用户名: 密码: 验证码:
海岸带微气候的动力学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岸带是人类生产和生活的重要场所,对海岸带微气候动力学特征的研究是深入认识海岸带自然环境的需要,也为海岸带的开发利用和可持续发展提供决策依据。由于下垫面物理特征复杂多样,以及大尺度背景场等因素的影响,海岸带微气候的许多动力学过程及其机理尚未被清晰的认识。本论文建立了海岸带微气候系统的概念,采用数值计算的方法研究了不同条件下海岸带微气候的动力学特征并对各要素之间的相互作用规律进行机理性分析,为进一步深入研究海岸带环境奠定了基础。
     针对海岸带微气候这一陆海气三者耦合的系统,采用完全可压缩的三维非静力平衡中尺度模式MM5进行数值模拟,并对其预处理模块进行修改使之适应理想条件下小尺度微气候的研究需要。论文以海陆风环流这一典型的海岸带微气候现象为切入点,研究了平直海岸环流的发展过程和结构,得到了合理的结果。
     沿岸地形形态是海岸带重要的自然属性。论文以矩形海湾和半岛岸线代表不同的海岸线的曲折特性,应用MM5进行理想条件下的计算,得到了两种典型岸线形态下海岸带微气候的变化过程;通过对比分析,得出了岸线凹凸特性及湾岛尺度对微气候的影响规律。沿岸地形被概化为与海岸线平行的倾斜坡面,通过将计算结果与无地形的情况进行比较,明确了斜坡地形影响海岸带微气候要素的动力和热力机制,并且在此基础上进一步研究了斜坡地形的位置和坡度等对海岸带微气候特征的影响。
     海岸带的开发利用潜力是其重要的社会属性。论文概化了沿岸开发利用对下垫面性质的影响,探讨了不同的开发方式对海岸带微气候的影响。选择建议的江苏沿岸大规模滩涂开发计划,分析了滩涂围垦方案的实施对微气候的影响。结果表明,江苏沿岸滩涂开发将使下垫面净辐射和蒸散发增强,从而减小感热通量,促进近地面气温下降、气压和湿度升高,削弱近岸的海陆风环流。
Coastal zone is a special and valuable space for human being. It is special because it is a transient zone between the land and the ocean; it is valuable because it is a unique place for development. Study on the dynamic characteristics of the coastal climate is expected to provide important information on the amenity of the coastal zone. It is thus useful to coastal development. Due to many reasons, the basic features of the coastal climate have not yet been systematically studied. This study is aimed to establish the framework of the coastal climate and investigate the relevant phenomena by numerical method.
     The fifth-generation NCAR/Penn State non-hydrostatic dynamics mesoscale model MM5 is applied to the numerical study of coastal climate. The pro-process mode in MM5 is modified to facilitate the numerical model for study of idealized problem. The characteristics of the sea breeze under different shore conditions are simulated and discussed based on the numerical results. It is shown that the development and structure of the sea land breeze depends very much on the physical conditions of the coast.
     Topography is an important natural property of coastal zone. Numerical studies are carried out for two cases with typical change of shoreline profile: one is the case with a bay and the other is the case with a peninsula. The main factors representing the coastal climate, including surface pressure, sea breeze and sensible heat flux, are computed. It is shown that the wind has a tendency to converge or diverge due to the existence of the bay or the peninsula. Large bay or peninsula intensifies the flexural coastline effects. The landform is simplified as an inclined surface parallel to the coastline. Main factors representing the coastal climate are computed on cases in conditions of different slope locations and different grades. Dynamic effects and thermal effects of the slope are also discussed.
     The effect of different land use on coastal climate is also considered. Afterwards the effects of coastal wasteland use in Jiangsu Province on climate are investigated. It is shown that, as a result of the land use and land cover change, the net radiation and evapotranspiration increased, thereby the air pressure and humidity are increased while the sea land breeze is decreased.
引文
陈训来,王安宇,李江南,等. (2007).香港地区海陆风的显式模拟研究.气象科学, 27(5): 473-480.
