用户名: 密码: 验证码:
基于元胞自动机的城域混合交通流建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通对国民经济的发展具有重要的战略意义,一直是国家重点建设内容。随着各种交通工具数量增长迅速,交通阻塞日趋严重,不仅会引发一系列严峻的社会和环境问题,而且制约经济发展,所以交通问题引起了政府机关、科研机构和学术界,乃至城市居民的普遍重视。交通系统是一个具有严重非线性、强随机性、大时变性、不确定性的复杂系统。要解决交通问题非常困难,除了要充分利用现有交通资源外,更重要的是要利用科学的交通流理论来进行合理的交通规划、控制和管理。交通流理论是发展中的科学,尽管已有部分探讨交通现象的理论成果,但现在还没有形成完整的理论体系。我国的交通流是机动车、非机动车和行人构成的混合交通流,混合交通流独特的构成使交通冲突点的数量成倍增加,加剧了交通阻塞和交通事故的产生,导致交通流的组织规划、管理和控制愈发困难,对我国的交通管理工作提出了更加严峻的要求。因此,对交通流理论的研究,尤其是混合交通流的研究既具有重大应用背景,又具有理论研究意义。
     本文通过元胞自动机(CA)交通流理论的研究,结合机动车、自行车的行驶特性和行人的行走特性,分别完成了基于CA的机动车模型、自行车模型和行人模型,并在这些工作的基础上建立了基于CA的混合交通流模型,继而结合多智能体(MAS)技术,建立了一种分布式混合交通流模型,并提出了基于MAS的城域混合交通仿真系统的体系结构。全文主要研究成果总结如下:
     1) 提出了一种一维机动车交通流CA模型——双车跟驰CA模型。该模型能够体现出鲁棒性较好的交通流亚稳态特性,而且临界密度高。模型的更新规则完全并行,适用于大规模的交通仿真。通过对模型的理论分析和仿真研究,揭示了亚稳定状态的产生与前车的关联程度以及随机慢化概率的大小都有一定的关系。
     2) 提出了一种一维机动车交通流CA模型——可变间距CA模型。该模型假定行驶车辆都趋向于保持期望车头时距,并通过对前车速度的估计,对车速进行同步更新。可通过简单的参数调节使仿真系统未饱和时的车头时距分布符合实际交通特性,从而可以描述多车道公路上比较复杂的交通状况,体现不同道路等级的通行能力。
     3) 首次提出了单向自行车二维CA模型。理论研究和仿真验证表明:该自行车二维元胞自动机模型不仅能够灵活有效地描述自行车流的行驶特性,而且其速度—密度特性和通行能力的数值范围均符合实际或经验数值。并利用该模型分析了车道数对单车道自行车通行能力的影响,仿真表明随着车道宽度的增加,单车道通行能力随之增加,但增长幅度呈递减趋势,且车道数目增长到一定数值,
    
    浙江大学博士学位论文
    通行能力不再继续增长,完全符合定性分析。该模型扩展方便,为自行车流的研
    究和进一步研究混合交通流提供了理论基础。
     4)提出了一种二维CA行人过街模型。该模型引入了“停车点”的概念,
    不仅能够处理人行横道上行人与行人之间的相互冲突问题,而且能够成功处理行
    人与其他车辆的冲突和避让,从而模拟了行人各种类型的道路穿越行为。该模型
    易于扩展,对仿真行人过街动态过程非常有效,并已经成功应用于浙江大学智能
    交通研究中心研究开发的“城域混合交通仿真与分析系统”软件。仿真验证证明
    了模型的有效性。
     5)提出一种新的CA模型结构—平行异质CA模型,能够满足在空间、
    功能上均呈分布式的大复杂系统的建模需求。
     6)利用平行异质CA模型,以混合交通流为应用背景,建立了混合交通流
    CA模型。并以机非混合行驶模型为例作了仿真研究,仿真结果验证了模型的有
    效性,表明平行异质CA模型非常适于构建混合交通流模型。该探讨无论是对于
    CA理论的扩展还是混合交通流理论的研究都具有重要的现实意义。
     7)建立了一种基于MAS的分布式混合交通流模型,并提出了基于MAS
    的城域混合交通仿真系统的体系结构。所建立的交通流模型能够充分发挥智能体
    的自治性和相互协作性,体现我国城域混合交通流的复杂性特点;所提出的交通
    仿真系统不仅结构简明严谨、界面友好、易于扩展,且非常适用于智能交通领域。
    该研究内容为MAS技术在我国混合交通系统仿真方面的应用研究起了抛砖引玉
    的作用。
     8)参与设计了城域混合交通仿真与分析系统(SASUMT)及其对实际交通
    系统规划方案的仿真验证过程。该系统是一套浙江大学自主研发的城市混合交通
    微观仿真系统,实现了对机动车、非机动车和行人的建模以及在复杂路网上运动
    的仿真分析。本人作为该仿真软件的设计者之一,独立设计了行人的建模部分,
    参与了混合交通建模的指导工作,并在该仿真验证项目中负责仿真分析及方案撰
    写工作。
     最后在简要总结全文工作的基础上,对相关领域未来的研究方向进行展望。
     关键词:交通仿真系统;元胞自动机;交通流模型;自行车模型;行人穿
    越模型;混合交通流;智能体;多智能体
Transportation is significant on tactical development of national economy and is always the key factor in country building. With rapid increasing number of many kinds of vehicles, traffic jam is more serious and even traffic accident happens sometimes. These induce a set of severe problems on society and environment. Additionally, these restrict economic developments strongly. Therefore, transportation obtains more and more attentions of government officials, scientific research institutions, and academic communities, even citizens. Transportation system is a complicated one with serious non-linear, strong stochastic, large time varying characteristics and uncertainties, so it is much difficult to be controlled. Besides making the most use of road resources in existence, the utility of scientific traffic flow theory on reasonable traffic layout, traffic control and management is more important to solve traffic problems. Traffic flow theory is a developing scientific. Though there are theory productions that already probe into traffic phenomena, the integrated theory system has not been formed till now. The traffic flow in our country is mixed-traffic flow, which is composed of motor vehicles, no-motor vehicles and pedestrians. The particular composing doubles the number of traffic conflicts, and increases the probability of traffic jams and accidents. These bring on more difficulties on