用户名: 密码: 验证码:
强风场中高速铁路桥梁列车运行安全分析及防风措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风灾是影响铁路运营安全的主要自然灾害之一,尤其是我国西北地区,铁路经过几大风区,时常发生列车停驶或倾覆事故,是我国乃至世界上铁路风灾最严重的地区。
     建于大风区的桥梁,受到风力的激扰会产生强烈的振动,同时,高速运行的列车在强劲的横向风压作用下,在桥上脱轨、倾覆的可能性大大增加。因此,对风荷载作用下车辆与桥梁耦合振动系统进行综合研究,并采取防风措施以确保列车在桥上的运行安全性,对于风区铁路桥梁和防风措施的设计建造具有重要的理论和工程意义。本文以在建的兰新铁路第二双线为研究背景,旨在建立一种合理的分析框架,对风荷载作用下车辆与桥梁耦合系统的振动响应做出估计,以便评价桥梁的动力性能和桥上高速列车的走行性能。同时对提高列车运行安全的防风结构进行研究,使桥梁在强风发生时尽量少甚至不限制行车。全文的主要内容及成果如下:
     (1)通过对国内外风致列车事故进行综述,阐明了风场中防护列车安全的重要性。然后对车桥耦合振动、风致桥梁振动、风场中车桥系统振动分析以及风场中列车运行安全性和防风措施的研究现状进行了归纳总结,明确了现阶段风—车一桥系统动力分析和防风措施研究的热点问题,在继承前人工作的基础上确定了本文的研究内容及主要方法。
     (2)对桥址区的风场特性进行了分析,并采用改进的数值方法模拟了桥址区脉动风速时程曲线。分析了风场的平均风特性和脉动风特性以及地形、地貌对风特性的影响,着重分析了大风区兴建的兰新铁路第二双线上桥梁所处的风环境,戈壁地区的风沙流特性及其对防风屏障的影响。详述了随机脉动风场的数值模拟计算公式,并以白杨河连续梁桥桥面及桥墩各点风速模拟为例加以实现。
     (3)对防风屏障进行了初步选型并分析了防风屏障对车桥系统气动性能的影响。根据计算流体力学(CFD)的相关原理,选择合适的湍流模型对气流经过防风屏障这一空气动力学问题进行数值模拟,针对几种防风屏障的设计方案,分析了不同设计参数(包括开孔率、高度等)的防风屏障对风速的影响规律,对桥上防风屏障的防风效果及有效防护区域进行定量分析,初步探讨防风屏障的合理形式和主要设计参数的合理取值。任何形式的防风屏障,都会对桥面风场产生影响,加强紊流效应,使桥梁结构周围风场更加复杂,当列车驶过时作用于列车上的风荷载与没有设置防风屏障时有明显区别,尤其是在列车的背风侧。
     (4)建立了考虑桥上安装防风屏障时风荷载作用下车桥系统动力相互作用分析模型,编制了相应的计算分析程序。针对桥上安装不同类型风屏障的情况,考虑风—车—桥—风屏障系统的动力相互作用,计算了强风与列车共同作用下桥梁和列车的动力响应及行车安全性指标,相较于无风屏障时,差异明显。以兰新铁路第二双线上的10跨简支箱梁桥为例,分为无风屏障、全段安装单侧4m风屏障、单侧7m风屏障及双侧7m风屏障四种情形,计算分析不同风速、不同车速条件下的车桥动力响应。
     (5)推导了列车进出防风屏障时车体上的风荷载变化计算公式,讨论了风载突变对列车运行安全的影响;并且计算了列车运行引起的风屏障上的气动脉冲力,将其作用于风屏障进行时程分析,得到风屏障的动力响应,同时考虑了外部自然风的作用。以兰新铁路第二双线上的10跨简支箱梁桥为例,在桥上200m区段安装单侧4m风屏障、单侧7m风屏障和双侧7m风屏障与无风屏障及全段安装同样风屏障时车辆的动力响应及行车安全性指标进行对比;计算了单侧4m风屏障在自然风荷载、气动脉冲力荷载以及二者组合时关键节点的动力响应。
     (6)基于自编的计算分析程序,计算了兰新铁路第二双线上常用跨度简支箱梁桥、简支T梁桥、简支槽梁桥以及白杨河连续梁桥列车运行时车辆、桥梁的动力响应,考虑桥上全段安装风屏障和桥上部分区段安装风屏障等不同情况。根据列车走行性能的评价方法和指标,计算了不同风速下列车的最大安全运行速度,提出了风场中安装不同风屏障的桥梁上列车安全运行车速阈值曲线。
Wind disaster is one of the main natural disasters that affect the operation safety of the railway. Especially in the northwest region in China, which is one of the most serious wind disaster areas of railways in China as well as in the world, the railway lines pass through some strong wind areas, where the train service is often interrupted by the wind and the train overturn accidents occasionally occur.
     The bridges located in the strong wind area vibrate intensively when subjected to the wind force excitation. The strong lateral wind pressure acting on the high-speed train running on the bridge greatly increases the possibility of the train derailment or overturning. Therefore, it has the significant theoretical meaning and the practical engineering value to perform comprehensive research on the dynamic responses of vehicle-bridge system under wind loads and windproof measures. This is an important issue to ensure the running safety of the train on the bridge, and to guide the design and construction of railway bridges and windbreak structures in the wind area. With the new built Lanzhou-xinjiang railway as a research background, this paper aims to establish a rational analysis framework to estimate the vibration response of the coupled vehicle-bridges system in the wind field, so as to evaluate the dynamic performance of the bridge and the high-speed train running safety. At the same time, the windbreak structures are studied to improve the running safety of the train, so that the traffic on the bridge can be interrupted as little as possible when strong wind occurs.
