用户名: 密码: 验证码:
高温燃气发动机叶片的冲击冷却与气膜冷却的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着燃气发动机在航空飞行器的动力系统、海上轮船的推进系统以及陆地电厂的发电系统中应用越来越广泛,提高燃气发动机效率变得更加重要。根据燃气发动机工作的Brayton循环原理可知,发动机的热效率和输出功率随着发动机叶片入口温度的增高而增加。当前的F119-PW-100透平风扇发动定子前缘温度已达到1600℃,而为了满足研制更加先进发动机的需求,需要叶片入口温度达到约2200℃,这个温度远高于叶片的金属材料熔点。因此,为了让叶片在高温下持续可靠工作,需要使用新的耐热材料和引进先进叶片冷却技术。然而,相比于研制新的材料或者工艺,采用先进的冷却技术所带来的叶片入口温度的增加更外显著。而冲击冷却和气膜冷又是先进冷却技术中最为重要的两种方法,值得更多关注。本文将使用数值模拟计算分别讨论用于高温燃气发动机叶片上的内部层板结构的冲击气膜冷却和外部气膜冷却的流动与传热特性。内容主要包含:
     第一部分层板结构的冲击气膜冷却
     这里分析了应用于叶片冷却的多孔层板结构的冲击气膜冷却技术。进行数值分析时,先需要对计算模型进行验证。该验过程是通过将用不同模型计算得到的速度场与相同条件下PIV测量的速度场相对比。结果显示,以Shear Stress Transport k-ω (SST k-ω)湍流模型计算得到的速度场与实验测量数据最为接近。同时,将高温条件热像仪测量下测量的层板表面温度检测了SST k-ω模型计算传热的精度,结果满足工程计算要求。因此,SST k-co湍流模型将用被作层板冷却研究。在模型选取后,使用流固耦合传热计算方法,讨论冲击孔、扰绕流柱、气膜孔的数目比、流柱排列方式以及气膜孔的倾斜角度对多孔层板的冷却效率和阻力损失的影响。然后使用单向耦合计算方法,即假设由于热应力引起的结构变形不会影响层板上的温度分布以及层板内部和外部流场,将由CFD计算得到的层板温度作为体载荷,开始层板结构上的热应力分析。在完成应力计算后,使用Goodman-diagram方法进行层板疲劳寿命评估。最后,结合正交试验方法和数值计算,讨论影气膜孔角度、扰流柱直径、扰流柱排列方式、扰流柱高度以及气流吹风比的变化对层板的冷却效率以及阻力损失的影响趋势以及影响权重,为优化层板结构提供参考方案。
     第二部分跨音速转子气膜冷却
     在这一部分里,选取Pratt&Whitney公司研制的单级高性能发动机叶片来分析在叶片正常运行工况下发动机内定子和转子的相互作用对转子上的压力与气膜冷却特性的影响。由于叶片通道与层板结构内的流动特征显著不同,因此湍流模型需要重新验证。且因为缺少在实际工况下该叶片上的温度与压力测量数据,这里选取实验测量到的定子和转子叶栅通道的压力分布以及一个缩扩型喷管上的壁面压力分布参考,并与使用不同湍流模型得到的压力值进行对比,发现Realizable k-ε湍流模型计算得到的结果最接近实验值,因此,此模型作为研究跨音速叶片通道内流动和传热分析。开始时,使用该模型分析了转子尾槽注入冷却气冷却以及定子上气膜孔冷却特性。然后,以2D模型分析叶片的翼展方向的中间截面处,定子与转子的相互作用(包含定子尾缘的激波、定子尾缘尾迹以及通道内势流)对转子上压力分布和气膜冷却效率影响。最后以3D模型讨论了叶片的扭曲对转子通道内流场的改变,以及吹风比对扭曲转子上的气膜冷却效率影响。
With more and more gas turbines being widely used for aircraft propulsion, sea-based ship propulsion and land-based power generation, it is extremely important to increase the turbine thermal efficiency. Based on the principle of Brayton cycle for gas turbines, increase in turbine inlet temperature can increase turbine thermal efficiency and power generation. Currently, the turbine fan F119-PW-110has a turbine inlet temperature of about1600℃, but it is still far lower than the requirement of advanced turbines which require the temperature should be of about2200℃Considering the gas temperature is far beyond the allowable metal melting points, new thermal resistant material and advanced cooling technologies should be developed and applied. Compared with the contribution of raised turbine inlet temperature by developing new thermal resistant material, utilization of advanced cooling technology benefits more. Impingement cooling and film cooling are two of the most effective cooling ways. It deserves more attention. This thesis is using numerical methods to investigate the flow field and heat transfer characteristics of impingement and film cooling on a gas turbine blade working under high temperatures. It consists of two parts:
     Part I Impingement cooling in laminated plates
     In this part, the work was concentrated on the study of impingent cooling and film cooling in the laminated plates which are used in turbine blades and combustor liners. Prior to the numerical simulation, the best turbulence model was chosen through the comparison of the flow fields by numerical simulation with PIV results and further validated via the comparison of the surface temperature of laminated plates with Infrared measurements. It was found that the Shear Stress Transport k-co (SST k-ω) turbulence model agreed best with the experimental data. Hence, this model was adopted for the following laminated plate cooling analyses. Firstly, the fluid-thermal coupled