐分重分布及盐胀试验研究[J].冰川冻土,1989,11(3):232-238.
    [171]崔颢,汪仁和.人工冻结粘性土的冻胀特性研究[J].安徽理工大学学报,2004,24,增刊:44-47.
    [172]陈佰成.季冻区公路路基细粒土法向冻胀力试验研究[D].长春:吉林大学,2005.
    [173]田亚护,刘建坤,彭丽云.动、静荷载作用下细粒土的冻胀特性实验研究[J].岩土工程学报,2010,32(12):1882-1887.
    [174]赵安平.季冻区路基土冻胀的微观机理研究[D].长春:吉林大学,2008.
    [175]李雨浓.季冻区高速公路路基冻害影响因素分析[D].长春:吉林大学.2007.
    [176]李杨.季节冻土水分迁移模型研究[D].长春:吉林大学,2008.
    [177]天津化工研究院.无机盐工业手册[S].天津:化学工业出版社,2003.
    [178]易德生,郭萍.灰色理论与方法[M].北京:石油工业出版社,1992.
    [179]吕锋,刘翔,刘泉.七种灰色关联度的比较研究[J].武汉工业大学学报,2000,22(2):41-47.
    [180]黄裕新,吕波,施品贵.基于改进灰色关联度的权重确定方法[J].武汉科技学院学报,2004,17(3):72-75.
    [181]周秀文.灰色关联度的研究与应用[D].长春:吉林大学,2006.
    [182]曹明霞.灰色关联分析模型及其应用的研究[D].南京:南京航空航天大学,2007.
    [183] Kryszkiew M.Rough set approacht oin completein formations ystems[J].In formation Sciences,1998,112(89):39-49.
    [184]苗夺谦,王钰.粗糙集理论中知识粗糙性和信息嫡关系的讨论[J].模式识别与人工智能,1998,20:34-40.
    [185]陈云化,叶东毅,赵士亮.基于粗糙集理论的规则提取算法的研究[J].福州大学学报,2001,(8):46-48.
    [186] Hu X. Knowledge Discovery in Databases:An attribute-oriented rough Approach[M]. Canada:University of Regina, 1995:45-58.
    [187]刘健勤.粗糙集理论极其最新进展[J].计算技术与自动化,1998,17(1):43-47.
    [188] En-Wei Shi. Some Properties of the indisemibility relation in rough sets [J].Chinese Science Bulletin,1990,35(23):338-341.
    [189] Pawlak Z. et al..Rough sets[J]. Communication of the ACM,1995(38):89~95.
    [190]张文修,吴伟志,梁吉业,等.粗糙集理念与方法[M].北京:科学出版社,2001.
    [191] Chateauneuf A ,Jafray A Y. Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion Math[J]. Soc Sci.,1989,17 (12):263~283.
    [192]车茜,陈剑平,阙金声.基于粗糙集的可拓评判权值确定[J].吉林大学学报(地球科学版) 2008,38(2):268-272.
    [193]陈肖柏,王雅卿.粘性土冻胀预报新模型[J].中国科学,1991,3:296-306.
    [194]曹宏章,刘石,姜凡,等.饱和颗粒土一维冰分凝模型及数值模拟[J].力学学报,2007,39(6):849-857.
    [195]周扬.冻土冻胀理论模型及冻胀控制研究[D].徐州:中国矿业大学,2009.
    [196]王洪葵,王俊臣,李劲松.硫酸(亚硫酸)盐渍土盐-冻胀变形预报模型及与原位观测对比研究[J].东北水力水电,2009,8:1-3.
    [197]飞思科技产品研发中心.MARLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [198]董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2005.
    [199]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1990,12:1-60.
    [200]孙海蓉.模糊神经网络的研究及其应用[D].保定:华北电力大学,2006.
    [201]徐佩华.基于人工神经网络方法的锦屏一级水电站枢纽区高边坡稳定性分区研究[D].长春:吉林大学,2006.
    [202]吴昌友.神经网络的研究及应用[D].哈尔滨:东北农业大学,2007.
    [203] Hecth-Nielsen R.Application of Back Propagation Neural Nets[J].Neural Networks,1988,(1):131-139.
    [204] Hecth-Nielsen R.Theory of back propagation neural network[J].Proc of IJCNN,1989,1:593-603.
    [205] Martin T,Mark H.Beale.Neural Network Design[M].北京:机械工业出版社,2000.
    [206]薛新华,姚晓东.边坡稳定性预测的模糊神经网络模型[J].工程地质学报,2007,15(01):78-82.
    [207]飞思科技产品研发中心.MARLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [208]董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2005.
    [209] Cyberko,G..Approximations by Super positions of a Sigmoidal Function[J].Math Control Sin gualSystem,1989,1:45-89.
    [210]从爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001.
    [211]从爽.面向MATLAB工具箱的神经网络理论与应用[M].北京:中国科学技术大学出版社,1998.
    [212] Rumelhart D,Mc Celland J.Parallel Distributed Processing[J].Explorations in the Microstructure of Cognition,Bradford Books,1986,13:49-53.
    [213]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999,10:88-130.
    [214]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1995.
    [215] Dennis J E,Schnabe R.Numericl methods for unconstrained optimization and nonlinear equations[J].Englewood Cliffs,1983,23:56-59.
    [216]陆金桂,王石刚,胡于进,等.多层神经网络BP算法的研究[J].计算机工程,1994,20(1):17-19.
    [217]王双红,蔡美峰.利用神经网络对地应力测量的结果进行分析[J].黄金,1998,19(11):16-19.
    [218]张治国.BP神经网络的数学模型和计算方法及其计算机程序实现[D].长春:吉林大学,2003.
    [219]许东,吴铮.基于MATLAB6.0的系统分析与设计-神经网络[M].西安:西安电子科技大学出版社,2002.
    [220] R.P.Lippmann.An Introduction to Computing With Neural Nets[J].IEEE ASSP Magazine,1989,3:88-92.
    [221]飞思科技产品研发中心.神经网络理论与MARLAB7实现[M].北京:电子工业出版社,2005.
    [222]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700