    陈玉春,吕世华,高艳红. (2004).不同尺度绿洲环流和边界层特征的数值模拟.高原气象, 23(2): 177-183.
    解令运,汤剑平,路屹雄,等. (2008).城市化对江苏气候变化影响的数值模拟个例分析.气象科学, 28(1): 74-80.
    李健. (2005).海岸带可持续发展理论及其评价研究[硕士学位论文].大连:大连理工大学.
    李隆华,俞树彪. (2005).海洋旅游学导论.杭州:浙江大学出版社.
    李书严,轩春怡,李伟,等. (2008).城市中水体的微气候效应研究.大气科学, 32(3): 552-560.
    李维亮,刘洪利,周秀骥,等. (2002).长江三角洲城市热岛与太湖对局地环流影响的分析研究.中国科学(D辑:地球科学), 33(2): 97-104.
    李晓锋. (2003).住区微气候数值模拟方法研究[博士学位论文].北京:清华大学建筑学院.
    李杨帆,朱晓东. (2006).海岸湿地资源环境压力特征与区域响应研究.资源科学, 28(3): 108-113.
    刘树华,刘和平,胡予,等. (2006).沙漠绿洲陆面物理过程和地气相互作用数值模拟.中国科学(D辑:地球科学), 36(11): 1037-1043.
    陆汉城. (2000).中尺度天气原理和预报.北京:气象出版社.
    苗曼倩,唐有华. (1998).长江三角洲夏季海陆风与热岛环流的相互作用及城市化的影响.高原气象, 17(3): 280-289.
    田永祥,沈桐立,葛孝贞,等. (1995).数值天气预报教程.北京:气象出版社.
    王晓青. (2006).海水浴场环境安全评价研究[博士学位论文].北京:中国地质大学.
    杨文发,丁洪亮,李春龙,等. (2006). MM5模型及其面向长江流域降雨预报应用试验.人民长江, 37(9): 72-76.
    余锡平,黄非. (2009).江苏沿海地区综合开发战略研究(滩涂卷):江苏省沿海地区滩涂资源评价与合理开发利用研究.南京:江苏人民出版社.待出版.
    张强,胡隐樵. (2002).绿洲地理特征及其气候效应.地球科学进展, 17(4): 477-486.
    中国海洋学会. (1998).漫长的中国海岸.郑州:大象出版社.
    钟中,张耀存. (2008).城市人工水体的气象效应与局地环境变化.北京:科学出版社.
    周淑贞. (1997).气象学与气候学. 3版.北京:高等教育出版社.
    周锁铨,边巴次仁,屠其璞,等. (1999).江苏沿海滩涂开发利用对气候可能影响的数值研究.气象科学, 19(4): 323-334.
    Abbs D J. (1986). Sea-breeze interactions along a concave coastline in southern Australia: Observations and numerical modeling study. Journal of the Atmospheric Sciences, 40: 1999-2009.
    Akbari H, Davis S, Dorsano S, et al. (1992). Cooling our communities - A guide book on tree planting and light colored surfacing, US Environmental Protection Agency, Office of Policy Analysis, Climate Change Division, January.
    Akbari H, Pomerantz M, Taha H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70: 295-310.
    Arritt R W. (1989). Numerical modeling of the offshore extent of sea breeze. Quarterly Journal of the Royal Meteorological Society, 115: 547-570.
    Arritt R W. (1993). Effects of the Large-Scale Flow on Characteristic Feature of the Sea Breeze. Journal of Applied Meteorology, 32: 116-125.
    Asai T, Mitsumoto S. (1978). Effects of an Inclined Land Surface on the Land and Sea Breeze Circulation: A Numerical Experiment. Journal of the Meteorological Society of Japan, 56(6): 559-570.
    Baker R D, Lynn B H, Boone, et al. (2001). Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze-Initiated Precipitation. Journal of Hydrometeorology, 2: 193-211.
