用户名: 密码: 验证码:
高超声速滑翔飞行器机动技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速滑翔飞行器具有远程快速到达和大范围横向机动能力,能够实现远程快速投送、大范围区域覆盖、远程精确定点着落、以及在较为宽泛的高度和速度范围内精确投放有效载荷,已成为当前远程快速到达和精确投送等应用领域的研究热点。
     本文以高超声速滑翔飞行器为研究对象,围绕与其机动能力密切相关的关键技术展开深入研究与探讨,主要包括气动布局、动力学特性、BTT控制、控制面设计、机动轨迹优化等关键技术,初步建立了高超声速滑翔飞行器的概念设计方案。
     在气动布局设计与研究中,研究了基于乘波构型的高升阻比气动布局设计与分析方法,提出了基于边界层修正的乘波构型设计方法,改进进化算法应用于乘波构型多目标优化设计,注重升阻比、容积、容积率、压心位置等工程实用性指标;综合考虑气动力和气动热设计指标,开展了乘波构型边缘钝化设计研究,分析表明,应合理选择钝化方案,使乘波构型在设计与非设计状态均具有良好的气动性能。
     在动力学特性研究中,研究了高超声速滑翔飞行器的动力学特性。分析了乘波构型动导数产生的机理,提出了动导数计算方法;研究了高超声速滑翔飞行器长周期的动力学特性,分析了平衡滑翔弹道和跳跃弹道的产生机理,得到了跳跃次数、衰减速度等特征参数的表达式,与数值解对比验证了方法的正确性;根据滑翔飞行器的典型飞行轨迹,研究了攻角振荡阻尼和周期特性;针对阻尼偏小的特征,设计了俯仰阻尼器,仿真结果验证了阻尼器的有效性。
     在控制面设计中,引入全动舵、嵌入式控制面以及RCS控制系统,设计了高超声速滑翔飞行器的气动布局;研究了所设计气动布局的配平特性,利用配平舵面保持飞行器的稳定性,提高容积利用率。引入控制面后的气动布局具有良好的气动性能;研究了全动舵及嵌入式控制面参数对气动性能的影响,分析表明控制面在配平和控制方面具有较高的效率。
     在BTT控制系统设计与研究中,建立了高超声速滑翔飞行器的控制模型;基于轨迹线性化方法设计了控制律,针对多控制面布局特性,研究了基于优化的最小舵面偏转角控制分配方法,并针对倾斜转弯相关参数进行了分析;在控制器中引入非线性干扰观测器,通过对系统不确定的有效估计,设计补偿控制律以提高原有方法的控制性能;引进非线性状态观测器对测量噪声进行处理,基于轨迹线性化方法设计了状态观测器,仿真结果验证了状态观测器的去噪能力,降低了对控制执行机构的要求。
     在机动轨迹优化设计与研究中,建立了高超声速滑翔飞行器轨迹优化的数学模型,包括考虑地球自转的再入运动方程、再入过程约束、终端约束模型以及轨迹优化目标;提出了基于Akima样条插值的直接优化方法,进行了滑翔轨迹的多目标优化分析,验证了方法的有效性;在直接法基础上,采用基于网格自适应的多分辨率技术进行轨迹优化,并对航路点和禁飞区约束提出了处理策略;结合设计的气动控制面和控制系统,进行包含控制律的轨迹仿真分析,研究了气动参数不确定性以及存在测量误差情况下控制系统的性能。仿真结果表明,所设计的控制系统具有较好的鲁棒性。
     论文围绕高超声速滑翔飞行器的机动关键技术开展研究,建立了基于乘波构型的新型气动布局和控制面布局飞行器设计方法,形成了对短周期和长周期的再入动力学特征认识,设计了鲁棒性较强的BTT控制系统,验证了多分辨率技术在机动轨迹优化设计中的有效性。可为新型高超声速滑翔飞行器的气动布局设计、机动控制、实际应用提供理论支持,对高超声速远程飞行器的关键技术研究具有一定的参考价值。
Hypersonic gliding vehicle has the capability of large downrange and cross range, it can land precisely with a prescribed position, reach a long-range quickly and deliver a load precisely with a large scope of height and velocity, which make it the reasearch focus about the hypersonic vehicle at present.
     This paper focuses on hypersonic gliding vehicle. The technology that influences the manuverability of hypersonic gliding vehicle is studied and discussed, such as the aerodynamic design, dynamic characteristic, bank-to-turn control, the design of control face, trajectory optimization and etc. The elementary concept model of a new hypersonic gliding vehicle is established.
     In the aerodynamic design and analysis, the generation method of waverider is studied. The cone derived waverider is chosen as the reference configuration for gliding vehicle. A new generation method based on reshaping of boundary layer is put forward, which is verified through CFD techniques. The reshaped configuration has a higher lift-to-drag ratio than the original configuration. Consiedeing the engineering consideration such as lift-to-drag ratio, volume, volume efficiency and the position of pressure, the waverider is optimized with improved differential evolutionary algorithm. For the purpose of pratical use, the blunting the leading edge’s influence on the aerodynamic/aerothermodynamic performance of waverider is studied. When designing the waverider, one should consider both the aerodynamic and aerothermodynamic factors to select an appropriate blunt radius.
     The dynamic characteristic of hypersonic gliding vehicle is studied. The generation mechanism of dynamic derivatives is analyzed and a calculation method is put forward. The phugoid dynamics of the hypersonic gliding vehicle is studied, which show that the equilibrium gliding is the fixed state of the renerty trajectory, when the initial states do not satisfy equilibrium glide condition or perturbation occurs, a damped oscillation along the equilibrium glide trajectory, viz. skip trajectory, could be observed. The characteristic parameters such as the damping and the number of oscillations are analyzed. The dynamics of angle-of-attack is studied based on a typical reentry trajectory; the damping, period of the oscillation is studied. To improve the damping characteristic, a pitch damper is designed. The damper’s influence on aerodynamic parameter and dynamic characteristic are studied. The damper provides an effective way to improve the damping characteristics of the waverider, which can be referenced in similar designs.
     A collectivity aerodynamic configuration with embed control faces, all-moving wing and reaction control system was designed. The trim characteristic of the designed configuration is analyzed, due to its unique aerodynamic characteristic, the centroid of the whole vehicle could be placed at the rear part of the vehicle, and the stability is achieved through the trim contral faces, which improve the usage of the volume. The aerodynamic analysis shows that the vehicle retains the good aerodynamic efficiency after the control faces are introduced. The parameters of the all-moving wing and the embed control faces' influence to the aerodynamic characteristic is analyzed. The main contributions of the introduced wings are the control ability and trim efficiency.
