用户名: 密码: 验证码:
高超声速滑翔式飞行器气动热建模与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速滑翔式飞行器具有飞行速度快、突防能力强、打击精度高等特点,已经成为世界航空航天领域的研究热点。高超声速滑翔式飞行器气动加热性能的准确预估是指导热防护系统设计的基础,是决定高超声速滑翔式飞行器能否走入工程实际应用的关键技术之一。
     气动外形和飞行弹道是造成高超声速飞行器复杂气动加热问题的主要决定因素。本文首先对高超声速滑翔式飞行器的气动外形和飞行弹道进行了研究。结合弹道需求分析了气动布局的选型依据,研究了锥导乘波构型的设计方法及其气动力性能计算的工程估算方法和数值模拟方法,详细介绍了跳跃滑翔弹道的特点,建立了高超声速滑翔式飞行器的三自由度运动方程,设计了高超声速滑翔式飞行器的典型外形,考察了钝化边缘对其气动力的影响,基于其气动数据形成了典型跳跃滑翔弹道。
     结合高超声速滑翔式飞行器的气动外形和飞行弹道特征开展了气动加热问题的相关物理问题研究,建立了高超声速滑翔式飞行器稀薄气体流动分区、高温效应、表面流动状态及表面温度求解等问题的分析方法,基于高超声速滑翔式飞行器的典型外形和弹道数据,分析了其气动热分析模型的特点。
     基于气动热物理模型的特点,本文对高超声速滑翔式飞行器气动热问题的工程估算方法和数值模拟方法进行了研究。在瞬时辐射平衡假设下,分析了钝化边缘对飞行器气动加热的影响;基于较为合理的钝化半径,分析了驻点热流密度和辐射平衡温度随弹道的变化规律;采用工程估算方法考察了不同受热程度下飞行器前缘和表面的温度分布情况;采用数值模拟方法对驻点及上下表面的气动加热受钝化半径、空气化学反应、表面流动状态等的影响程度进行了分析;最后将数值模拟结果与工程估算结果进行了对比。
     本文工作对于新型高超声速滑翔式飞行器气动热问题的研究具有一定的参考意义。
Hypersonic-Glide Vehicle (HGV) has been a hot topic in the aerospace area because of its high speed, good break-defense capability, and well-known attack performance. How to forecast the characteristics of HGV’s aerodynamic heating currectly is the basic for the design of the vehicle’s thermal protection system (TPS). It is one of the key technologyies to put HGV into practice.
     The pneumatic configuration and the trajectory are the most important factors for the complex aerodynamics heating problem of HGV. So this thesis pays more attention to the pneumatic configuration and the trajectory style of HGV, firstly. We explain why the vehicle should take waverider as its basic congfiation considering the need of trajectory. And then, A lot of reasearch have been done to the design method of waverider configuration and its aerodynamic performance.After a detailed introduction of the slip-glide trajectory, the three-axis motion equation of HGV is built. We design a typical configuration of HGV and analysis the influence what the passivation will have for the vehicle’s aerodynamic. Based on its aerodynamic data, a typical slip-glide trajectory is investigated.
     Taking the pneumatic configuration and the trajectory of HGV into account, this thesis builds a basal model for the vehicle’s aerodynamic heating problem. The methods of how to analysis HGV’s rarefied effect, high-temperature effect, the flow state and temperature on the surface have been gotten reasonably. Based on the data of the typical waverider configuration and skip-glide trajectory, an analysis model for HGV has been built primarily.
     According to the analysis model, this thesis establishes estimation and numerical simulation method for HGV’s aerodynamic heating. With the assumption of instantaneous radiation equilibrium, the influence what the passivation will have to the vehicle’s aerodynamic heating, the heat flux and temperature distribution of the stagnation point vary with time have been well studied either. The temperature distributions of the leading eadges and surface in different surroundings have been investigated by the estimating method. Using numerical simulation, how the high-temperature effect and the flow state would influent the aerodynamic heating on the stagnation point, the upper and lower surface has been well analysised. The results obtained by differert methods are compared in the end.