     The main research contents and results are given as follows:
     (1) The wind-induced train accidents at home and abroad are described to show the importance of the train safety protection in wind field. Then the current research statuses are summarized for the vehicle-bridge coupled vibration, wind-induced bridge vibration, and wind-vehicle-bridge system, running safety of the train and windbreak measures. Furthermore, the current focused problems are proposed on the dynamic analysis of wind-vehicle-bridge system and windbreak measures, and the research content and method in this paper are clarified on the basis of the previous work.
     (2) The wind field characteristics of bridge sites are analyzed, and the fluctuating wind speed time histories on the bridge sites are simulated by the improved numerical method. Firstly, the wind is represented as the mean wind component with the time invariant characteristic and the turbulent wind component with the time varying characteristic, and the influence of the landform and topography on the wind field is discussed. Especially, the wind environment of the bridge in the new Lanzhou-Xinjiang railway line is analyzed and the wind-sand flow characteristic in the Gobi desert area and the effect on the wind barriers are described. Then the numerical calculation formulae of the random fluctuating wind field are derived in detail, and the wind speed time histories of the bridge deck and pier on the Baiyang River Bridge are simulated.
     (3) The preliminary form selection for wind barriers and the effect of wind barriers on the aerodynamic performance of the vehicle-bridge system are studied. According to the correlation principle of computational fluid dynamics, the aerodynamic characteristic for the airflow through the wind barrier is analyzed by the numerical simulation method with an applicable turbulence model. The numerical simulation is performed for several different types of wind barriers on bridge. The influence rules of wind velocity are researched. The windbreak effect and the effective protection area of wind barriers are quantitatively analyzed with different heights and different porosity percentage, to determine the reasonable type of the wind barrier and the main design parameters. Any kind of wind barrier may have an impact on the wind field on bridge deck and increase the turbulence effects, which makes the wind field around the bridge structure more complex. When the train travels on the bridge with or without wind barriers, the wind load acting on the train is very different, especially in the leeward side of the train.
     (4) The dynamic interaction analysis model of vehicle-bridge system is established and the corresponding computation program is developed. For different types of wind barriers, considering the wind-vehicle-bridge-barrier interaction, the dynamic responses of the bridge and the running safety indices of the train are calculated under the strong wind and running train. Compared to the case without wind barrier on the bridge, the results are obvious. Taking a10-span simply-supported box girder bridge in the new built Lanzhou-xinjiang railway line for example, the dynamic responses of the train and the bridge are calculated at different train speed and wind velocity under the cases without barrier and with single-side4m barrier, single-side7m barrier and double-side7m barrier on the whole bridge.
     (5) The calculation formulae for wind load change acting on the car-body are derived when the train moves into or out of the wind barrier structure, and then the influence of the sudden change of wind load on the running safety is discussed. Meanwhile, the aerodynamic pulse force caused by the running train on the wind barrier is obtained, and then the time historic analysis method is used for the dynamic response of the wind barrier under the pulse force as well to external natural wind load. Taking the10-span simply-supported box girder bridge for example, the response and the running safety indices of the train are given under the cases of200m long single-side4m barrier, single-side7m barrier and double-side7m barrier of the same section on the bridge. These results are compared with those of the cases without barrier and wind barriers on the whole bridge. And the dynamic response of the key nodes of the single-side4m wind barrier is calculated under the natural wind load, or the aerodynamic pulse load as well as the combination of both.
     (6) An analysis program is written, based on which the dynamic responses of the vehicle and the bridge are obtained when the train passes through the common span simply-supported box girder bridge, simply-supported T-shaped girder bridge, simply-supported U-shaped girder bridge or Baiyang River continuous beam bridge. In the analysis, the cases both with the wind barrier on the whole bridge and only partial section of the bridge are considered. Then according to the evaluating method and the running safety indices, the maximum safety speeds are obtained at different wind velocities, based on which the train speed threshold curves are proposed when the train runs on the bridge with different types of wind barriers.
引文
[1]郑健.中国高速铁路桥梁建设关键技术[J].中国工程科学,2008,10(7):18-27.
    [2]Davenport A.G. Buffeting of a Suspension Bridge by Storm Winds [J]. Structural Engineering Division, ASCE,1962,88(3):233-268.
    [3]Guo W.W., Xu Y.L., Xia H., et al. Dynamic Response of Suspension Bridge to Typhoon and Trains Ⅱ:Numerical Results. Journal of Structural Engineering, ASCE,2007,133(1):12-21.
    [4]Jain A., Jones N. P., Scanlan R.H. Coupled Flutter and Buffeting Analysis of Long Span Bridges [J]. Structural Engineering, ASCE,122(7):716-725.
    [5]Xia H., Xu Y.L. Dynamic Interaction of Long Suspension Bridges with Running Trains [J]. Journal of Sound & Vibration,2000,237(2):263-280.
    [6]Xu Y.L., Xia H. Dynamic Response of Suspension Bridge to High Wind and Running Train [J]. Journal of Bridge Engineering, ASCE,2003,8(8):46-55.
    [7]陈锐林.强风作用下列车脱轨分析[D].长沙:中南大学,2008.
    [8]高广军.强侧风作用下列车运行安全性研究[D].长沙:中南大学,2008.
    [9]郭薇薇,夏禾,徐幼麟.风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J].工程力学,2006,23(2):103-110.
    [10]黄宁.火车倾覆的力学分析[C].第十四届全国结构风工程学术会议论文集,2009,北京.
    [11]刘庆宽,杜彦良,乔富贵.日本列车横风和强风对策研究[J].铁道学报,2008,30(1):82-88.
    [12]Toshishige F. and Tatsuo M. Wind-induced Accidents of Train/vehicles and Their Measures in Japan [J]. QR of RTRI,1999,40(1):50-55.