     An Bank-to-Turn control system for hypersonic gliding vehicle is designed. The control model is established, the control system is based on trajectory linearization control method. Considering the characteristic of multi-control-faces, a control allocation method based on optimized minimum deflection angle is studied. The bank-to-turn parameters are analyzed. A nonlinear disturbance observer is used to estimate the uncertainties and integrated with the TLC method, which improve the efficiency of the controller. A state observer based on trajectory linearization method is introduced and integrated with TLC. The observer error is found to be exponentially stable and simulation results verify the excellent performance and robustness of the proposed method, the method also reduces the requirement of the actuator of the controller.
     The maneuver trajectory optimization method for hypersonic gliding vehicle is studied; the flight dynamic model was set up, considering the rotation of the earth, reentry path constraints and terminal constraints. A direct method based on Akima spline interpolation is proposed and simulation results verify the validity of the method. A multiresolution technique that based on the grid self adapting was applied to trajectory optimization; the corresponding tactic deal with the waypoint constraint is suggested. A practical trajectory optimization application that including waypoint, no-fly zones and terminal constraints is presented. Finally, the optimized trajectory and designed control system is integrated and simulatied. The uncertainty of the aerodynamic parameter and the measurement error are introduced respectively to study the efficiency of the control system. The simulation results show trajectory optimization method is effective and the control scheme is reasonable.
     This dissertation focuses on the key technology relative to the manuverability of hypersonic gliding vehicle. The theoretical researches in this dissertation sustain the aerodynamic design, trajectory optimization and the control design for hypersonic gliding vehicle, which is a good reference to the development of the new type of hypersonic glide-reentry vehicle in the future.
引文
[1]袁俊.弹道导弹预警系统及其发展趋势[J].国防科技. 2007.
    [2]许征编译.末段高空区域防御( THAAD)系统研发情况[J].地面防空武器. 2006.
    [3]张巍,王敏,徐世录.美国导弹防御系统的发展动向分析[J].现代防御技术. 2007.
    [4]周义.日新月异的巡航导弹[J].现代军事. 2000.
    [5]冯云松,路远.弹道导弹在红外波段的突防措施研究[J].红外. 2007.
    [6]郭宣.俄罗斯的阴影——咄咄逼人的美国反导系统[J].现代舰船. 2007.
    [7]石江月.海神之盾——美国海基弹道导弹防御系统[J].现代舰船. 2007.
    [8]夏新仁.美国导弹防御系统的现状与发展[J].中国航天. 2007.
    [9]凌云.“美利坚”轰炸机项目(下)——H0XVIII飞翼轰炸机与“银鸟”空天轰炸机[J].国际瞭望. 2006.
    [10]解发瑜,李刚,徐忠昌.高超声速飞行器概念及发展动态[J].推进技术. 2004.
    [11]钱学森.工程控制论[M].北京:科学出版社,1958.
    [12] Hsue-sen Tsien. Engineering Cybernetics [M]. New York:McGraw-Hill Book Company,1954.
    [13]钱学森.星际航行概论[M].北京:科学出版社,1963.
    [14]George Richie. The Common Aero Vehicle - Space delivery system of the future[C] AIAA Space Technology Conference & Exposition. Albuquerque, NM. 1999. 1-11.
    [15] Youssef Hussein, Chowdhry Rajiv. Hypersonic Global Reach Trajectory Optimization[C] Providence, RI; USA. 2004. 1-9.
    [16]刘克俭.美国未来作战系统[M].北京:解放军出版社,2006.
    [17] Vinh N.X., Lu P. Chebyshev minimax problems for skip trajectories [J]. Astron. Sci. 1988. 31(1). 179~197.
    [18]马骏声.博弈论——机动弹头攻防的核心[J].航天电子对抗. 2006. 22(1). 4~6.
    [19] Johannesen J. R., Vinh N. X. Effect ofMaximum Lift to Drag Ratio on Optimal Aero-assisted Plane Change[C] Atmospheric Flight Mechanics Conference, 12th,. Snowmass. 1985. 399~407.
    [20] Vinh N. X., D. M. Ma. Optimal multiple-pass aeroassisted plane change [J]. Acta Astron. 1990. 21(11). 749~758.
    [21] Chern J. S., Yang C. Y., Vinh N. X. Deceleration and heating constrained footprint of shuttle vehicles [J]. Acta Astron. 1985. 12(10). 819~829.
    [22] Richie George. The Common Aero Vehicle: Space Delivery System Of The Future [R].AIAA 99-4435. 1999.
    [23] Phillips Terry H. A Common Aero Vehicle (CAV) Model, Description, and Employment Guide [R].Schafer Corporation For AFRL and AFSPC. 2003.
    [24] Command Air Force Space. Strategic Master Plan for FY02 and Beyond [R]. February 9, 2000.
    [25] DARPA. FALCON force application and launch from CONUS [R]. 2004.
    [26] Walker Steven H., Rodgers Fredrick. Falcon Hypersonic Technology Overview [R].AIAA 2005-3253. 2005.
    [27] Agency Broad. FALCON force application and launch from CONUS [M]. 2003.
    [28] Department of Defense USA. Future years defense programs [R]. 2004.4.
    [29] Lord Lance W. STATEMENT OF AIR FORCE SPACE COMMAND BEFORE THE SENATE ARMED SERVICES COMMITTEE [R]. MARCH 16, 2005.
    [30] Air Force Plans Flight Tests Of Hypersonic Vehicle. www.space.com. 2006.
    [31] MOVING FORWARD ON LONG-RANGE STRIKE. www.csbaonline.org.2004.
    [32]刘晓恩.美俄新一代战略导弹技术分析[J].中国航天. 2005.
    [33] Marshall Laurie A., Bahm Catherine, Corpening Griffin P. Overview With Results and Lessons Learned of the X-43A Mach 10 Flight [R].AIAA2005-3336. 2005.
    [34] Shauhnessy John D., Pinckney S.Zane, D.McMinn John. Hypersonic Vehicle Simulation Model: Winged-Cone Configuration [R].NASA TM 102610. Langley Research Center. 1990.
    [35] Nonweiler T R F. Aerodynamic problems of Manned Space Vehicles [J]. Journal of the Royal Aeronautical Society. 1959. 63(9). 521~528.
    [36] Cole J.D, Zien T.F. A Class of Three-Dimensional ptimimum Hypersonic Wings [J]. AIAA Journal. 1969. 7(2). 264~271.
    [37] Rasmussen M.L. Waverider Configurations Derived from Inclined Circular and Elliptic Cones [J]. Journal of Spacecraft and Rockets 1980. 17(6). 537~545.