calculation method involving both fluid and solid regions was applied to discuss the effects of factors including, number ratio of impingement holes to ribs to film holes, ribs arrangement and inclined angles of film hole on film cooling performance and press losses of laminated plates. Secondly, a one-way coupled method, with the assumption that the deformation of the plates caused by thermal stress is small and it has no effect on the temperature filed in the solid and no change to the flow fields in and around the plate, was adopted to calculate thermal stress distribution in the laminated plates using the temperature as the body load obtained directly from CFD. After that, a Goodman-diagram method is used to assess the fatigue characteristics of the plate. Lastly, the method of combining design of experiments and numerical simulation is used to analyze the influences of film hole inclined angle, diameter of rib, rib arrangement, height of ribs, and blowing ratio on the laminated cooling performance and pressure losses, which is valuable for helping design an optimal plate.
     Part II Film cooling on transonic gas turbine rotors
     In this part, a one-stage high load transonic turbine for high efficient energy engine made by Pratt&Whitney was chosen for investigating the effects of stator-rotor interaction on the aerodynamic characteristic and film cooling performance on the rotor under the turbine design condition. Since the flow features in the turbine passages are significantly different from thoese of laminated plates, it is again necessary to compare and choose an appropriate turbulence model. Due to the lack of experimental data of the blade at turbine representative conditions with film cooling, the static pressure distributions for flow passing through the stator and rotor cascades, and a convergent-divergent nozzle are referenced for comparison. Through the comparison, the Realizable k-s turbulence was chosen over other models And this model was applied to futher discuss the effects of trailing edge coolant injection on the flow field in a rotor cascade, and film cooling characteristics on the stator in the stator cascade. After that, a2D analysis of the effects of stator-rotor interaction on the pressure distribution and film cooling performance on the rotor at the turbine mid-span followed. And then it was concluded by discussing the effects of using twisted blade on the flow features in the rotor passage and film cooling performance on the rotor under three blowing ratios.
引文
[1]Hwang, K.Y., Kim Y.I.,2011, Research Activities of Transpiration Cooling for High-Performance Flight Engines,, [J]韩国航空宇宙学会志,Vol.39(10):966-978
    [2]Lakshminarayana B., Fluid Dynamics and Heat Transfer of Turbomachinery,1996 Johns Wiley & Sons, Inc.
    [3]Dennis, R.,2006, The Gas Turbine Handbook.
    [4]Colladay, R. S.,1972, Analysis and comparison of wall cooling schemes for advanced gas turbine applications /N72-14941.
    [5]Nealy, D A, Relder S B.1980, Evaluation of Laminated Porous Wall Material for Combustor Liner Cooling [J]. Journal of Engineering for Power,102:268-276.
    [6]Wassell, A. B.,1980, The Development and Application of Improved Combustor Wall Cooling Techniques, ASME 80-GT-66.
    [7]Song, H. Choi, Stephen, J. Scotti, Kyo, D., Song, H. Reis,1997, Transpiration Cooling of a Scram Jet Engine Combustion Chamber, The 32th AIAA Thermophysics Conference, Atlanta, Georgia, AIAA 97-2576.