    [13]董汉雄.兰新铁路百里风区挡风墙设计[J].路基工程,2009,143(2):95-96.
    [14]贾国裕.兰新铁路大风灾害及其对策[J].路基工程,2008,2:195-197.
    [15]项海帆,葛耀君,朱乐东,等.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005.
    [16]Simiu E. and Scanlan R.H. Wind Effects on Structures:Fundamentals and Applications to Design [M]. John Wiley & Sons,1996.
    [17]Salvatori L., Spinelli P. Effects of Structural Nonlinearity and Along-span Wind Coherence on Suspension Bridge Aerodynamics:Some Numerical Simulation Results [J]. Journal of Wind Engineering and Industrial Aerodynamics,2006,94,415-430.
    [18]Matsehke G., Sehulte W.B. Measures and Strategies to Minimize the Effect of Strong Cross Winds on High Speed Trains [C]. Proceedings of WCRR World Congress of Railway Research,1997, Florence, Italy, Vol. E:569-575.
    [19]拉有玉,李永乐,何向东.兰新铁路第二双线防风技术及工程设计[J].石家庄铁道大学学报,2010,23(4):104-108.
    [20]程淞.电气化铁路强侧风条件下列车防风研究[J].铁道建筑,2009,6:90-92.
    [21]李燕飞,田红旗等.高速铁路开孔式挡风墙外形优化研究[J].中南大学学报,2011,42(10):3207-3212.
    [22]Lorenzo P., Hrvoje K., et al. Wind Barriers on Bridges:the Effect of Wall Porosity [C]. Bluff Bodies Aerodynamics & Applications,2008,2:20-24.
    [23]Smith B.W., Barker C.P. Design of Wind Screens to Bridges:Experience and Applications on Major Bridges [J]. Bridge Aerodynamics,1998,3:289-298.
    [24]曾广勇.兰新线大风地区挡风墙的勘测与设计[J].路基工程,1998,6:24-29.
    [25]郑继平.南疆铁路大风区桥梁挡风结构研究与设计[J].铁道标准设计,2008,11:27-29.
    [26]黄林,廖海黎.横风作用下高速铁路车桥系统绕流特性分析[J].西南交通大学学报,2005,40(5):585-590.
    [27]项海帆.公路桥梁抗风设计指南[M].人民交通出版社,1996.
    [28]Fryba L. Vibration of Solids and Structures Under Moving Loads [M]. Thomas Telford, 1999.
    [29]李小珍,强士中.京沪高速南京越江钢斜拉桥车桥耦合振动分析[J].西南交通大学学报,1999,34(2):153-157.
    [30]李永乐,强士中,廖海黎.风速场模型对风—车—桥系统耦合振动特性影响研究[J].空气动力学学报,2006,24(1):131-136.
    [31]夏禾,张楠.车辆与结构动力相互作用[M].2版.北京:科学出版社,2005.
    [32]曾庆元,郭向荣.列车桥梁时变系统振动分析理论及应用[M].北京:中国铁道出版社,1999.
    [33]宋平.高速铁路声屏障脉冲动力计算分析与新型预应力混凝土声屏障结构的研究[D].南京:东南大学,2007.
    [35]王庆波.高速铁路连续梁桥动力响应分析[J].北方交通大学学报,1997,21(4):399-404.
    [36]曹雪琴.列车通过时桥梁结构竖向振动分析[J].上海铁道学院学报,1981,2(3):1-15.
    [37]陈英俊.桥上列车在地震作用下的运行安全性[C].中国土木工程学会第9届年会,2000:174-177.
    [38]曾庆元,田志奇,杨毅,等.桁梁行车空间振动计算的桁段有限元法[J].桥梁建设,1985,4:1-16.
    [39]曾庆元,杨毅,骆宁安,等.列车—桥梁时变系统的横向振动分析[J].铁道学报,1991,13(2):38-46.
    [40]王荣辉,郭向荣,曾庆元.高速列车—钢桁梁桥系统横向振动随机分析[J].铁道学报,1996,18(1):90-95.
    [41]陈淮,郭向荣,曾庆元.大跨度斜拉桥动力特性分析[J].计算力学学报,1997,14(1):57-63.
    [42]郭文华,郭向荣,曾庆元.大跨度斜拉桥空间振动计算分析[J].振动与冲击,1998,17(1):30-33.
    [43]何发礼.高速铁路中小跨度曲线梁桥车桥耦合振动研究[D].成都:西南交通大学,1999.
    [44]李奇.车辆—桥梁/轨道系统耦合振动精细分析理论及应用[D].上海:同济大学,2008.
    [45]高芒芒.高速铁路列车—线路—桥梁耦合振动及列车走行性研究[D].北京:中国铁道科学研究院,2001.
    [46]翟婉明.车辆—轨道耦合动力学[M].2版.北京:中国铁道出版社,2002.
    [47]张楠,夏禾,郭薇薇.基于轮轨线性相互作用假定的车桥相互作用理论及应用[J].铁道学报,2010,32(2):66-71.
    [48]李小珍.高速铁路列车—桥梁系统耦合振动理论及应用研究[D].成都:西南交通大学,2000.
    [49]李小珍,马文彬,强士中.车桥系统耦合振动分析的数值解法[J].振动与冲击,2002,21(3):21-25.
    [50]林玉森,李小珍,强士中.轨道不平顺激励下高速铁路桥上列车走行性研究[J].铁道学报,2005,27(6):96-100.
    [51]满洪高,袁向荣.车桥耦合振动问题的发展进程与研究现状[J].铁道工程学报,2001,2:26-29.