    [38] Corda Stephen, Anderson J D. Viscous Optimized Hypersonic Waverider [R].AIAA 1987-0272. 1987.
    [39] Corda Stephen. Viscous Optimized Hypersonic Waveriders Designed from Flows over Cones and Minimum Drag Bodies [D]. United States -- Maryland:University of Maryland College Park(Ph.D.). 1988.
    [40] Bowcutt K G, Anderson J D. Viscous Optimized Waverider Designed From Ax symmetric Flow Fields [R].AIAA 88-20369. 1988.
    [41] Bowcutt Kevin Gerald. OPTIMIZATION OF HYPERSONIC WAVERIDERS DERIVED FROM CONE FLOWS - INCLUDING VISCOUS EFFECTS [D]. United States -- Maryland:University of Maryland College Park(1986.
    [42] Sobieczky H. Hypersonic waverider design from given shockwaves[C] Proceedings of the first International Hypersonic Waverider Symposium. University of Maryland 1990.
    [43] Lin Sheam-Chyun, Shen Ming-Chiou, Tsai Bor-Jang. Establishment and application of approximate equations for waverider with multi-directional-curvature [R].AIAA95-0742. 1995.
    [44] Takashima N., Lewis M. J. Powered hypersonic waverider vehicles for optimization with mission-oriented constraints [R].AIAA95-0846. 1995.
    [45] Lin Sheam-Chyun^Luo, Yu-Shan. Optimization of waverider generated from conical flow with combined transverse and longitudinal curvature [R].AIAA95-1849. 1995.
    [46] Lin Sheam-Chyun, Luo Yu-Shan. Optimization of waverider configurations generated from inclined circular and elliptic cones [R].AIAA95-6089. 1995.
    [47] Takashima Naruhisa, Lewis Mark J. Optimized mission-oriented waverider vehicles with base closure [R].AIAA96-0810. 1996.
    [48] Lin Sheam-Chyun, Shen Ming-Chiou, Tsai Bor-Jang. Numerical study of the tip-to-tail hypersonic vehicle [R].AIAA95-1827. 1995.
    [49] Lin Sheam-Chyun, Shen Ming-Chiou. Navier-Stokes simulation of a cone-derived waverider with multidirectional curvature [R].AIAA96-0313. 1996.
    [50] Starkey Ryan P., Lewis Mark J. Analytical off-design L/D analysis for hypersonic waveriders with planar shocks [R].AIAA99-3205. 1999.
    [51] Jones Kevin Daniel. A new inverse method for generating high-speed aerodynamic flows with application to waverider design [D]. United States -- Colorado:University of Colorado at Boulder 1993.
    [52] Jones K. D., Dougherty F. C., Seebass A. R. et al. Waverider design for generalized shock geometries [R].AIAA93-0774. 1993.
    [53] Newberry Conrad F. The conceptual design of deck-launched waverider configured aircraft [R].AIAA95-6155. 1995.
    [54] Mangin B., Benay R., Chanetz B. Optimization of Viscous Waveriders Derived from Axisymmetric Power-Law Blunt Body Flows [J]. Journal of Spacecraft and Rockets. 2006. 43(5). 990~998.DOI: 10.2514/1.20079
    [55] Lobbia Marcus, Suzuki Kojiro. Design and analysis of payload-optimized waveriders [R].AIAA2001-1849. 2001.
    [56] Corda Stephen. Star-Body Waveriders with Multiple Design Mach Numbers [J]. JOURNAL OF SPACECRAFT AND ROCKETS. 2009. 46(6). 1178~1185.DOI: 10.2514/1.43933
    [57] Vanmol Denis O., Anderson John D. Jr. Heat transfer characteristics of hypersonic waveriders with an emphasis on leading edge effects [R].AIAA92-2920. 1992.
    [58] Takashima Naruhisa, Lewis Mark J. Navier-Stokes computations of a viscous optimized waverider [R].AIAA92-0305. 1992.
    [59] Tsai Bor-Jang, Miles John B., Issac Kakkattukuzhy M. Computation of turbulent flow about cone-derived waverider [R].AIAA92-2726. 1992.
    [60] Stecklein G. O., Hasen G. A., Gaitonde D. Numerical solution of inviscid hypersonic flow around a conically-derived waverider [R].AIAA93-0320. 1993.
    [61] He X., Rasmussen M. L. Computational analysis of off-design waveriders [R].AIAA93-3488. 1993.
    [62] Mundy James A., Hasen Gerald A. A numerical study of conically derived waveriders [R].AIAA94-0765. 1994.
    [63] Shi Yijian, Tsai Bor-Jang, Miles John B. et al. Cone-derived waverider flowfield simulation including turbulence and off-design conditions [R].AIAA94-1822. 1994.
    [64] Graves Rick E., Argrow Brian M. Aerodynamic performance of an osculating-cones waverider at high altitudes [R].AIAA2001-2960. 2001.
    [65] Takashima Naruhisa, Lewis Mark J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration [R].AIAA94-0380. 1994.
    [66] Javaid Kashif, Serghides Varnavas, London Imperial College United Kingdom. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts [R].AIAA 2004-1201. 2004.
    [67] Lewis Mark J., Takashima Naruhisa. Engine/airframe integration for waverider cruise vehicles [R].AIAA93-0507. 1993.
    [68] Takashima N., Lewis M. J. Engine-airframe integration on osculating cone waverider-based vehicle designs [R].AIAA96-2551. 1996.
    [69] Haney J. W., Beaulieu W. D. Waverider inlet integration issues [R].AIAA94-0383. 1994.
    [70] Tarpley Christopher, Lewis Mark J. Optimization of an engine-integrated waverider with steady state flight constraints [R].AIAA95-0848. 1995.
    [71] Tarpley Christopher, Lewis Mark J. Sensitivity of engine-integrated waverider performance to static margin constraint [R].AIAA95-6142. 1995.
    [72] Starkey Ryan P., Lewis Mark J. Design of an engine-airframe integrated hypersonicmissile within fixed box constraints [R].AIAA99-0509. 1999.
    [73] Starkey Ryan P., Lewis Mark J. Aerodynamics of a box constrained waverider missile using multiple scramjets [R].AIAA99-2378. 1999.
    [74] Berry Curtis, Kammeyer Mark, Larach Edward et al. Experiences in fabrication of a waverider model for wind tunnel testing [R].AIAA93-0510. 1993.
    [75] Gillum Michael J., Kammeyer Mark E., Burnett David. Wind tunnel results for a Mach 14 waverider [R].AIAA94-0384. 1994.
    [76] Gillum Michael J., Kammeyer Mark E., Burnett D. Details of a Mach 14 waverider wind tunnel test [R].AIAA94-2476. 1994.