     This thesis may have some referenced significance on the late-model HGV’s aerodynamic heating .
引文
[1] Sanger W S. The Reference Concept of The German Hypersonic Technology Program [R]. AIAA 93-5161. 1993.
    [2]雍恩米,陈磊,唐国金.助推-滑翔弹道的发展及新型制导武器方案设想[J].飞航导弹, 2006, (3): 18-22.
    [3]凌云.“美利坚”轰炸机项目(下)——H0XVIII飞翼轰炸机与“银鸟”空天轰炸机[J].国际瞭望. 2006. (538).
    [4] Hsue-sen T. Engineering Cybernetics[M]. New York:McGraw-Hill Book Company. 1954.
    [5]钱学森,宋健(序).工程控制论[M].北京:科学出版社. 1980.
    [6]钱学森(原序),钱学森.工程控制论[M].北京:科学出版社. 1958.
    [7]钱学森.工程控制论(中文版)[M].北京:科学出版社. 1958.
    [8]钱学森.星际航行概论[M].北京:科学出版社. 1963.
    [9] Preston H C, Darryll J P. Approximate Performance of Periodic Hypersonic Cruise Trajectories for Global Reach[C]. AIAA 98-1644. 1998.
    [10] Carter P H, D.J.Pines, L.v.Rudd. Advancement and Refinement of HyperSoar Modeling [R]. UCRL-ID-137756. Feb.2000.
    [11] Speyer J L. Periodic Optimal Flight [J]. Journal of Duidance. Control and Dynamics. 1996. Vol.19, No.4:745~753.
    [12] Chuang C H, Morimoto H. Periodic Optimal Cruise for a Hypersonic Vehicle with Constraints [J]. Journal of Spacecraft and Rockets. 1997. 34(2):165~171.
    [13]刘美霞.跳跃的死神——美国“猎鹰”空天轰炸机计划情报[J].国际瞭望. 2007. 558(4).
    [14] Bomi [EB/OL]. http://www.astronautix.com/craft/bomi.htm,2004
    [15] History of Dyna-Soar [EB/OL]. http://www.aero.org/publications/crosslink/ winter2004/01.html, 2004
    [16]禾下.美国高超声速技术发展计划[J].现代军事. 2004. (12).
    [17] George R. The Common Aero Vehicle: Space Delivery System of the Future[C]. AIAA Space Technology Conference and Exposition, Albuquerque. Sept 1999. 1~11
    [18] Pournelle P T. Component Based Simulation of the Space Operations Vehicle and the Common Aero Vehicle [D]. Naval Postgraduate School , United States Navy, Monterey, CA:1999.
    [19] Phillips T, O'Leary B. Common Aero Vehicle on Orbit [M]. 2003.
    [20] Walker S. Force Application and Launch from CONUS (FALCON) ProgramContributions to Access to Space[C]. 2003 Core Technologies for Space Systems Conference. Colorado: 2003. 1~17
    [21] Agency B. FALCON force application and launch from CONUS [M]. 2003.
    [22] Walker S H, Rodgers F. Falcon Hypersonic Technology Overview [R].AIAA 2005-3253.
    [23]韩鸿硕,朱华桥.美国国防转型所需航天武器系统的发展近况[J].中国航天. 2006. (5)
    [24] www.space.com. Air Force Plans Flight Tests Of Hypersonic Vehicle [M]. 2006
    [25] www.csbaonline.org. MOVING FORWARD ON LONG-RANGE STRIKE [M]. 2004.
    [26]刘晓恩.美俄新一代战略导弹技术分析[J].中国航天. 2005. (5).
    [27] Zhu X-C, Hou Z-Q, Li R-H. Spline-based waverider configuration optimization method [J]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica. 2007. 25 (3):396.
    [28] Corda S, Anderson J D. Viscous Optimized Hypersonic Waverider [R]. AIAA 1987-0272. 1987.
    [29] Corda S. Viscous Optimized Hypersonic Waveriders Designed from Flows over Cones and Minimum Drag Bodies [D]. United States -- Maryland:University of Maryland College Park (Ph.D.). 1988.