    [52]杜宪亭,夏禾,张田.车桥耦合振动迭代求解稳定性研究[J].振动与冲击,2012,31(22):62-65转70.
    [53]夏禾,陈英俊.车—梁—墩体系动力相互作用分析[J].土木工程学报,1992,25(2):3-12.
    [54]Olsson M. Finite Element Model Coordinate Analysis of Structures Subjected to Moving Loads [J]. Journal of Sound and Vibration,1985,99(1):1-12.
    [55]Green M.F., Cebon D. Dynamic Response of Highway Bridges to Heavy Vehicles Loads: Theory and Experimental Validation [J]. Journal of Sound and Vibration,1994,170(1): 51-78.
    [56]夏禾,徐幼麟,阎全胜.大跨度悬索桥在风和列车荷载同时作用下的动力响应分析[J].铁道学报,2002,24(4):83-91.
    [57]Yang Y.B., Lin B.H. Vehicle-bridge Interaction Analysis by Dynamic Condensation Method [J]. Journal of Structural Engineering, ASCE,1995,121(11):1636-1643.
    [58]Guo W.H. Dynamic Analysis of Coupled Road Vehicle and Long Span Cable-stayed Bridge Systems under Cross Winds [D]. Hong Kong:The Hong Kong Polytechnic University,2003.
    [59]郭文华,郭向荣,曾庆元.京沪高速铁路南京长江大桥斜拉桥方案车桥系统振动分析[J].土木工程学报,1999,32(3):23-27
    [60]郭文华,曾庆元.多跨简支曲线轨道折线梁空间振动分析模型[J].工程力学,2003,20(2):1-6
    [61]郭向荣,曾庆元.京沪高速铁路南京长江斜拉桥方案行车临界风速分析[J].铁道学报,2001,23(5):75-80.
    [62]Guo W. H., Xu Y. L. Direct Assembling Matrix Method for Dynamic Analysis of Coupled Vehicle-bridge System[C]. Proceedings of International Conference on Advances in Structural Dynamics,2000, HongKong.
    [63]Guo W. H., Xu Y. L. Fully Computerized Approach to Study Cable-stayed Bridge-vehicle Interaction [J]. Journal of Sound and Vibration,2001,248(4):745-761.
    [64]Guo W. H., Xu Y. L. The Assessment of Ride Comfort of Moving Road Vehicles under Cross Wind [C]. Proceedings of the 5th International Conference on Stochastic Structural Dynamics,2003, Hangzhou, China.
    [65]Guo W. H., Xu Y. L. Dynamic Analysis of Moving Road Vehicle under a Sudden Crosswind [J]. Key Engineering Materials,2003,243:123-128.
    [66]Xu Y. L., Guo W. H. Dynamic Analysis of Coupled Vehicle and Cable-stayed Bridge Systems under Turbulent Wind[J]. Engineering Structures,2003,25(4):473-486.
    [67]翟婉明.车辆—轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,14(3):10-21.
    [68]Green M. F, Cebon D., David J. C. Effects of Vehicle Suspension Design on Dynamics of Highway Bridges [J]. Journal of Structural Engineering, ASCE,1995,121(2):272-282.
    [69]刘正光,黄启远.桥梁结构健康监测系统[c].第十三届全国桥梁学术会议论文集,1998,上海.
    [70]李爱群,缪长青.润扬长江大桥结构健康监测系统研究[J].东南大学学报(自然科学版),2003,33(5):544-548.
    [71]丁幼亮,李爱群.润扬长江大桥结构损伤预警系统的设计与实现[J].东南大学学报(自然科学版),2008,38(4):704-708.
    [72]丁幼亮.大跨斜拉桥结构损伤预警理论、方法与应用[D].南京:东南大学,2006.
    [73]过静君,谢宝童.用GPS监测香港青马大桥位移实验研究[C].GPS与控制测量新技术研讨会论文集,1999,沈阳.
    [74]左云.茅草街大桥健康监测方案以及传感器优化布置的研究[D].长沙:湖南大学,2005.
    [75]Helmut Wenzel. Health Monitoring of Bridges [M]. Wiley,2009.
    [76]宁晓骏.高速铁路列车—桥梁—基础空间耦合振动研究[D].成都:西南交通大学,1998.
    [77]俞翰斌,高芒芒,杨宜谦.既有线32m下承式钢板梁加固方案的车—桥动力仿真分析[J].中国铁道科学,2008,29(1):26-30.
    [78]杨果岳,张家生.提速状态下预应力混凝土简支梁受迫振动试验研究[J].中国铁道科学,2007,28(2):39-43.
    [79]韩艳,夏禾,张楠.列车提速下32m PC简支T梁的横向刚度加固方案研究[J].铁道学报,2005,27(1):90-95.
    [81]Diana G., Cheli F. Dynamic Interaction of Railway Systems with Large Bridges [J]. Vehicle System Dynamics,1989,18:71-106.
    [82]曹雪琴.桥梁结构动力分析[M].北京:中国铁道出版社,1987.
    [83]李小珍,蔡婧,强士中.京沪高速铁路南京长江大桥列车走行性分析[J].工程力学,2003,20(6):86-92.
    [84]Ju S. H., Lin H. T. Resonance Characteristics of High-speed Trains Passing Simply Supported Bridges [J]. Journal of Sound and Vibration,2003,26:1127-1141.
    [85]Xia H., Zhang N. Dynamic Analysis of Railway Bridges under High-speed Trains [J]. Computers & Structures,2005,83(23):1891-1901.
    [86]Xia H., Zhang N., Guo W. W. Analysis of Resonance Mechanism and Conditions of Train-bridge System [J]. Journal of Sound and Vibration,2006,297(3):810-822.