    [77] Gillum Michael J., Lewis Mark J. Analysis of experimental results on a Mach 14 waverider with blunt leading edges [R].AIAA96-0812. 1996.
    [78] Pegg Robert J., Hahne David E., Cockrell Charles E., Jr. Low-speed wind tunnel tests of two waverider configuration models [R].AIAA95-6093. 1995.
    [79] Miyagawa T., Ohta T., Matsuzaki R. Experimental study on cone-derived waveriders at Mach 5.5 [R].AIAA96-2390. 1996.
    [80] Miller Rolf W., Argrow Brian M. Subsonic aerodynamics of an osculating cones waverider [R].AIAA97-0189. 1997.
    [81] Liu T., Campbell B. T., Sullivan J. P. Remote surface temperature and heat transfer mapping for a waverider model at Mach 10 using fluorescent paint [R].AIAA94-2484. 1994.
    [82] Ohta T., Urano A., Miyagawa T. et al. Flow visualization on lower surfaces of waverider configurations at Mach 5.5 [R].AIAA97-1884. 1997.
    [83] Miller R. W., Argrow B. M., Center K. B. et al. Experimental verification of the osculating cones method for two waverider forebodies at Mach 4 and 6 [R].AIAA98-0682. 1998.
    [84] Blankson Isaiah M., Lewis Mark, Pap Robert. Subsonic experiments using the LoFlyte hypersonic waverider vehicle [R].AIAA98-1550. 1998.
    [85] Cockrell Charles E., Jr., Huebner Lawrence D., Finley Dennis B. Aerodynamic performance and flow-field characteristics of two waverider-derived hypersonic cruise configurations [R].AIAA95-0736. 1995.
    [86]车竞.高超声速飞行器乘波布局优化设计研究[D].陕西西安:西北工业大学(Doctor). 2007.
    [87]陈小庆,侯中喜,何烈堂et al.吻切锥乘波构型优化设计与分析[J].国防科技大学学报. 2007. 29(4). 12-16.
    [88]党雷宁.乘波飞行器外形设计与气动特性研究[D].四川绵阳:中国空气动力研究与发展中心(硕士). 2007.
    [89]吉康.基于密切锥方法的高超声速乘波机一体化设计[D].江苏南京:南京航空航天大学(硕士). 2007.
    [90]彭钧,陆志良,李文正.乘波体气动性能综合优化[J].南京航空航天大学学报. 2007. 39(3). 307-311.
    [91]张杰,王发民.高超声速乘波飞行器气动特性研究[J].宇航学报. 2007. 28(1). 203-208.
    [92]曹德一,李椿萱.乘波飞行器气动力、热特性的数值模拟研究[J].宇航学报. 2008. 29(6). 1782-1785.
    [93]许少华,侯中喜,陈小庆et al.乘波构型优化设计与实验[J].国防科技大学学报. 2008. 30(4). 1-5.
    [94]张杰,王发民.乘波器的参数化设计研究[J].空气动力学学报. 2008. 26(1).115-118.
    [95]王发民,丁海河,雷麦芳.乘波布局飞行器宽速域气动特性与研究[J].中国科学:E辑. 2009. 5(11). 1828-1835.
    [96]肖洪,吴丁毅,刘振侠et al.两种乘波前体/进气道一体化设计与性能研究[J].哈尔滨工业大学学报. 2009. 41(7). 150-154.
    [97]张锋涛,崔凯,杨国伟et al.基于神经网络技术的乘波体优化设计[J].力学学报. 2009. 41(3). 418-424.
    [98]赵志,宋文艳,曹玉吉.雷诺数对锥导乘波体气动性能的影响研究[J].飞行力学. 2009. 27(4). 28-31.
    [99] Etkin. Longitudinal Dynamics of a Lifting Vehicle in Orbital Flight [J]. Journal of the Aerospace Science. 1961. 28(2). 779~788.
    [100] Laitone E. V. , Chou Y. S. Phugoid Oscillations at Hypersonic Speeds [J]. AIAA Journal. 1965. 3(3). 732~737.
    [101] Vinh N.X. Longitudinal Dynamics Stability of a Shuttle Vehicle [R].AIAA 70-977. 1970.
    [102] Vinh N.X. Hypersonic and Planetary Entry Flight Mechanics [M]. The University of Michigan Press,1980.
    [103] Vinh N.X., Chern J.S., Lin C.F. Phugoid Oscillations in Optimal Reentry Trajectorie [J]. Acta Astronautica. 1981. 8(2). 311~324.
    [104] Berry. National Aerospace Plane Longitudinal Long-Period Dynamics [J]. Journal of Guidance, Control and Dynamics. 1991. 14(1). 205~206.
    [105] Sachs. Effect of Thrust/Speed Dependence on Long-Period Dynamics in Supersonic Flight [J]. Journal of Guidance, Control and Dynamics. 1990. 13(6). 1163~1166.
    [106] Sachs. Thrust/Speed Effects on Long-Term Dynamics of Aerospace Planes [J]. Journal of Guidance, Control and Dynamics. 1992. 15(4). 1050~1053.
    [107] Ferreira Leonardo de OlivC. Nonlinear Dynamics and Stability of Hypersonic Reentry Vehicles [D]. Michigan:University of Michigan(Doctor). 1995.
    [108] HAGELAUER Patrick V. Dynamics and Sensitivity Analysis of a Class of High Speed Aircraft [D]. Massachusetts Institute of Technology(Master). 1993.
    [109] Choi June. Application of Hypersonic Vehicle Flying Qualities Criteria and Computational Considerations [D]. Massachusetts Institute of Technology(Master). 1994.
    [110]雍恩米,陈磊,唐国金.助推-滑翔式弹道中段的近似解[J].飞行力学. 2007. 25(3). 49-52.
    [111]李邦杰,王海明.滑翔式远程导弹滑翔段弹道研究[J].宇航学报. 2009. 30(6). 2122-2126.
    [112] Bolender Michael A., Doman David B. Nonlinear Longitudinal Dynamical Model of an Air-Breathing Hypersonic Vehicle [J]. Journal of Spacecraft and Rockets. 2007. 44(2). 374~387.
    [113] Colgren Richard, Keshmiri Shahriar, Mirmirani Maj. Nonlinear Ten-Degree-of-Freedom Dynamics Model of a Generic Hypersonic Vehicle [J]. Journal of Aircraft. 2009. 46(3). 800~813.
    [114] Morelli Eugene A. Flight-Test Experiment Design for Characterizing Stability and Control of Hypersonic Vehicles [J]. Journal of Guidance, Control and Dynamics. 2009. 32(3). 949~959.