    [8]Mongia, H. C., Allison Combustion Research and Development Activities, AIAA 85-1402.
    [9]Auyeung, T. P.; Cohn, R., Coy, E., Danezyk, S. A., Papesh, C., Sweeney, P., Experimental and Numerical Analysis of Transpiration Cooling of a Rocket Engine Using Lamilloy Plates,18 Nov.2005, Report number A475244.
    [10]郁新华,刘松龄,董志锐,航空发动机层板冷却结构的内流阻特性的试验研究,[J]燃气涡轮试验与研究,Vol.13(3)pp.22-26
    [11]董志锐,郁新华,刘松龄,游绍坤,许都纯,2000,多层多孔层板内流阻特性试验与计算方法研究,[J]航空动力学报,Vol.15(4),pp:375-386
    [12]李谦,王建华,吴向宇,杨士杰,2007,冷却介质在层板内流动特性研究,第一部分,利用粒子图像测速技术再现复杂流场,[J]实验流体力学,第21卷,第4期.
    [13]Sweeney, P.C., Rhodes, J. F.,2000, An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs, [J] Journal of of Turbomachinery, Vol.122,170-177
    [14]马龙,王建华,吴向宇,杜治能,2007,利用红外技术进行层板冷却特性实验研究,[J]航空动力学报,Vol.23(4)
    [15]马龙,硕士学位论文,利用红外技术进行层板冷却特性实验研究,2007,中国科学技术大学,
    [16]Bailey, J. C., Intile, J., Fric, T. F., Tolpadi, A. K., Nirmalan, N. V, and Bunker, R. S.,2003, Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner, J. of Engineering for Gas Turbines and Power, Vol.125, No.4, pp.994-1002
    [17]Hong. S. K, Rhee, D. H., Cho, H. H., Heat/Mass Transfer with Circular Pin Fins in Impingement/Effusion Cooling System with Crossflow, J. of Thermophysics and Heat Transfer,2006, Vol.02 No.4,728-737.
    [18]Funazaki K, Hachlya K. Systematic Numerical Studies on Heat Transfer and Aerod ynamic Characteristics of Impingement Cooling Devices Combined with Pins.2003-GT-38256,2003
    [19]Funazaki K., TarukawaY., KudoT., Heat Transfer Characteristics of an Integrated Cooling Configuration of Ultra-HighTemperature Turbine Blades Experimental and Numerical Investigations.2001-GT-0148, 2001.
    [20]Funazaki, K.. and Hamidon, B. S.,2008,Extensive studies on internal and external heat transfer characteristics of integrated impingement cooling structures for HP Turbines, ASME Paper GT 2008-50202.
    [21]Funazaki K., and Favaretto C F F.,2003, OPTIMIZATION OF AN INTERNAL COOLING SYSTEM FOR TURBINE NOZZLES BY USE OF GENETIC ALGORITHMS. ASME Paper GT 2003-38408.
    [22]何家德,金捷,刘昆,用瞬态测试技术研究多孔层板的换热特性,[J]燃气涡轮试验与研究,Vol.12(1),pp.21-24
    [23]全栋梁,刘松龄,李江海,2004,层板冷却结构传热优化数值模拟研究,[J]西北工业大学学报,Vol.22,No.6
    [24]张魏,朱惠人.2006,层板结构冷却机理的数值模拟研究,[J]机械设计与制造,9:127-129.
    [25]李江海,全栋梁,刘松龄,朱惠人.2005,几何参数对层板冷却性能影响的数值模拟研究,[J]机械设计制造,9:74-75.
    [26]吕晶,李海旺,陶智,徐国强.2007,绕流柱分布对层板流阻和换热性能的影响,[J]航空发动机,33(3):28-31.
    [27]陶智,吕东,丁水汀,徐国强,2007,绕流柱直径对倾斜出气孔层板内流动和换热的数值研究,[J]航空动力学报,,22(4):540-546.