    [87]Yang Y. B., Yau J. D., Hsu L. C. Vibration of Simple Beams due to Trains Moving at High Speeds [J]. Engineering Structures,1997,19(11):936-944
    [88]Yang Y. B., Yau J. D., Wu Y. S. Vehicle-bridge Interaction Dynamics with Applications to High-Speed Railway [M]. World Scientific,2004.
    [89]Yau J. D. Vibration of Parabolic Tied-arch Beams due to Moving Loads [J]. International Journal of Structural Stability and Dynamics,2006,6(2):193-214.
    [90]Delgado R., Calcada R., et al. Dynamic of High-speed Railway Bridges [M]. London:Taylor & Francis Group,2009.
    [91]Goicolea J. M. Dynamic Loads in New Engineering Codes for Railway Bridges in Europe and Spain [J]. Workshop on bridges for high-speed railways,2004:43-58.
    [92]迪尔比耶,汉森著.薛素铎,李雄彦译.结构风荷载作用[M].北京:中国建筑工业出版社,2006.
    [93]中华人民共和国建设部.建筑结构荷载规范(2006年版)(GB50009-2001)[S].北京:中国建筑工业出版社,2006.
    [94]庞加斌,宋锦忠,林志兴.山区峡谷桥梁抗风设计风速的确定方法[J].中国公路学报,2008,21(5):39-44.
    [95]庞加斌.沿海和山区强风特性的观测分析与风洞模拟研究[D].上海:同济大学,2006.
    [96]胡峰强,陈艾荣,王达磊.山区桥梁桥址风环境试验研究[J].同济大学学报(自然科学版),2006,34(6):721-725.
    [97]胡峰强.山区风特性参数及钢桁架悬索桥颤振稳定性研究[D].上海:同济大学,2006.
    [98]李永乐,唐康,蔡宪棠,等.深切峡谷区大跨度桥梁的复合风速标准[J].西南交通大学学报,2010,45(2):167-173.
    [99]陈平.地形对山地丘陵风场影响的数值研究[D].杭州:浙江大学,2007.
    [100]肖仪清,李朝.复杂山地地形的三维风场数值模拟[J].第十二届全国结构风工程学术会议论文集,2005,西安.
    [101]陈政清.桥梁风工程[M].北京:人民交通出版社,2005
    [102]项海帆,葛耀君.现代桥梁抗风理论及其应用[J].力学与实践,2007,29(1):1-13.
    [103]方明山.超大跨度缆索承重桥梁非线性空气静力稳定理论研究[D].上海:同济大学,1997.
    [104]程进.缆索承重桥梁非线性空气静力稳定性研究[D].上海:同济大学,2000.
    [105]罗建辉,陈政清,刘光栋.大跨度缆索承重桥梁非线性静风扭转失稳机理的研究[J].工程力学,2007,24(增刊Ⅱ):145-154.
    [106]杨詠昕,葛耀君,项海帆.大跨度桥梁典型断面颤振机理[J].同济大学学报(自然科学版),2006,34(4):455-460.
    [107]杨詠昕,葛耀君,项海帆.大跨度桥梁中央开槽颤振控制效果和机理研究[J].土木工程学报,2006,39(7):74-80.
    [108]郭震山.桥梁断面气动导数识别的三自由度强迫振动法[D].上海:同济大学,2006.
    [109]罗延忠,陈政清.桥梁颤振导数自由振动识别的分段扩阶最小二乘迭代算法[J].振动与冲击,2006,25(3):48-53.
    [110]祝志文,顾明,陈政清.桥梁断面颤振导数的CFD全带宽识别法[J].工程力学,2007,24(9):80-87.
    [111]李友祥,祝志文,陈政清.识别桥梁断面颤振导数的快速相关特征系统实现算法[J].振动与冲击,2008,27(8):117-120.
    [112]Mishral S. S., Krishen K., Krishna P. Relevance of Eighteen Flutter Derivatives in Wind Response of a Long-Span Cable-Stayed Bridge [J]. Journal of Structural Engineering,2008, 134:69-781.
    [113]张志田,葛耀君,陈政清.基于气动新模型的大跨度桥梁频域抖振分析[J].工程力学,2006,23(6):94-101.
    [114]Diana G., Cheli F. Dynamic Interaction of Railway Systems with Large Bridges [J]. Vehicle System Dynamics,1989,18(1):71-106.
    [115]Baker C. J. A Simplified Analysis of Various Types of Wind-induced Road Vehicle Accidents [J]. Journal of Wind Engineering and Industrial Aerodynamics,1986,22:69-85.
    [116]Baker C. J. Measures to Control Vehicle Movement at Exposed Sites during Windy Periods [J]. Journal of Wind Engineering and Industrial Aerodynamics,1987,25:151-161.
    [117]Baker C. J. Some Complex Applications of the "Wind Loading Chain" [J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91:1791-1811.
    [118]葛玉梅.斜拉桥在考虑风效应时的车—桥耦合振动[D].成都:西南交通大学,2001.
    [119]郭薇薇.风荷载作用下大跨度桥梁的动力响应及行车安全性分析[D].北京:北京交通大学,2004.
    [120]李永乐.风—车—桥系统非线性空间耦合振动研究[D].成都:西南交通大学,2003.
    [121]李永乐,廖海黎,强士中.车桥系统气动特性的节段模型风洞试验研究[J].铁道学报,2004,26(3):71-75.
    [122]李永乐,强士中,廖海黎.风—车—桥系统空间耦合振动研究[J].土木工程学报,2005,38(7):61-64转70.
    [123]李永乐,强士中,廖海黎.考虑车辆位置影响的风—车—桥系统耦合振动研究[J].桥梁建设,2004,(3):1-4.