    [115]黄国勇.基于Terminal滑模的空天飞行器再入鲁棒自适应控制[D].南京:南京航空航天大学(博士). 2007.
    [116] Q Wang, RF Stengel. Robust nonlinear control of a hypersonic aircraft [J]. Journal of Guidance, Control and Dynamics. 2000. 23(4). 577~585.
    [117] Shtessel Y, Hall C. Sliding mode control of the X-33 with an engine failure [R].AIAA 2000-3883. 2000.
    [118] J Slotine J. Tracking control of nonlinear system using sliding surface with application to robust manipulators [J]. International Journal of Control. 1983. 38(3). 465~492.
    [119] H Man Z, P Paplinski A, R Wu H. A robust MIMO terminal sliding mode control scheme for rigid robot manipulators [J]. IEEE Transaction on Automatic Control. 1994. 39(10). 2464~2469.
    [120] Yu Shuanghe, Yu Xinghuo. Robust global Terminal sliding mode control of SISO linear uncertain systems[C] Proceeding of the 35th Conference on Decision and Control. 2000.
    [121] Yu Xinghuo, Man Zhihong. Fast Terminal sliding mode control design for nonlinear dynamical systems [J]. IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications,. 2004. 49(2). 261~265.
    [122] Shtessel Y, Zhu J Jim, Daniels Dan. Reusable launch vehicle attitude control using time-varying sliding modes [R].AIAA 2002-4779. 2002.
    [123] Shtessel Y, Strott James, Zhu J Jim. Time-varying sliding modes control with sliding mode observer for reusable launch vehicle [R].AIAA 2003-5362. 2003.
    [124] N.Johnson Eric, A.J.Calise. El-Shirbiny,Feedback linearization with neural network augmentation applied to X-33 attitude control [R].AIAA 2000-4157. 2000.
    [125] Ngo Anhtuan D, Doman David B. Dynamic Inversion-Based Adaptive/Reconfigurable Control of the X-33 on Ascent [R].ADA405543. 2002.
    [126] Smith Roy, Ahmed Asif. Robust parametrically varying attitude controller designs for the X-33 vehicle [R].AIAA 2000-4158. 2000.
    [127] Bikdash Marwan, Sartor Ken, Homaifar Abdollah. Fuzzy guidance of the shuttle orbiter during atmospheric reentry [J]. Control Engineering Practice. 1999. 20(7). 295~303.
    [128] Lian Baohua, Bang Hyochoong, J.E.Hurtado. Adaptive Backstepping control based autopilot design for reentry vehicle [R].AIAA 2004-5328. 2004.
    [129] Chaudhary A., Nguyen V., Iran H. et al. DYNAMICS AND STABILITY AND CONTROL CHARACTERISTICS OF THE X-37 [R].AIAA 2001-4383. 2001.
    [130] M.Wallner Elmar, Klaus H.Well. Attitude control of a reentry vehicle with internal dynamics [R].AIAA 2002-4647. 2002.
    [131] S.-F.Wu, C.J.H.Engelen, R.Babuska. Fuzzy logic full-envelope autonomous flight control for an atmospheric re-entry spacecraft [J]. Control Engineering Practice. 2003. 24(11). 11~25.
    [132] Xu Haojian, Mirmirani Maj D., Ioannou Petros A. Adaptive Sliding Mode Control Design for a Hypersonic Flight Vehicle [J]. Journal of Guidance, Control and Dynamics. 2004. 27(5). 829~838.
    [133] Johnson Eric N., Calise Anthony J., Curry Michael D. Adaptive Guidance and Control for Autonomous Hypersonic Vehicles [J]. Journal of Guidance, Control and Dynamics. 2006. 29(3). 725~737.
    [134] Fiorentini Lisa, Serrani Andrea, Bolender Michael A. et al. Nonlinear RobustAdaptive Control of Flexible Air-Breathing Hypersonic Vehicles [J]. Journal of Guidance, Control and Dynamics. 2009. 32(2). 401~416.
    [135] Caporicci Marco, Basile Luciano. ESA activities on atmospheric re-entry systems [R].AIAA 2003-7017. 2003.
    [136] E.Mooij, I.Barkana. Stability analysis of an adaptive guidance and control system applied to winged reentry vehicle [R].AIAA 2005-6290. 2005.
    [137] J.Fatemi, E.Mooij, S.P.Gurav. Reentry vehicle design optimization with intergrated trajectory uncertainties [R].AIAA 2005-3386. 2005.
    [138] E.Mooij. Model reference adaptive guidance for reentry trajectory tracking [R].AIAA 2004-4775. 2004.
    [139] S.Juliana, Q.P.Chu, J.A.Mulder et al. Flight control of atmospheric re-entry vehicle with non-linear dynamic inversion [R].AIAA 2004-5330. 2004.
    [140] E.Mooij. Direct model reference adaptive control of a winged reentry vehicle [R].AIAA 99-4548. 1999.
    [141] Mooij E. Numerical Investigation of Model Reference Adaptive Control for Hypersonic Aircraft [J]. Journal of Guidance, Control and Dynamics. 2001. 24(2). 315~323.
    [142] Costa R. R. da. Reentry attitude controller development using nonlinear dynamic inversion for the crew return vehicle [D]. Delft University of Technology(Master). 2004.
    [143] E.Mooij, I.Barkana. Theoretical Stability Analysis of Simple Adaptive Control for aWinged Re-entry Vehicle [R].AIAA 2006-6417. 2006.
    [144] Recasens J.J. Robust Model Predictive Control of a Feedback Linearized System for a Lifting-body Re-entry Vehicle [D]. Delft University of Technology(Master). 2005.
    [145] M.Ohno, Y.Yamaguchi, T.Hata et al. Robust flight control law design for an automatic landing flight experiment [J]. Control Engineering Practice. 1999. 7(9). 1143~1152.
    [146] Ohara Atsumi, Yamaguchi Yasuhiro, Morito Toshiki. LPV modeling and gain scheduled control of re-entry vehicle in approach and landing phase [R].AIAA 2001-4038. 2001.
    [147] Costa R.R.da, Q.P.Chu, J.A.Mulder. Re-entry flight controller design using nonlinear dynamic inversion [R].AIAA 2001-4219. 2001.
    [148] A.E.Finzi, M.Lavagna. Atmospheric re-entry trajectory tracking and control for an unmanned space vehicle with a Lyapunov approach [R].AIAA 2003-5441. 2003.
    [149]李菁菁,任章,黎科峰et al.高超声速飞行器再入段的动力学建模与仿真[J].系统仿真学报. 2009. 21(2). 534-537.
    [150]钱承山,吴庆宪,姜长生et al.空天飞行器概念设计再入数学建模研究[J].宇航学报. 2008. 29(2). 435~441.