    Bird E. (2008). Coastal Geomorphology: An introduction. 2nd ed. New York: John Wiley & Sons.
    Bond NA, Macklin SA. (1993). Aircraft observations of offshore-directed flow near Wide Bay, Alaska. Monthly Weather Review, 121: 150-161.
    Bonnardot V, Planchon O, Cautenet S. (2005). Sea breeze development under an offshore synoptic wind in the South-Western Cape and implications for the Stellenbosch wine-producing area. Theoretical Applied Climatology, 81: 203-218.
    Bruse M, Fleer H. (1998). Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environment Modeling & Software, 13: 267-277.
    Cetin M, Musaoglu N, Tanik A. (2008). Multitemporal assessment of land-use change in a rapidly urbanizing coastal region in Turkey using remote sensing. Environmental Engineering Science, 25(6): 917-928.
    Challa V S, Indracanti J, Rabarison M K, et al. (2009). A simulation study of mesoscale coastal circulations in Mississippi Gulf coast. Atmosphere Research, 91: 9-25.
    Chandrasekar A, Philbrick C R, Doddridge B, et al. (2004). A Comparative Study of Prognostic MM5 Meteorological Modeling with Aircraft, Wind Profiler, Lidar, Tethered Balloon and RASS Data over Philadelphia during a 1999 Summer Episode. Environmental Fluid Mechanics, 4: 339-365.
    Chen S S, Chen L F, Liu Q H, et al. Remote sensing and GIS-based integrated analysis of coastal changes and their environmental impacts in Lingding Bay, Pearl River Estuary, South China, Ocean & Coastal Management, 48: 65-83.
    Childs P P, Raman S. (2005). Observations and Numerical Simulations of Urban Heat Island and Sea Breeze Circulations over New York City. Pure and Applied Geophysics, 162: 1955-1980.
    Chuang H Y, Sousounis P J. (2000). A technique for generating idealized initial and boundary conditions for the PSU-NCAR model MM5. Monthly Weather Review, 128: 2875-2882.
    Civerolo K, Hogrefe C, Lynn B, et al. (2007). Estimating the effects of increased urbanization on surface meteorology and ozone concentrations in the New York City metropolitan region. Atmosphere Environment, 41: 1803-1818.
    Darby L S, Banta R M, Pielke R A. (2002). Comparisons between Mesoscale Model Terrain Sensitivity Studies and Doppler Lidar Measurements of the Sea Breeze at Monterey Bay. Monthly Weather Review, 12: 2813-2838.
    Davidson K L, Boyle P J, Guest P S. (1992). Atmospheric boundary-layer properties affecting wind forecasting in coastal regions. Journal of Applied Meteorology, 31: 983-994.
    Dudhia, J. (1993). A non-hydrostatic version of the Penn State-NCAR Mesoscale Model: validation tests and simulation of an Atlantic cyclone and cold front. Monthly Weather Review, 121: 1493-1513.
    Eatoque M A. (1961). A theoretical investigation of the sea breeze. Quarterly Journal of the Royal Meteorological Society, 87: 136-146.
    Eddington L W, O'Brien J J, Stuart D W. (1992). Numerical simulations of topographically forced mesoscale variability in a well-mixed marine layer. Monthly Weather Review, 120: 2881-2896.
    Fanger P O. Thermal Comfort. (1970). Copenhagen: Danish Technical Press.
    Finkele K., Hacker J M, Kraus H, et al. (1995). A complete sea-breeze circulation cell derived from aircraft observations. Boundary-Layer Meteorology, 73, 299–317.
    Gagge A P, Fobelets A P, Berglund L G. (1986). A standard predictive index of human response to the thermal environment. ASHRAE transactions, 92: 709-731.
    Gilliam R C, Raman S, Niyogi D D S. (2004). Observational and numerical study on the influence of large-scale flow direction and coastal shape on sea-breeze evolution. Boundary-Layer Meteorology, 111: 275-300.