    [124]Li Y. L., Hu P., et al. Wind Tunnel Test with Moving Vehicle Model for Aerodynamic Forces of Vehicle-bridge Systems under Cross Wind [C]. The Seventh Asia-Pacific Conference on Wind Engineering,2009, Taipei.
    [125]Li Y. L., Qiang S. Z., Liao H. L., Xu Y. L. Dynamics of Wind-rail Vehicle-bridge Systems [J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93:483-507.
    [126]Chiu T. W., Squire L. C. Experimental Study of the Flow over a Train in a Crosswind at Large Yaw Angles up to 90°[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992,45(1):47-74.
    [127]Xu Y. L., Zhang N., Xia H. Vibration of Coupled Train and Cable-stayed Bridge Systems in Crosswinds [J]. Engineering Structures,2004,26(10):1389-1406.
    [128]Xu Y. L., Guo W. H. Effects of Bridge Motion and Crosswind on Ride Comfort of Road Vehicles [J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92:641-662.
    [129]Charuvisit S., Kimura K. Effects of Wind Barrier on a Vehicle Passing in the Wake of a Bridge Tower in Cross Wind and its Response [J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92:609-639.
    [130]Cai C. S., Chen S. R. Framework of Vehicle-bridge-wind Dynamic Analysis [J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92:579-607.
    [131]Chen S. R. Dynamic Performance of Bridges and Vehicles under Strong wind [D]. Louisiana State University,2004.
    [132]Pan J. Y., Gao M. M., et al. Dynamic Response of Long Span Cable-stayed Bridge Subjected to Wind and Moving Freight train [C]. WCCM VI in conjunction with APCOM'04,2004, Beijing.
    [133]Chan Y. B. Vehicle-Wind-Long Span Bridges Interaction and its Effect on Speed Limit and Vehicle Stability [D]. Hong Kong:Hong Kong University of Science and Technology, 2008.
    [134]黄林,廖海黎,李永乐.横向风与列车风联合作用下车桥系统绕流分析[J].铁道科学与工程学报,2006,6(3):61-65.
    [135]黄林.列车风与自然风联合作用下的车—桥耦合振动分析[D].成都:西南交通大学,2007.
    [136]Kwon S. D., Lee J. S., et al. Dynamic Interaction Analysis of Urban Transit Maglev Vehicle and Guide-way Suspension Bridge Subjected to Gusty Wind [J]. Engineering Structures, 2008,30:3445-3456.
    [137]Fujii T., Maeda T., et al. Wind-Induced Accidents of Train/vehicles and Their Measures in Japan [C]. QR of RTRI,1999,40(1):50-55.
    [139]Quinn A.D. An Investigation of the Wind-induced Rolling Moment on a Commercial Vehicle in the Atmospheric Boundary Layer [C]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Antomobile Engineering,2007,21(11): 1367-1379.
    [140]Matsehke G, Sehulte W. B. Measures and Strategies to Minimize the Effect of Strong Cross Winds on High Speed Trains [C]. Proceedings of WCRR World Congress of Railway Research,1997, Florence, Italy, Vol.E:569-575.
    [141]Hoppmann U., Koenig S., Tielkes T., et al. A Short-term Strong Wind Prediction Model for Railway Application:Design and Verification [J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(10):1127-1134.
    [142]何华,田红旗,熊小慧,等.横风作用下敞车的气动性能研究[J].中国铁道科学,2006,27(3):73-77.
    [143]中南大学.强侧风影响下车辆运行稳定性研究报告[R].长沙:中南大学,2003.
    [144]中南大学.强侧风条件下车体表面压力分布现场测试[R].长沙:中南大学,2006.
    [145]周丹,田红旗,杨明智.强侧风作用下不同类型铁路货车在青藏线路堤上运行时的气动性能比较[J].铁道学报,2007,29(5):32-37.
    [146]田红旗,苗秀娟,高广军.强横风环境下棚车侧壁外形气动性能[J].交通运输工程学报,2006,6(3):5-8.
    [147]高广军,田红旗.兰新线强横风对车辆倾覆稳定性的影响[J].铁道学报,2004,26(4):36-41.
    [148]梁习锋,熊小慧,易仕和.强侧风作用下棚车气动外形优化[J].国防科技大学学报,2006,28(2):30-34.
    [149]张健.路堤上铁道车辆的横风气动特性试验研究[J].国外铁道车辆,2007,44(1):26-28转46.
    [150]张健,梁习锋.铁道车辆通过桥梁的横风气动特性试验研究[J].国外铁道车辆,2003,40(3):23-25.
    [151]周丹,田红旗,杨明智,等.强侧风下客车在不同路况运行的气动性能比较[J].中南大学学报(自然科学版),2008,39(3):554-558.
    [152]祝志文,陈政清.单、双层客车车辆在铁路桥梁上的横向气动力特性[J].中南工业大学学报(自然科学版),2001,32(4):410-413.
    [153]熊小慧,梁习锋,高广军,刘堂红.兰州—新疆线强侧风作用下车辆的气动特性[J].中南大学学报(自然科学版),2006,37(6):1183-1188.
    [154]杨明智,袁先旭,鲁寨军,等.强侧风下青藏线列车气动性能风洞试验研究[J].实验流体力学,2008,22(1):76-79.
    [155]高广军.横风对双层集装箱平车运行稳定性的影响[J].交通运输工程学报,2004,4(2):45-49.
    [156]祝志文,陈伟芳,陈政清.横风中双层客车车辆的风荷载研究[J].国防科技大学学报,2001,23(5):117-121.
    [157]祝志文,陈政清.YZ22型车辆与铁路T型简支梁桥的风荷载研究[J].湖南大学学报,2001.1:93-97.
    [158]刘凤华.加筋土式挡风墙优化研究[J].铁道工程学报,2006,1:96-99.