    [151]方炜.空天飞行器再入飞行的模糊自适应预测控制[D].南京:南京航空航天大学(博士). 2008.
    [152]王玉惠.空天飞行器基于模糊理论的鲁棒自适应控制研究[D].南京:南京航空航天大学(博士). 2008.
    [153]张春雨.空天飞行器建模及其自适应轨迹线性化控制研究[D].南京:南京航空航天大学(硕士). 2007.
    [154]朱亮.空天飞行器不确定非线性鲁棒自适应控制[D].南京:南京航空航天大学(博士). 2006.
    [155]黎科峰,源田,章任.升力式再入飞行器的神经网络自适应逆控制系统设计[J].导弹与航天运载技术. 2006.
    [156]黎科峰,源田,章任.升力式再入飞行器的先进控制方法研究. [J].上海航天. 2006.
    [157]李扬,陈万春.高超声速飞行器BTT非线性控制器设计与仿真[J].北京航空航天大学学报. 2006. 32(3).
    [158] Huntington Geoffrey Todd. Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control Problems [D]. Cambridge,MA:Massachusetts Institute of Technology(2007.
    [159]吴德隆,王小军.航天器气动力辅助变轨动力学与最优控制[M].北京:中国宇航出版社,2006.
    [160]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997.
    [161]萨道夫斯基ИН.火箭最优运动状态的研究[M].北京:国防工业出版社,1965.
    [162]庞特里亚金ЛС.最佳过程的数学理论[M].陈祖浩等译上海:科学技术出版社,1965.
    [163]李忠应.最优过程理论及其在飞行力学中的应用[M].北京:北京航空航天大学出版社,1979.
    [164]程国采.弹道导弹制导方法与最优控制[M].北京:国防工业出版社,1987.
    [165]赵汉元.飞行器再入动力学与制导[M].长沙:国防科技大学出版社,1997.
    [166]阮春荣.大气中飞行的最优轨迹[M].北京:宇航出版社,1987.
    [167] A Miele, P Mohamly B, K Wu A. Conversion of Optimal Control Problems with Free Initial State into Optimal Control Problems with Fixed Initial State [J]. Journal of the Astronautical Sciences. 1977. 25(1). 75~85.
    [168] G Hull D. Sufficient Conditions for a Minimum of the Free-Final-Time Optimal Control Problem [J]. Journal of Optimization Theory and Application. 1991. 68(3). 23~29.
    [169]格雷斯.应用最佳控制[M].上海:科学技术出版社,1985.
    [170]邢继祥,张春蕊,徐洪泽.最优控制应用基础[M].北京:科学出版社,2003.
    [171]格姆克列兹РВ.最优控制理论基础[M].姚允龙译上海:复旦大学出版社,1988.
    [172] F Hartl R, P Sethi S, G Vickson R. A Survey of the Maximum Principles for Optimal Control Problems with State Constraints [J]. SIAM Review. 1995. 37(2). 181~218.
    [173] A Tapia R, W Trosset M. An Extension of the Karush-Kuhn-Tucker Necessity Conditions to Infinite Programming [J]. SIAM Review. 1994. 36(1). 1~17.
    [174] D Berkovitz L. Optimal Control Theory [M]. New York:Springer-Veriag,1974.
    [175] J Bell D, H Jacobson D. Singular Optimal Control Problems [M]. London:Academic Press,1975.
    [176] M Ross I. Thrust Programming in Aeroassisted Maneuvers [R].AAS99-404. 1607-1625.
    [177] M Ross I, C. Nicholson J. Optimality of the Heat-Rate-Constrained Aerocruise Maneuver [J]. Journal of Spacecraft and Rockets. 1998. 35(3). 156~172.
    [178] M Ross I. External Angle of Attack over a Singular Thrust Arc in Rocket Flight [J]. Journal of Guidance, Control and Dynamics. 1997. 20(2). 391~393.
    [179] Y Park S. Analysis of Junction Condition in Optimal Aeroassisted Orbital Plane Change [J]. Journal of Guidance, Control and Dynamics. 2000. 23(1). 124~129.
    [180] Mickle M. Chris, Zhu J. Jim. Bank-to-turn roll-yaw-pitch autopilot design using dynamic nonlinear inversion and PD-eigenvalue assignment[C] Chicago, IL, USA. 2000. 1359-1364.
    [181] H Baumann. Thrust Limited Coplanar Aeroassisted Orbital Transfer. [J]. Journal of Guidance, Control and Dynamics. 2001. 24(2). 732~738.
    [182] J Enright P, A Conway B. Optimal Finite-Thrust Spacecraft Trajectories Using Collation and Nonlinear Programming [J]. Journal of Guidance, Control and Dynamics. 1991. 14(5). 848~856.
    [183] A Miele. Recent Advances in Gradient Algorithms for Optimal Control Problems. [J]. Journal of Optimization Theory and Applications. 1975. 17(5). 361~430.
    [184] A Miele, T Wang, K Basapur V. Primal and Dual Formulations of Sequential Gradient Restoration Algorithms for Trajectory Optimization Problems [J]. Acta Astronautica. 1986. 13(8). 491~505.
    [185] Rishikof B H, McCormick B R, Prithard R E. SeGRAm: a Pratical and Versatile tool for spacecraft trajectory optimization [J]. Acta Astronautica. 1992. 26(8). 599~609.
    [186] T Betts J, P Huffman W. Path Constrained Trajectory Optimization Using Sparse Sequential Quadratic Programming [J]. Journal of Guidance, Control and Dynamics. 1993. 16(1). 38~46.
    [187] J Enright P, A Conway B. Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming [R].AIAA90-2963. 1990.
    [188] T Betts J, P Huffman W. The Application of Sparse Nonlinear Programming to Trajectory Optimization [R].AIAA92-4528. 1992.
    [189] R Hargraves C, W. Paris S. Direct Trajectory Optimization Using Nonlinear Programming and Collocation [J]. Journal of Guidance ,Control and Dynamics. 1987. 10(4). 338~342.
    [190] L Herman A, A Conway B. Direct Optimization Using Collocation Based on High-Order Guass-Lobatto Quadrature Rules [J]. Journal of Guidance ,Control and Dynamics. 1996. 19(3). 592~599.
    [191] Fahroo Fariba, Ross I. Michael. Direct trajectory optimization by a Chebyshev pseudospectral method[C] Proceedings of the American Control Conference. Chicago, IL, USA. 2000. 3860-3864.
    [192] Fahroo Fariba, Ross I. M. Costate estimation by a Legendre pseudospectral method [R].AIAA 98-4222. 1998.