    [30] Sobieczky H. Hypersonic waverider design from given shockwaves[C]. Proceedings of the first International Hypersonic Waverider Symposium. University of Maryland 1990.
    [31] Starkey R P, Lewis M J. Design of an engine-airframe integrated hypersonic missile within fixed box constraints [R]. AIAA99-0509. 1999.
    [32] Starkey R P, Lewis M J. Aerodynamics of a box constrained waverider missile using multiple scramjets [R]. AIAA99-2378. 1999.
    [33] O'Brien T F, Lewis M J. RBCC engine-airframe integration on an osculating cone waverider vehicle [R]. AIAA2000-3823. 2000.
    [34] Lobbia M, Suzuki K. Design and analysis of payload-optimized waveriders [R]. AIAA2001-1849. 2001.
    [35] Graves R E, Argrow B M. Aerodynamic performance of an osculating-cones waverider at high altitudes [R]. AIAA2001-2960. 2001.
    [36] Chauffour M-L, Lewis M. Corrected shock based design for waverider geometries [R]. AIAA 2003-7060. 2003.
    [37] Javaid K, Serghides V, London I C U K. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts [R]. AIAA 2004-1201. 2004.
    [38] Chauffour M-L, Lewis M. Corrected Waverider Design for Inlet Applications [R].AIAA 2004-3405. 2004.
    [39]王发民,沈月阳.高超声速升力体气动力气动热数值计算[J].空气动力学学报. 2001.
    [40]王发民,李立伟,姚文秀等.乘波飞行器构型方法研究[J].力学学报. 2004. 36(5).
    [41]刘嘉,姚文秀,雷麦芳等.高超声速飞行器前体压缩性能研究[J].应用数学与力学. 2004. 25(1)
    [42]刘嘉,王发民.乘波前体构型设计与压缩性能研究[J].工程力学. 2003. 20(6)
    [43]耿永兵,刘宏,王发民.飞行高度及设计长度对锥形流乘波体优化的影响[J].宇航学报. 2006. (02)
    [44]耿永兵,刘宏,丁海河等.轴对称近似等熵压缩流场的乘波前体优化设计[J].推进技术. 2006. (05)
    [45]耿永兵,刘宏,雷麦芳等.高升阻比乘波构型优化设计[J].力学学报. 2006. (04)
    [46]耿永兵,刘宏,姚文秀等.锥形流乘波体优化设计研究[J].航空学报. 2006. (01)
    [47]郭迪龙,张杰,康宏琳等.火箭增程乘波外形导弹弹道特性研究[J].弹道学报. 2006. (04)
    [48]张杰,王发民.高超声速乘波飞行器气动特性研究[J].宇航学报. 2007(1).
    [49]姚文秀,雷麦芳,杨耀栋.高超升阻乘波飞行器气动实验研究[J].宇航学报. 2002. 23 (6)
    [50]崔凯,杨国伟. 6马赫锥体流场对乘波体性能的影响及规律[J].科学通报. 2006. (24)
    [51]张卫民,陈河梧,李新亚.乘波外形高超声速风洞测力试验研究[J].实验流体力学. 2005. (04)
    [52]李跃军,阎超.组合前缘乘波体预压缩性能计算研究[J].宇航学报. 2005. (S1)
    [53]张东俊,王延奎,邓学銮.基于乘波体的高超音速运载器气动布局设计[J].北京航空航天大学学报. 2005. (02)
    [54]张东俊,王延奎,邓学銮.高升阻比乘波体外形设计与气动特性计算研究[J].北京航空航天大学学报. 2004. 25(2):429~433.