    [159]刘凤华.挡风墙气动外形及位置优化[D].长沙:中南大学,2006.
    [160]叶文军.铁路沿线灾害性天气监测、预测、预警系统[J].新疆气象,2001,26(6):25-27.
    [161]中南大学.青藏高原铁路大风下行车安全保障系统总结报告[R].长沙:中南大学, 2006.
    [162]郗艳红,毛军.高速列车侧风效应的数值模拟[J].北京交通大学学报,2010,34(1):14-19.
    [163]王璐雷,徐宇工,毛军.强侧风对高速列车运行安全性的影响及其控制[J].内燃机车,2004,368(10):5-8转19.
    [164]任尊松,徐宇工,王璐雷,等.强侧风对高速列车运行安全性影响研究[J].铁道学报,2006,28(6):46-50.
    [165]宋洋,任尊松.强侧向风作用下的高速列车动力学性能研究[J].铁道车辆,2006,44(10):4-7.
    [166]魏玉光,杨浩,韩学雷.青藏铁路临界翻车风速研究[J].中国安全科学学报,2006,16(6):14-17.
    [167]陈晓东.大跨桥梁侧风行车安全分析[D].上海:同济大学,2007.
    [168]凌知民,高碧波,项海帆.横风对货车通过高墩桥梁行车安全性的影响分析[J].铁道学报,2007,29(4):80-86.
    [169]马静,张杰,杨志刚.大风下风向角对高速列车空气动力性能的影响[C].2008年全国风与大气环境学术会议论文集,2008,北京.
    [170]张杰,马静,杨志刚.桥梁截面形状对高速列车横风稳定性的影响研究[C].2008年全国风与大气环境学术会议论文集,2008,北京.
    [171]张杰.行驶环境对高速列车横风稳定性影响研究[D].上海:同济大学,2009.
    [172]庞加斌,王达磊,陈艾荣,等.桥面侧风对行车安全性影响的概率评价方法[J].中国公路学报,2006,19(4):59-64.
    [173]陈艾荣,王达磊,庞加斌.跨海长桥风致行车安全研究[J].桥梁建设,2006,3:1-4.
    [174]王达磊,庞加斌,陈艾荣.基于行车安全的大跨桥梁桥面风环境优化及对策评价[C].中国空气动力学学会2004年全国工业空气动力学学术会议论文集,2004,长沙:232-241
    [175]陈艾荣,王达磊,庞加斌.杭州湾跨海大桥行车安全风速标准研究[c].中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议论文集,2005,宁波:774-782.
    [176]王达磊,陈艾荣,庞加斌.大跨度斜拉桥行车安全风速标准分析及运营对策[C].第十二届全国结构风工程学术会议论文集,2005,西安:598-604.
    [177]谭深根.侧风下高速列车气动性能分析[D].成都:西南交通大学,2008.
    [178]谭深根,李雪冰,张继业,等.路堤上运行的高速列车在侧风下的流场结构及气动性能[J].铁道车辆,2008,46(8):4-8.
    [179]姚应峰.横风作用下200 km/h动车组安全性研究[D].成都:西南交通大学,2008.
    [180]李佳圣.列车侧风效应的数值模拟研究[D].成都:西南交通大学,2004.
    [181]马存明,李佳圣,廖海黎.兰新铁路列车横风稳定性3D数值风洞研究[C].第七届全国风工程和工业空气动力学学术会议论文集,2006,成都:690-694.
    [182]高军.时速350 km/h高速铁路客运专线防侧风问题的研究[J].铁道技术监督,2007,35(5):4-5.
    [183]陈锐林,曾庆元.横风对列车通过曲线限制速度影响的数值研究[J].铁道学报,2009,31(1):40-45.
    [184]Chen R. L., Zeng Q. Y., et al. Analysis Theory of Random Energy of Train Derailment in Wind[J]. Science China,2010,53(4):751-757.
    [185]Flint, Neill.康小英,廖海黎译.大跨度桥梁风障的设计、研究及应用[J].世界桥梁,2002.2:20-21.
    [186]Charuvisit S., Kinlura K., Fujino Y. Experimental and Semi-analytical Studies on the Aerodynamic Forces Acting on a Vehicle Passing through the Wake of a Bridge Tower in Cross Wind [J]. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(9): 749-780.
    [187]刘凤华.不同类型挡风墙对列车运行安全防护效果的影响[J].中南大学学报(自然科学版),2006,37(1):176-182.
    [188]姜翠香,梁习锋.挡风墙高度和设置位置对车辆气动性能的影响[J].中国铁道科学,2006,27(2):66-70.
    [189]李燕飞.兰新线电气化改造工程大风区段行车安全研究[D].长沙:中南大学,2007.
    [190]李喆.南疆改建二线桥梁上列车气动性能研究[D].长沙:中南大学,2008.
    [191]张健.铁路防风栅抗风性能风洞试验研究与分析[J].铁道科学与工程学报,2007,4(1):13-17.
    [192]郑晓静,马高生,黄宁.铁路挡风墙挡风效果和积沙情况分析[C].中国力学学会2009学术大会论文集,2009,郑州.
    [193]高永平.兰新铁路的防风工程[J].路基工程,2010,增刊:100-103.
    [194]祁延录,王怀军.大风对新疆铁路的影响及防护[J].西部探矿工程,2009,6:161-163.
    [195]朱婷.南疆铁路挡风墙工程设计[J].铁道勘察,2009,5:103-105.
    [196]Richards P.J., Robinson M. Wind Loads on Porous Structures [J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83:455-465.
    [197]Hagen L. J., Skidmore E. L., Miller P. L., et al. Simulation of Effect of Wind Barriers on Airflow [J]. Transactions of the ASCE,1981,24(4):1002-1008.