    [28]刘伟强,陈启智,吴宝元,1998,典型结构的层板发汗冷却推力室传热特性的推算方法,[J]推进技术,Vol.19(6)
    [29]吴慧英,程惠尔,牛禄,2001,层板发汗冷却推力室壁温的数值模拟,[J]程热物理学报,Vol.22(1),pp:104-106
    [30]郁新华,全栋梁,刘松龄,许都纯,胡主根,2003,层板结构冷却有效性的研究,[J].航空动力学报,18(5)615-622
    [31]李冰,朱惠人,于芳芳,2008,层板结构叶片温度场的工程计算,[J]机械设计与制造,Vol.11,pp:19-20
    [32]Thornton, E.A., Dechaumphai, P.,1987, Coupled Flow, Thermal and Structural Analysis ot Aerodynamically Heated Panels, AIAA/ASME/AHS 28th Structures, Structural Dynamics and Materials Conference, Monterey, California, April 6-8, AIAA Paper No.87-0701.
    [33]Thornton, E.A., Dechaumphai, P., Finite Element Prediction of Aerothermal-Structural-Interaction of Aerodynamically Heated Panels, AIAA 22nd Thermophysics Conference, Honolulu, Hawaii, June 8-10, 1987, AIAA Paper No.87-1610.
    [34]Dechaumphai P., Thornton E.A., Wieting A.R.,1988, FLUID-THERMAL-STRUCTURAL STUDY OF AERODYNAMICALLY HEATED LEADING EDGES, NASA-TM-100579.
    [35]Dechaumphai A.R. Wieting, R.,1988,APPLICATION OF INTEGRATED FLUID-THERMAL-STRUCTURAL ANALYSIS METHODS. NASA-TM-100625.
    [36]Jeong H.S., Cho J.R., Kim L.S., CFD AND THERMO-MECHANICAL-ANALYSIS FOR HEAT EXCHANGE USED IN AEROENGINE, ASME Paper 2008-GT-50447.
    [37]Borreca, S.; Cipollini. F.; Tumino. G.; Muylaert, J. M.,2005. Fluid-structure-thermal coupling on expert open flaps, Proceedings of the Fifth European Symposium on Aerothermodynamics for Space Vehicles, PP:289-294.
    [38]秦晏曼,李雪英,郭安琪,任静,蒋洪德,2012,多参数影响下的气膜冷却特性及预测方法,[J]热力透平,Vol.41(1)13-17
    [39]Chiyu Nakamata C., Okita Y., Matsuno S.,Mimura F., Matsushita M., Yamane T.,, Matsuno S., Yoshida T.,2005, SPATIAL ARRANGEMENT DEPENDENCE OF COOLING PERFORMANCE OF AN INTEGRATED IMPINGEMENT AND PIN FIN COOLING CONFIGURATION, GT2005-68348,
    [40]Sung K H, Dong-Ho R, Hyung H C,2007, Effect of fin shapes and arrangements on heat transfer for impingement/effusion cooling with crossflow [J], Journal of Heat Transfer, Transactions of the ASME,129: 1697-1707.
    [41]Sun K H, Dong-Ho R, Hyung H C, Heat/Mass transfer with circular pin fins in impingement/effusion cooling system with crossflow [J]. Journal of Thermophysics and heat transfer,2006,20 (4):728-737.
    [42]试验设计与数据处理,李云雁,第二版,北京:化学工业出版社,2008年10月
    [43]物理试验的数据处理与实验设计,朱鹤年编著,北京:高等教育出版社2003.12.
    [44]Doorly, D. J.,1988, Modeling the Unsteady Flow in a Turbine Rotor Passage, [J]. Journal of Turbomachinery, Vol.110,pp.27-37.