    [193] Fahroo Fariba, Ross I. Michael. Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems [R].AIAA 2005-6076. 2005 AIAA Guidance Navigation and Control Conference and Exhibit; San Francisco CA; USA; 15-18 Aug. 2005. pp. 1-10. 2005. 2005.
    [194] Fahroo Fariba, Ross I. Michael. On Discrete-Time Optimality Conditions for Pseudospectral Methods [R].AIAA 2006-6304. 2006.
    [195] Fahroo Fariba, Ross I. Michael. On discrete-time optimality conditions for pseudospectral methods[C] Keystone, CO, United States. 2006. 792-808.
    [196] Ross I. Michael, Fahroo Fariba. Pseudospectral methods for optimal motion planning of differentially flat systems[C] Las Vegas, NV, United States. 2002. 1135-1140.
    [197] Benson David A., Huntington Geoffrey T., Thorvaldsen Tom P. et al. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method [R].AIAA 2006-6358. AIAA Guidance Navigation and Control Conference Proceedings. 2006. 2006.
    [198] Benson David A. A Gauss pseudospectral transcription for optimal control [D]. MASSACHUSETTS INSTITUTE OF TECHNOLOGY(Doctor). 2005.
    [199] Huntington Geoffrey T. Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control Problems [D]. MASSACHUSETTS INSTITUTE OF TECHNOLOGY(Doctor). 2007.
    [200]雍恩米.高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D].长沙:国防科学技术大学(博士). 2008.
    [201] Baralli Francesco, Pollini Lorenzo, Innocenti Mario. Waypoint-Based Fuzzy Guidance for Unmanned Aircraft A New Approach [R].AIAA 2002-4993. 2002.
    [202] Yang Hong Iris, Zhao Yiyuan J. Efficient Trajectory Synthesis Through Specified Waypoints [R].AIAA 2004-6525. 2004.
    [203] WHANG ICK HO, HWANG TAE WON. Horizontal Waypoint Guidance Design Using Optimal Control [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. 2002. 38(3). 1116~1120.
    [204] Kuwata Yoshiaki. Real-time Trajectory Design for Unmanned Aerial Vehicles using Receding Horizon Control [D]. MASSACHUSETTS INSTITUTE OF TECHNOLOGY(Master). 2003.
    [205] R.Jorris Timothy. Common Aero Vehicle Autonomous Reentry Trajectory Optimization Satisfying Waypoint and No-Fly Zone Constraints [D]. Ohio, USA:Air University(Doctor). 2007.
    [206] Judd Kevin B., McLain Timothy W. Spline Based Path Planning for Unmanned Air Vehicles [R].AIAA 2001-4238. 2001.
    [207]阎代维,谷良贤,王兴治.基于Voronoi图的巡航导弹突防路径规划研究[J].弹箭与制导学报. 2005. 25(2). 11-13.
    [208]肖秦现,高晓光.基于空间改进型Voronoi图的路径规划研究[J].自然科学进展. 2006. 16(2). 232~238.
    [209] Twigg Shannon, Calise Anthony, Johnson Eric. On-Line Trajectory Optimization Including Moving Threats and Targets [R].AIAA 2004-5139. 2004.
    [210] Raghunathan Arvind U., Gopal Vipin, Subramanian Dharmashankar et al. 3D Conflict Resolution of Multiple Aircraft via Dynamic Optimization [R].AIAA 2003-5675. 2003.
    [211] Kuwata Yoshiaki, How Jonathan. Three Dimensional Receding Horizon Control for UAVs [R].AIAA 2004-5144. 2004.
    [212] Kuwata Yoshiaki, Schouwenaars Tom, Richards Arthur et al. Robust Constrained Receding Horizon Control for Trajectory Planning [R].AIAA 2005-6079. 2005.
    [213]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科学技术大学出版社,1993.
    [214]许少华,侯中喜,葛爱学et al.再入滑翔式飞行器弹道特征与乘波构型设计[J].导弹与航天运载技术. 2008. 23(3). 6-11.
    [215]黄志澄.高超声速飞行器空气动力学[M].北京:国防工业出版社,1995.
    [216] Kuchemann D. The Aerodynamic Design of Aircraft [M]. London:Pergamon Press,1978.
    [217]瞿章华,刘伟,曾明et al.高超声速空气动力学[M].长沙:国防科学技术大学出版社,2001.
    [218] Sobieczky H. High speed flow designing osculating axisymmetric flows[C] Proceedings of the third Pacific International Conference on Aerospace Science and Technology. Xi'an. 1997. 182~187.
    [219]陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2006.
    [220]耿永兵,刘宏,姚文秀et al.锥形流乘波体优化设计研究[J].航空学报. 2006.
    [221]耿永兵,刘宏,王发民.飞行高度及设计长度对锥形流乘波体优化的影响[J].宇航学报. 2006. 27(02).
    [222]耿永兵,刘宏,雷麦芳et al.高升阻比乘波构型优化设计[J].力学学报. 2006.
    [223]陈小庆.高速乘波飞行器气动布局设计研究[D].长沙:国防科学技术大学(硕士). 2006.
    [224]陈小庆,侯中喜,何列堂.吻切锥乘波构型优化设计与分析[J].国防科技大学学报. 2007. 29(4).
    [225] Storn. Differential evolution design of an IIR-filter[C] IEEE Int. Conference on Evolutionary Computation ICEC'96. New York. 1996.
    [226] Storn. Differential Evolution Design of an IIT-Filter with Requirements for Magnitude and Group Delay[C] IEEE International Conference on Evolutionary Computation,. 1996. 268-273.
    [227] Chen Xiao-Qing, Hou Zhong-Xi, Liu Jian-Xia. Real-Parameter Optimization with Modified Differential Evolution [C]. Proceedings of the 9th International Conference for Young Computer Scientists. zhangjiajie, Hunan. 2008.
    [228] Chen Xiao-Qing, Hou Zhong-Xi, Liu Jian-Xia. Multi-Objective Optimization with Modified Pareto Differential Evolution [C]. International Conference on Intelligent Computation Technology and Automation. changsha, Hunan. 2008.
    [229] Tsai Bor-Jang. Navier-Stokes Simulation for Waverider Including Turbulence, Heat Transfer, and Wakes [D]. University of Missouri Columbia,(Doctor). 1992.
    [230] Silvester Todd, Morgan Richard, Queensland Univ Brisbane Australia. Computational hypervelocity aerodynamics of a caret waverider Waverider [R].AIAA 2004-3848. 2004.
    [231] Norris Joseph D., Aedc White Oak Silver Spring M. D. Mach 8 High Reynolds Number Static Stability Capability Extension Using a Hypersonic Waverider at AEDC Tunnel 9 [R].AIAA 2006-2815. 2006.