    [198]Dierickx W., Gabriels D., Cornelis W. M.. Wind Tunnel Study on Wind Speed Reduction through Successive Synthetic Windscreens [J]. Journal of Agriculture Engineering Research,2001,79(1):117-123.
    [199]Takahashi H. Wind Tunnel Test on the Effect of Width of Windbreaks on the Wind Speed Distribution in Leeward [J]. Journal of Agricultural Meteorology,1978,33(4):183-187.
    [200]蒋富强,李荧等.兰新铁路百里风区风沙流结构特性研究[J].铁道学报,2010,32(3):105-110.
    [201]Davenport A. G. The Application of Statistical Concepts to the Wind Loading of Structures[J]. Proceedings of Institution of Civil Engineers,1961,19(2):449-472.
    [202]Lannuzzi A., Spinelli P. Artificial Wind Generation and Structural Response[J]. Journal of Structural Engineering, ASCE,1987,113(12):43-57.
    [203]舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构,2003,9(4):26-32.
    [204]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制[J].空间结构,2001,7(3):3-11.
    [205]陈英俊,甘幼琛,于希哲.结构随机振动[M].北京:人民交通出版社,1993.
    [206]王福军.计算流体动力学分析-CFD软件的理论与应用[M].北京:清华大学出版社,2004.
    [207]Versteeg H. K., Malalasekera W. An Introduction to Computational Fluid Dynamics:the Finite Volume Method [M]. New York:Wiley,1995.
    [208]Launder B. E., Spalding D. B. The Numerical Computation of Turbulent Flows [J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
    [209]瞿伟廉,刘琳娜.基于CFD的桥梁三分力系数识别的数值研究[J].武汉理工大学学报,2007,29(7):85-88.
    [210]李永乐,汪斌,黄林,等.平板气动力的CFD模拟及参数研究[J].工程力学,2009,26(3):207-211.
    [211]祝志文,顾明,陈政清.CFD之系统识别与基于气动模型仿真的颤振导数识别[C].第十三届全国结构风工程学术会议论文集,2007,大连:961-967.
    [212]岳澄,张伟.车桥耦合气动力特性和风压分布数值模拟[J].天津大学学报,2007,40(1):68-72.
    [213]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学,2000.
    [214]V. K. Garg, R.V. Dukikipati.沈利人译.铁道车辆系统动力学[M].成都:西南交通大学出版社,1998.
    [215]Baker C. J. Ground Vehicles in High Cross Winds-Part Ⅱ:Unsteady Aerodynamic Forces [J]. Journal of Fluids and Structures,1991,5:91-111.
    [216]Cooper. R.K. Atmospheric Turbulence with respect to Moving Ground Vehicles [J]. Journal of Wind Engineering and Industrial Aerodynamics,1984,17(2):215-238.
    [217]Sterling M., Baker C.J., Bouferrouk A., et al. Investigation of the Aerodynamic Admittances and Aerodynamic Weighting Functions of Trains [C]. Proceedings of Bluff Body Aerodynamics and its Applications,2008, Milano, Italy.
    [218]Baker C.J., Sterling M., Bouferrouk A., et al. Aerodynamic Forces on Multiple Unit Trains in Cross Winds[C]. Proceedings of Bluff Body Aerodynamics and its Applications,2008, Milano, Italy.
    [219]Baker C.J., Bouferrouk A., Perez J., et al. The Integration of Cross Wind Forces into Train Dynamic Calculations [C]. Proceedings of World Congress on Rail Research, Seoul,2008, South Korea.
    [220]Xia H., Roeck G. D., Goicolea J. M. Bridge Vibration and Controls:New Research [M]. New York:Nova Science Publishers,2011.
    [221]田红旗,许平,梁习锋,等.列车交会压力波与运行速度的关系[J].中国铁道科学,2006,27(6):64-67.
    [222]赵丽滨,龙丽平,蔡庆云.列车风致脉动力下声屏障的动力学性能[J].北京航空航天大学学报,2009,35(4):505-508.
    [223]中华人民共和国铁道部.高速铁路设计规范(试行)(TB 10621-2009)[S].北京:中国铁道出版社,2010.
    [224]田红旗,卢执中.列车交会压力波的影响因素分析[J].铁道学报,2001,23(4):17-20.
    [225]邓跞,施洲,刘兆丰.高速铁路声屏障动力特性研究[J].铁道建筑,2009,11:101-104.
    [226]邓跞,施洲,勾红叶.380 km/h高速列车脉动风荷载仿真分析[J].铁道建筑,2011,9:133-136.
    [227]Guo Weiwei, Xia He, Zhang Tian, et al. Dynamic responses of a railway bridge under high-speed trains subjected to turbulent winds [C]. Proceedings of the 8th International Conference on Structural Dynamics,2011:1164-1171.
    [228]官显金.大跨度斜拉桥的风—车—桥耦合振动分析[D].北京:北京交通大学,2010.
    [229]中华人民共和国行业标准.新建时速200公里客货共线铁路设计暂行规定(铁建设函[2005]285号)[S].北京:中国铁道出版社,2005.
    [230]中华人民共和国行业标准.新建时速200-250公里客运专线铁路设计暂行规定(铁建设函[2005]140号)[S].北京:中国铁道出版社,2005.
    [231]中华人民共和国国家标准.铁道车辆动力学性能评定和试验鉴定规范(GB5599-85)[S].北京:中国标准出版社,1985.
    [232]中华人民共和国铁道部.铁道机车动力学性能试验鉴定方法及评定标准(TB/T-2360-93)[S].北京:中国铁道出版社,1994.
    [233]中华人民共和国行业标准.铁路桥梁检定规范(铁运函[2004]120号)[S].北京:中国铁道出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700