    [45]Doorly, D.J.,and Oldfield, M.L.G.,1985, Simulations of the Effects of Shock-Waves Passing on a Turbine Rotor Blade, ASME Journal of Engineering for Gas Turbines and Power, Vol.107,pp.998-1006
    [46]Ashworth, D.A., LaGraff, J.E., Schultz,D.L., and Grindrod, K.J.,1985, Unsteady Aerodynamcic and Heat Transfer Processes in a Transonic Turbine Stage.[J] Journal of Engineering for Gas Turbine and Power, Vol. 107, pp.1022-1030
    [47]O'Brien, J.E., and Capp, S.E.,1989, Two-Component Phase-Averaged Turbulence Statistics Downstream of a Rotating Spoked-Wheel Wake Generator. [J] Journal of Turbomachinery, Vol. 111, pp.475-482
    [48]Dullenkopf, K., Schulz, A., and Witting, S.,1991, The Effect of Incident Wake Conditions on the Mean Heat Transfer of an Airfoil. [J] Journal of Turbomachinery, Vol.113, pp.412-418
    [49]Han, J.C., Zhang, L., and Ou, S.,1993., Influence of Unsteady Wake on Heat Transfer Coefficients from a Gas Turbine Blade. [J]Journal of Heat Tranfser, Vol.,115, pp.904-911.
    [50]Funazaki, K., Yokota, M., and Yamawaki, S.,1995, The Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes around the Leading Edge of a Blunt Body, No.95-GT-183.
    [51]Funazaki, K., Koyabu, E., Yamawaki, S., and Maya, T.,1995, Effect of Periodic Wake Passing on Film Effectiveness of Inclined Discrete Cooling Holes around the Leading Edge of a Blunt Body, Proceedings of International Gas Turbine Conference.,95-IGTC-35.
    [52]Womack, K. M., Volino, R. J., Schultz, M. P.,2008, Combined Effects of Wakes and Jet Pulsing on Film Cooling,[J] Journal of Turbomachinery,130(4),041010
    [53]Guenette, G.R., Epstein, A.H., Giles, M.B., Hanes, R., and Norton, R.J.G.,1989, Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements, [J] Journal of Turbomachinery, vol.111, pp.1-7
    [54]Funazaki, K.,1996, Studies on Wake-affected Heat Transfer around the Circular Leading Edge of Blunt Body, [J] Journal of Turbomachinery, Vol.118, pp.452-460
    [55]Mayle, R.E.1991, The Role of Laminar-Turbulent Transition in Gas Turbine Engines, ASME Journal of Turbomachinery, Vol.113, pp.509-537
    [56]Dring, R.P., Blari, M.F., and Joslyn, H.D.,1980, An Experimental Investigation of Film Cooling on aTurbine Rotor Blade, ASME Journal of Engineering for Power. Vol.102, pp.81-87
    [57]Abhari,R.S., and Epstein, A.H.,1994, An Experimental Study of Film Cooling in a Rotating Transonic Turbine, [J] ASME Journal of Turbomachinery, Vol.116, pp.63-70,
    [58]Takeishi, K.,Aoki, S, Sato, T,and Tsukagoshi, K.,1992, Film Cooling on a Gas Turbine, Rotor Blade,[J] Journal of Turbomachinery, Vol.114, pp.828-834
    [59]Camci, C., and Arts, T,1985a, Short Duration Measurements and Numerical Simulation of Heat Transfer along the Suction Side of a High Pressure Gas Turbine Rotor Blade, ASME Journal of Engineering for Gas Turbines and Power, Vol.107, pp.991-997
    [60]Camci, C., and Arts, T,1985b, Experimental Heat Transfer Investigation Around the film Cooiea Leading Edge of a High Pressure Gas Turbine Rotor Blade, [J] Journal of Engineering for Gas Turbines and Power, Vol. pp.1016-1021.
    [61]Ou, S., Han, J.C., Mehendale, A.B., and Lee, C.P.,1994, Unsteady Wake Over a Linear Turbine Blade Cascade with Air and CO2 Film Injection, Part I:Effct on Heat Tranfer Coefficients. ASME Journal of Turbomachinery, Vol.116, pp.721-729
    [62]Ou, S., and Han, J.C.,1994, Unsteady Wake Effecs on Film Effectiveness and Heat Transfer Coefficient from a Turbine Blade with One Row of Air and CO2 Film Injection, [J] Journal of Heat Tranfer, Vol.116, pp.921-928
    [63]Mehendale, A.B., Han,J.C., Ou, S., and Lee, C.P.,1994b, Unsteady Wake Over aLinear Turbine Blade Cascade with Air and CO2 Film Injection. Part Ⅱ:Effect on Film Effectiveness and Heat Tranfser Distributions. [J] Journal of Turbomacinery, Vol.116, pp.730-737
    [64]Du, H., Han, J.C., Ekkad, S.V.,1998, Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Cooling Effectiveness Distributions for a Gas Turbine Blade, [J] Journal of Turbomachinery Vol.120, pp.808-817
    [65]Heidmann, J.D., Lucci, B.L., and Reshotko, E.,1997, An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling, ASME paper 97-GT-255
    [66]Gottlich, E., Neumayer, F., Woisetschlager, J., Sanz, W., and Heitmeir, F.,2004, Investigation of Stator-rotor interaction in a Transonic Turbine Stage Using Laser Doppler Velocimetery and Pneumatic Probes, [J] Journal of Turbomachinery,126, pp.297-305.