    Grell G, Dudhia J, Stauffer D. (1995). A Description of the Fifth Generation Penn State/NCAR Mesoscale Model (MM5). Tech. Rep NCAR/TN-398+STR.
    Haurwitz B. (1941). Dynamic Meteorology. New York: McGraw-Hill.
    Haurwitz B. (1947). Comments on the sea breeze circulation. Journal of Atmospheric Sciences, 4(1): 1-8.
    Hsu S A. (2004). On the parameterization of the roughness length for the air-sea interface in free convection. Environmental Fluid Mechanics, 4: 451-453.
    Hughes M, Hall A, Fovell RG. (2007). Dynamical controls on the diurnal cycle of temperature in complex topography. Climate Dynamics, 29: 277-292.
    Jeffreys H. (1922). On the dynamics of wind. Quarterly Journal of the Royal Meteorological Society, 48: 29-46.
    Kanda M, Inoue Y. (2001). Numerical study on cloud lines over an urban street in Tokyo. Boundary-Layer Meteorology, 98: 251-273.
    Kassomenos P A, Katsoulis B D. (2006). Mesoscale and macroscale aspects of the morning urban heat island around Athens, Greece. Meteorology and Atmospheric Physics, 94: 209-218.
    Kim K O, Yamashita T. (2008). Storm surge simulation using wind-wave-surge coupling model. Journal of Oceanography, 64: 621-630.
    Kusaka H, Kimura F. (2000). The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo metropolitan area. Journal of the Meteorological Society of Japan, 78(4): 405-420.
    Leutbecker M. (1996). Terraini and Datagridi [CP/OL]. Germany: ftp://ftp.ucar.edu/ mesouser/user-contrib/ideal.tar.gz.
    Laird N F, Kristovich D A R, Rauber R M, et al. (1995). The Cape Canaveral sea and river breezes: kinematic structure and convective initiation. Monthly Weather Review, 123: 2942-2956.
    Lew D K, Larson D M. (2005). Valuing recreation and amenities at San Diego country beaches. Coastal Management, 33: 71-86.
    Lin C Y, Chen F, Huang J C, et al. (2008). Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan. Atmosphere Environment, 42: 5635-5649.
    Liu H P, Chan J C L. (2002). Boundary layer dynamics associated with a severe air pollution episode in Hong Kong. Atmosphere Environment, 36 (12): 2013-2025.
    Lu D, White L, Reddy R S, et al. (2006). Numerical simulation of sea and bay breezes in a weak shear environment. Meteorology and Atmospheric Physics, 94: 153-165.
    Lu R, Turco R P. (1994). Air pollutant transport in a coastal environment. part I: two-dimensional simulations of sea-breeze and mountain effects. Journal of the Atmospheric Sciences, 51: 2285–2308.
    Mcauilffe J P. (1922). Cause of the accelerated sea breeze over Corpus Christi, Texas. Monthly Weather Review, 50: 581-581.
    Medlin J M, Croft P J. (1998). A preliminary investigation and diagnosis of weak shear summertime convective initiation for extreme southwest Alabama. Weather Forecast, 13: 717-728.
    Miao J F, Kroon L J M, Vila-Guerau de Arellano J, et al. (2003). Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorology and Atmospheric Physics, 84: 157-170.
    Miller S T K, Keim B D, Talbot R W. (2003). Sea breeze: structure, forecasting, and impacts. Reviews of Geophysics, 41(3): 1-31.
    Mitsumoto S, Ueda H, Ozoe H. (1983). A Laboratory Experiment on the Dynamics of the Land and Sea Breeze. Journal of the Atmospheric Science, 40: 1228-1245.
    Mochida A, Yoshino, H, Miyauchi S, et al. (2006). Total analysis of cooling effects of cross- ventilation affected by microclimate around a building. Solar Energy, 80: 371-382.
    Morgan R. (1999). A novel, user-based rating system for tourist beaches. Tourism Management, 4: 393-410.