    [55]王卓,钱翼稷.乘波机外形设计[J].北京航空航天大学学报. 1999. 25(2)
    [56]彭钧,陆志良,李文正. Ma4.5巡航飞行器乘波体方法优化设计[J].宇航学报. 2004. 25(2)
    [57]彭钧,陆志良,李文正.乘波体气动性能综合优化[J].南京航空航天大学学报. 2007. (03)
    [58]李博,梁德旺.一种基于三维粘性流场的乘波体生成方法[J].空气动力学学报. 2005. (04)
    [59]吉康.基于密切锥方法的高超声速乘波机一体化设计[D].江苏南京:南京航空航天大学. 2007.
    [60]商旭升蔡肖.锥导乘波机的构型设计与性能研究[J].宇航学报. 2005. (02)
    [61]肖洪,商旭升,王新月等.吻切锥乘波机的构型设计与性能研究[J].宇航学报. 2004. 25(2):128~130.
    [62]詹浩,孙得川,夏露.滑跃式高超音速巡航飞行器设计初步研究[J].固体火箭技术. 2007. (01)
    [63]车竞.高超声速飞行器乘波布局优化设计研究[D].陕西西安:西北工业大学. 2007.
    [64]乐贵高,马大为,李自勇.椭圆锥乘波体高超声速流场数值计算[J].南京理工大学学报(自然科学版). 2006. (03)
    [65]张陈慧.乘波技术的研究与在弹箭气动外形中的应用[D].江苏南京:南京理工大学. 2006.
    [66]李晓宇.高超声速乘波构型初步设计与分析[D].湖南长沙:国防科技大学. 2002.
    [67]陈小庆.高速乘波飞行器气动布局设计研究[D].湖南长沙:国防科技大学. 2006.
    [68]詹浩,孙得川,夏露.滑跃式高超音速巡航飞行器设计初步研究[J].固体火箭技术. 2007, 30(1): 5-8.
    [69]关世义.基于钱学森弹道的新概念飞航导弹[J].飞航导弹. 2003(1): 1-4.
    [70]周浩,陈万春,殷兴良.高超声速飞行器滑行航迹优化[J].北京航空航天大学学报. 2006. 32(5)
    [71]周浩,周韬,陈万眷等.高超声速滑翔飞行器引入段弹道优化[J].北京航空航天大学学报. 2006. 27(5)
    [72]张永军,夏智勋,孙丕忠等.跳跃式导弹弹道设计与优化[J].固体火箭技术. 2006. 29(5)
    [73]雍恩米.高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D].湖南长沙:国防科技大学, 2008.
    [74]何烈堂.跨大气层飞行器的力热环境分析与飞行规划研究[D].湖南长沙:国防科技大学, 2008.
    [75]李健,侯中喜,刘新建等.基于扰动大气模型的乘波构型飞行器再入弹道仿真[J].系统仿真学报. 2007, 19(14): 3283-3285.
    [76]姜贵庆,刘连元.高速气流传热与烧蚀热防护[M].北京:国防工业出版社, 2003.
    [77]黄志澄,林炳秋,韩庆云等.航天空气动力学[M].北京:宇航出版社, 1994.
    [78]张志成.高超声速气动热和热防护[M].北京:国防工业出版社, 2003.
    [79]瞿章华,刘伟,曾明等.高超声速空气动力学[M].长沙:国防科技大学出版社, 2001.
    [80]卞荫贵,钟家康.高温边界层传热[M].科学出版社.1986.
    [81]吕丽丽.高超声速气动热工程算法研究[D].西安:西北工业大学, 2005.
    [82]车竞,唐硕,何开锋.类乘波体飞行器气动加热的工程计算方法[J].弹道学报. 2006, 18(4): 93-96.
    [83] Chul Park and Gene P.Menees , Odd Nitrogen Production by Meteoroids, , Journal of geophysical research, vol.83.no.c8
    [84] J.Hauser, J.Muylaert, H.wong, W.Berry, Computational Methods in Hypersonic Aerodynamics,
    [85] James N. Moss, Graeme A. Bird, Virendra K. Dogra, Nonequilibrium Thermal Radiation For An Aero assist Flight Experiment Vehicle, AIAA88-0081
    [86] Chul Park, Assessment of Two-Temperature Kinetic Model for Ionizing Air, July 1989, Journal of Thermophysics, Vol.3, No.3.