    [67]Paradiso., B., Persico., G., Gaetani P., Schennach., O., Pecnic R., and Woisetschlager J.,2008, Blade Row Interaction in a One and a Half Stage Transonic Turbine Focusing on Three Dimensional Effects-Part:1 Stator-Rotor interaction, ASME paper GT2008-50291.
    [68]Miller, R.J., Moss, R.W., Ainsworth, R.W., and Harvey, N.W,2002, Wake, Shock and Potential Field Interaction in a 1.5 Stage Turbine:Part I:Vane-Rotor and Rotor Vane Interaction, ASME Paper No.2002-GT-30435.
    [69]Didier F., Denos R., and Arts T.,2002, Unsteady Rotor Heat Transfer in a Transonic Turbine Stage, [J] Journal of Turbomachinery Vol.124 pp:614-622.
    [70]Pinilla V, Solano J.P., Painagua G., and Anthony R.J.,2012, Adiabatic Wall Temperature Evaluation in a High Speed Turbine, [J] J. Heat Tranfer,134,091601-(1-9).
    [71]Abhari, R.S., Guenette, G.R., Epstein, A.H., and Giles, M.B.,1991,Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurement and Numerical Calculation, ASME Intematinal Gas Turbine & Aerospace Congress & Exposition, ASME paper 91-GT-268
    [72]Biswas, D., and Fukuyarna, Y.,1993, Calculation of Transitional Boundary Layers with an Improved Low-Reynolds Number Version of the K-6 Turbulence Model, ASME paper 97-GT-23.
    [73]Yang, R.J., and Luo, W.J.,1996, Turbine Blade Heat Transfer Prediction in Flow Transition Using k-ω Two Equation Model, [J] Journal of Thermophysics and Heat Tranfer, Vol.10(4)pp.613-620.
    [74]Dunn, M.G., Kim, J., Civnskas, K.C., and Boyle, R.J.,1992, Time-Averaged Heat Transfer and Pressure Measurement and Comparison with Prediction for a Two Stage Turbine, ASME paper 92-GT-194
    [75]Harasgama, S.P., Tarada, E.H., Baumann, R., Crawford, M.E., and Neelakantan, S.,1993, Calculation of Heat Transfer to Turbine Blading Using Two-Dimensional Boundary Layer Methods, ASME paper 93-GT-79.
    [76]Garg, V.K.,1997, Comparion of Predicted and Experimental Heat Transfer on a Film Cooled Rotating Blade Using a Two-Equation Turbulence Model, ASME paper 97-GT-220
    [77]Garg, V.K., and Gaugler, R.E.,1997a, Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades, [J] Intematinal Journal of Heat and Mass Transfer, Vol.40 (2) pp435-444
    [78]Garg, V.K., and Gaugler, R.E.,1997b, Effect of Velocity and Temperature Distribution a the Exit Hole on Film Cooling of Turbine Blades, [J] Journal of Turbomachinery Vol.119, pp.343-349.
    [79]Garg. V.K., and Ameri, A.A.,1998, Comparison of Two-Equation Turbulence Models for Prediction of Heat Transfer on Film-Cooled Turbine Blades, Numerical Heat Transfer, Part A. V6..32 pp.347-355. ASME paper 97-GT-24
    [80]Yang H.T., Chen H.C., Han J.C., and Moon H.K.,2008, Film-Cooling Prediction on Rotor Blade Leading Edge in 1-1/2 Turbine Blade,[J] Journal of Thermophysics and Heat Transfer,22(2), pp.201-209.