    Murakami S, Kato S, Zeng J. (2000). Combined simulation of airflow, radiation and moisture transport for heat release from a human body. Build Environment 35: 489-500.
    Nelson E J, Booth D B. (2002). Sediment sources in an urbanizing, mixed land-use watershed. Journal of Hydrology, 264: 51-68.
    Neumann J. (1951). Land breezes and nocturnal thunderstorms. Journal of Meteorology, 8: 60-67. Monthly Weather Review, 103: 474-485.
    Neumann J, Mahrer Y. (1974). A theoretical study of the sea and land breezes of circular islands. Journal of the Atmospheric Sciences, 31: 2027-2039.
    Neumann J, Mahrer Y. (1975). A theoretical study of the lake and land breezes of circular lakes. Monthly Weather Review, 103: 474-485.
    Ookouchi Y, Uryu M, Sawada R. (1978). A numerical study on the effects of a mountain on the land and sea breeze. Journal of the Meteorological Society of Japan, 56(5): 368-386.
    Orlanski I. (1975). A rational subdivision of scales for atmosphere process. Bulletin of the American Meteorological Society, 56: 527-530.
    Pathirana A, Herath S, Yamada T. (2005). Simulation orographic rainfall with a limited-area, non-hydrostatic atmosphere model under idealized forcing. Atmosphere Chemistry and Physics, 5: 215-226.
    Pielke R A. (1974). A three-dimensional numerical model of the sea breezes over south Florida. Monthly Weather Review, 102: 115-139.
    Porson A, Steyn D G, Schayes G. (2007). Sea-breeze scaling from numerical model simulations, part II: Interaction between the sea breeze and slope flows. Boundary-Layer Meteorology, 122: 31-41.
    Priyadarsini R, Wong N H, Cheong K W D. (2008). Microclimate modeling of the urban thermal environment of Singapore to mitigate urban heat island. Solar Energy, 82: 727-745.
    Pryor S C, Barthelmie R J. (1998). Analysis of the effect of the coastal discontinuity on near-surface flow. Annales Geophysicae, 16: 882-888.
    Robitu M, Musy M, Inard C, et al. (2006). Modeling the influence of vegetation and water pond on urban microclimate. Solar Energy, 80: 435-447.
    Rogers D P, Johnson D W, Friehe C A. (1995). The stable internal boundary layer over a coastal sea, II. Gravity waves and ageostrophic wind forcing. Journal of the Atmospheric Sciences, 52: 684-696.
    Rogers D P. (1995). Coastal meteorology. Reviews of Geophysics, 33(Suppl.): 21. R?gnvaldssonó. (2002). Idealgrid package [CP/OL] Norway: http://www.vedur.is/ folk/olafurr/ idealgrid.
    Sam N V, Mohanty U C, Routray A, et al. (2007). Variation of coastal atmospheric boundary layer characteristics with convective activity along the west coast of India during the Arabian Sea Monsoon Experiment (ARMEX) 2002. Nature Hazards, 42: 361-378.
    Sato T, Murakami S, Ooka R, et al. (2008). Analysis of regional characteristics of the atmosphere heat balance in the Tokyo metropolitan area in summer. Journal of Wind Engineering and Industrial Aerodynamics, 96: 1640-1654.
    Schwede D B, Leduc S K, Otte T L. (2001). Using meteorological model output as a surrogate for on-site observations to predict deposition velocity. Water, Air, and Soil Pollution: Focus, 1: 59-66.
    Simpson J E, Britter R E. (1980). A laboratory model of an atmospheric mesofront. Quarterly Journal of the Royal Meteorological Society, 106: 485-500.
    Takebayashi H, Moriyama M. (2007). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and Environment, 42: 2971–2979.
    Weng Q, Lu D, Schubring J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89: 467-483.
    Yang W, Zhang G Q. (2008). Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China. International Journal of Biometeorology, 52: 385-398.
    Zhu P. (2008). A multiple scale modeling system for coastal hurricane wind damage mitigation. Nature Hazards, 47: 577-591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700