    [232] Jackson, K. Dwayne J. CFD Analysis of a Generic Waverider [R].AIAA 2006-2817. 2006.
    [233] Drayna Travis W., Nompelis Ioannis, Candler Graham V. Numerical Simulation of the AEDC Waverider at Mach 8 [R].AIAA 2006-2816. 2006.
    [234] Bertin John J., Cummings Russell M. Critical HypersonicAerothermodynamic Phenomena [J]. Annual Review of Fluid Mechanics. 2006. 38(1). 129~157.
    [235]李君哲.气动热CFD计算格式及网格影响研究[D].北京:北京航空航天大学(硕士). 2004.
    [236]陈小庆,侯中喜,刘建霞.乘波构型气动特性研究[C]第十三届全国激波管会议.湖南长沙. 2008.
    [237] Lee Joon Ho, Rho Oh Hyan. Numerical analysis of hypersonic viscous flow around a blunt body using Roe's FDS and AUSM+ schemes [R].AIAA 97-2054.1997.
    [238] BILLIG FREDERICK S. Shock- Wave Shapes around Spherical and Cylindrical-Nosed Bodies [J]. Journal of Spacecraft. 1967. 4(6). 822~823.
    [239] P Papadopoulos, E Venkatapathy, D Prabhu et al. Current grid-generation strategies and future requirements in hypersonic vehicle design, analysis, and testing. [J]. Appl. Math. Model. 1999. 23(4). 705~735.
    [240] IS Men'shov, Y. Nakamura. Numerical simulations and experimental comparison for high-speed nonequilibrium air flows. [J]. Fluid Dyn. Res. 2000. 27(1). 305~334.
    [241] Detra R. W., Kemp N. N., Riddell F. R. Addendum to 'HeatTransfer to Satellite Vehicles Reentering the Atmosphere' [J]. Jet Propulsion. 1957. 27(12). 1256~1257.
    [242] Vanmol Denis O. Heat Transfer Characteristics of Hypersonic Waverider with Ehphasis on the Leading Edge Effects [D]. United States -Maryland:University of Maryland College Park(Master). 1991.
    [243] Tauber Michael. A Review of High-Speed, Convective, Heat-Transfer Computation Methods [R].NASA TP 2914. 1989.
    [244] Chauffour Marie-Laure. Shock-based waverider design with pressure gradient corrections and computational simulations [D]. United States -- Maryland:University of Maryland, College Park(M.S.). 2004.
    [245] O'Brien Timothy Francis. RBCC engine-airframe integration on an osculating cone waverider vehicle [D]. United States -- Maryland:University of Maryland(Doctor). 2001.
    [246] Bollino Kevin P. High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehicles [D]. California:Naval Postgraduate School(Doctor). 2006.
    [247] S.A.Snell. Nonlinear Dynamic-Inversion Flight Control of Supermaneuverable Aircraft [D]. University of Minnesota(doctor). 1991.
    [248] Ir.E.Mooij. The motion of a vehicle in a planetary atmosphere [M]. Delft, The Netherlands:Delft University Press,1997.
    [249]卢学成,叶正寅,张伟伟.超音速、高超音速飞行器动导数的高效计算方法[J].航空计算技术. 2008. 38(3). 28-31.
    [250] Keshmiri Shah, Colgren Richard, Mirmirani Maj. Six-DOF modeling and simulation of a generic hypersonic vehicle for conceptual design studies [R].AIAA 2004-4805. 2004.
    [251] Keshmiri Shahriar, Colgren Richard, Mirmirani Maj et al. Development of an Aerodynamic Database for a Generic Hypersonic Air Vehicle [R].AIAA 2005-6257. 2005.
    [252] Ramnath R. V., Sandri G. A Generalized Multiple Scales Approach to a Class of Linear Differential Equation [J]. Journal of Mathematical Analysis and Application. 1969. 28(1).
    [253]陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社,2007.
    [254] S. Kenneth, Mendelson. Perturbation Theory for Damped Nonlinear Oscillations [J]. Journal of Mathematical Physics. 1970. 11(12). 3413~3415.
    [255]褚亦清,李翠英.非线性振动分析[M].北京:北京理工大学出版社,1996.
    [256] Zhu J. Jim, Huizenga Andrew B. A TYPE TWO TRAJECTORY LINEARIZATION CONTROLLER FOR A REUSABLE LAUNCH VEHICLE - A SINGULAR PERTURBATION APPROACH [R].AIAA 2004-5184. 2004.
    [257] Adami Tony A., Zhu J. Jim. Flight Control of Hypersonic Scramjet VehiclesUsing a Differential Algebraic Approach [R].AIAA 2006-6559. 2006.
    [258] Zhu J. Jim. Nonlinear Tracking and Decoupling by Trajectory Linearization [R]. 1998.
    [259] Liu Yong, Huang Rui, Zhu Jim. Adaptive Neural Network Control Based on Trajectory Linearization Control[C] Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China. 2006. 417~421.
    [260] Bevacqua Time, Best Eric, Huizenga Andrew et al. IMPROVED TRAJECTORY LINEARIZATION FLIGHT CONTROLLER FOR REUSABLE LAUNCH VEHICLES [R].AIAA 2004-875. 2004.
    [261] Huang Rui. Output Feedback Tracking Control of Nonlinear Time-varying Systems by Trajectory Linearization [D]. Ohio University(Doctor). June 2007.
    [262]王鹏.飞翼式长航时无人机轮式起降控制技术研究[D].西安:西北工业大学(博士). 2009.
    [263] Hunt L.R, Meyer G. Stable inverse for nonlinear systems [J]. Automatica. 1997. 33(8). 1549~1554.
    [264]陈谋.不确定非线性综合火力/飞行/推进系统鲁棒控制研究[D].南京:南京航空航天大学(博士). 2004.
    [265] Bertin John J. Hypersonic Aerothermodynamics [M]. Washington, DC:American Institute of Aeronautics and Astronautics, Inc.,1994.
    [266] O’Connell Michael D., Smith Richard S. Recent improvements to bi-directional gridding using Akima spline with minimum curvature and tension [R].Ottawa, Ontario,Canada: August 2005.
    [267] Shu Chi-Wang. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws [R].NASA/CR-97-206253. 1997.
    [268]何烈堂.跨大气层飞行器的力热环境分析与飞行规划研究[D].湖南长沙:国防科学技术大学(博士). 2008.
    [269] S.Jain, P.Tsiotras. Trajectory Optimization Using Multiresolution Techniques [J]. Journal of Guidance ,Control and Dynamics. 2008. 31(5). 1424~1436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700