    [81]Zhou L., Fan H.Z., Zhang X., and Cai Y.H.,2011, Investigation of Effect of Unsteady Interaction on Turbine Blade Film Cooling, Engineering Application of Computational Fluid Mechanics,5(4), pp.487-498.
    [82]PIV原理及组成,http://www.biaozhun8.com/biaozhun-207117/
    [83]Adrian, R J., Multi-point optical measurement of simultaneous vectors in unsteady flow a review, Int. J Heat Fluid Flow,1986(7), pp.127-130.
    [84]http://www.testmart.cn/CN/News/NewsText/73932.html
    [85]Http://people.nas.nasa.gov/-pulliam/Turbulence/Turbulence_Guide_v4.01.pdf.
    [86]ANSYS Help Document Version 14.0,2012
    [87]Launder B. E. and Spalding D. B.1972. Lectures in Mathematical Models of Turbulence. Academic Press, London, England.
    [88]Shih T.-H., Liou W. W., Shabbir A., Yang Z., and Zhu J.. A New Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation. Computers Fluids.24(3).227-238.1995.
    [89]F. R. Menter.1994.Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal.32(8).1598-1605.
    [90]Gibson M. M. and Launde B. E. r. Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer. J. Fluid Mech..86.491-511.1978.
    [91Launder B. E.. "Second-Moment Closure:Present... and Future?". Inter. J. Heat Fluid Flow.10(4).282-300.1989.
    [92]Launder B. E., Reece G. J., and Rodi W.. Progress in the Development of a Reynolds-Stress Turbulence Closure. J. Fluid Mech..68(3).537-566. April 1975.
    [93]徐芝纶,《弹性力学》,第二版,上册,人民教育出版社,北京,1982。
    [94]Incropera F. P., DeWitt D. P., Bergman T. L., Lavine A. S., Fundamentals of Heat and Mass Transfer,6th Edition.2009
    [95]陈明炯.实用机械工程材料手册[M].沈阳:辽宁科学技术出版社,2004.
    [96]Nealy D A, ReMer S B.,1980, Evaluation of Laminated Porous WallMaterial for CombustorLiner Coling[J]. Transations of the ASME, Journal of Engineering for Power,102:268-276.
    [97]Zhu H N. Fundamental Physics Experiment Tutorial-Physical test data processing and experimental design. Beijing, High Education Press.2003
    [98]Lin S S. Statistical processing and error analysis of data-Part IV Analysis of Variance. Physical Testing and Chemical Analysis Part A:Physical Testing. Vol.37, No.5, May 2001.
    [99]Quan D.L, Liu S.L, Li J.H.,2004, Numerical investigation on mechanism of heat transfer augmentation in lamilloy. Journal of Aerospace Power, Vol19 (6)860-865
    [100]Lv P, Li H W, Tao Z, Xu G Q.2007,Effects of pin-fin distribution on flow resistance and heat exchange characteristics in lamilloy[J]. Journal of Aeroengine,,33(3):28-31.
    [101]Li Y Y, Hu C. R. Experiment desing and data processing 3rd edition, Chemical industry press Beijing China,2008,10 (In Chinese)
    [102]Kopper, F. C., Milano, R., Davis, R. D., Dririg, R. P., Stoeffler, R. C.,1981, Energy Efficient Engine High Pressure Turbine Component and Integration Program:High Pressure Turbine Supersonic Cascade Technology Report, NASA CR-165567
    [103]C.A. Hunter.,1998, Experimental, Theoretical and Computational Investigation of Separated Nozzle Flows, AIAA Paper No.AIAA 98-3107.
    [104]Thulin, R. D., Howe, D. D., and Singer, I. D.,1984, Energy Efficient Engine High Pressure Turbine Detailed Design Report, NASA CR-165608.
    [105]Dunn, M.G., Rae, W.J., and Holt, J.L.,1984, Measurement and Analyses If Heat Flux Data in a Turbine Stage, Part Ⅱ:Discussion of Results and Comparison with Predictions. ASME J. of Engineering for Gas Turbine and Power, Vol.106, pp.229-240
    [106]ANSYS CFX FSI Lecture 06,2009, "Two way coupled FSI", ANSYS tutorial.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700