    [87] T. Gokcen and R. MacCormack, Nonequilibrium Effects for Hypersonic Transitional flows Using Continuum Approach AIAA89-0461
    [88] Keon-Young Yun and Ramesh K.Agarwal Numerical Simulation of Three-Dimensional Augmented Burnett Equations for Hypersonic Flow Journal of Spacecraft and Rockets, 2001volume 38, number 4.
    [89] Xiaolin Zhong and Gregory H. Furumoto, Augmented Burnett-Equation Solution over Axisymmetirc Blunt Bodies in Hypersonic Flow, Journal of Spacecraft and Rockets, July-August 1995, vol.32, no.4.
    [90]马辉.可重复使用航天器高温化学非平衡流场流动特性和物理特性的研究[D].北京:中国科学院力学研究所, 2004.
    [91]李海燕.高超声速高温气体流场的数值模拟[D].绵阳:中国空气动力研究与发展中心, 2007.
    [92]刘嘉.高速飞行器边界层流动稳定性和转捩的理论与实验研究[D].北京:中国科学院力学研究所, 2004.
    [93]李四新.高超声速稀薄过渡流气动热关联计算方法研究[D].湖南长沙:国防科技大学, 2002.
    [94]李君哲.气动热CFD计算格式及网格影响研究[D].北京:北京航空航天大学, 2004.
    [95]贺旭照.高超声速飞行器气动力气动热数值模拟和超声速流动的区域推进求解[D].绵阳:中国空气动力研究与发展中心, 2007.
    [96]黄春生.高超声速气动加热数值模拟[D].上海:上海交通大学, 2003.
    [97]李凰立.再入弹头的气动加热及热响应分析[D].西安:西北工业大学, 2001.
    [98]吕红庆.高超声速飞行器气动加热及热响应分析[D].哈尔滨:哈尔滨工程大学, 2006.
    [99]申余兵.高超音速诱饵弹头部气动加热计算与分析[D].南京:南京理工大学, 2006.
    [100]陈涛.高超声速弹丸头部的气动热研究[D].南京:南京立理工大学, 2006.
    [101] Kuchemann D. The Aerodynamic Design of Aircraft [M]. London:Pergamon Press. 1978.
    [102] Nonweiler T R F. Aerodynamic problems of Manned Space Vehicles [J]. Journal of the Royal Aeronautical Society. 1959. 69(9):521~528.
    [103] Rasmussen M L, Stevens D R. On Waverider Shapes Applied to Aerospace plane Forbody Configurations [R].AIAA-87-2550. 1987.
    [104] Silvester T, Morgan R, Queensland U B A. Computational hypervelocity aerodynamics of a caret waverider Waverider [R].AIAA 2004-3848. 2004.
    [105] Norris J D, Aedc White Oak S S M D. Mach 8 High Reynolds Number Static Stability Capability Extension Using a Hypersonic Waverider at AEDC Tunnel 9 [R].AIAA 2006-2815. 2006.
    [106] Jackson, K. D J. CFD Analysis of a Generic Waverider [R].AIAA 2006-2817. 2006.
    [107] Drayna T W, Nompelis I, Candler G V. Numerical Simulation of the AEDC Waverider at Mach 8 [R].AIAA 2006-2816. 2006.
    [108]卞荫贵.气动热力学[M].中国科学技术大学出版社. 1997.
    [109] Vanmol D O, Anderson J D J. Heat transfer characteristics of hypersonic waveriders with an emphasis on leading edge effects [R].AIAA92-2920. 1992.
    [110]吴其芬,陈伟芳,黄琳等.稀薄气体动力学[M].长沙:国防科技大学出版社, 2004.
    [111]侯中喜.超声速复杂流场并行数值分析及高阶格式研究[D].湖南长沙:国防科技大学, 2000.
    [112]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2006.
    [113] Lee J H, Rho O H. Numerical analysis of hypersonic viscous flow around a blunt body using Roe's FDS and AUSM+ schemes [R].AIAA 97-2054. 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700