traffic flow organization, control and management. So special severe requirements are put on our researchers. Thus, researching on traffic flow theory, especially mixed-traffic theory, not only has application background but also research meaning on theoretical.Combined with research on traffic flow theory of cellular automaton (CA) and the moving characteristics of motor vehicles, no-motor vehicles and pedestrians, this dissertation realizes the motor vehicle CA model, bicycle CA model and pedestrian crossing CA model respectively. And then proposes a mixed-traffic flow model on these work. At last, a distributed mixed-traffic flow model based on techniques of multi-agent systems (MAS) is designed and a structure of urban mixed-traffic simulation system is brought forward. The main results achieved in this dissertation can be summed up as follows.a) A one-dimension CA traffic flow model of motor vehicle, named two-car following CA model, is proposed. The model can reveal traffic flow's metastable characteristics with better robustness and higher critical density. And the update rule is completely parallel, so it can adapt to large-scale traffic simulations. Theoretical analysis and experimental results reveal that the metastable character is relevant with
    
    the relation degree between cars and the random slow probability.b) A one-dimension CA traffic flow model of motor vehicle, named variable time-headway CA model is presented. The model assumes that every vehicle tends to keep expected time-headway. The vehicle synchronous updates its velocity by estimating the velocity of head vehicle and the distance-headway. The distributing of the simulation system's time-headway can be tuned by two simple parameters according to practical unsaturated traffic characteristics. Thus the simulation system can describe rather complicated traffic states on multi-lanes highway and indicate traffic capacity of different highway grade.c) A one-way bicycle model based on two-dimension CA is brought forward for the first time. Theoretical analysis and experimental results indicate that the model describes the moving characteristics of bicycle flow effectively, and the simulation data on velocity-density-flux accord with practical or experiential data. The influence of lane number on bicycle capacity is investigated using this model. The simulation result shows that one-lane capacity increases alone with the added lane width, but the increasing magnitude is descending and will cease till a certain number of lanes. This trend completely obeys qualitative analysis. The model can be conveniently extended. More importantly, it can offer theoretical base of furt
引文
[1] 张起森,张亚平.道路通行能力分析[M].北京:人民交通出版社,2002年7月
    [2] 北京:新的机动车增长高峰即将来临.南方网:2002-04-12 14:23:32
    [3] 四大原因造成交通再次陣痛.新華網 2002-12-24 14:40:21
    [4] 四大症结导致交通“肠梗阻”.大众网-生活日报 2004-04-22 06:16:32
    [5] 冯蔚东,贺国光,刘豹.交通流自组织及其基于自组织理论的管控模式研究[J],系统工程理论与实践,1999(9):1-9
    [6] 戴世强,冯苏苇,顾国庆.交通流动力学:它的内容、方法和意义.自然杂志[J],1997,19(4):196-201
    [7] 中国公路学会《交通工程手册》编委会.交通工程手册[M].北京:人民交通出版社,1998
    [8] 景天然.机动车与非机动车交通隔离设施合理设置的研究[J].同济大学学报,1995,23(1):97-101
    [9] 刘希柏.行人交通事故的研究[J].汽车运输研究,1996,15(1):84-90
    [10] 徐吉谦.交通工程总论[M].北京:人民交通出版社,1991年12月
    [11] 史忠科,黄辉先,曲仕茹等.交通控制系统总论[M].北京:科学出版社,2003年6月
    [12] 任福田等译.道路通行能力手册(美国交通研究委员会专题报告209号)[M].北京:中国建筑工业出版社,1991年6月
    [13] Chowdhury D., Santen L., Schadschnerder A. Statistical physics of vehicular traffic and some related systems [J]. Physics Reports, 2000, 329:199-329
    [14] Mark B, Mike M. Car-following: a historical review [J]. Transportation Research Part F, 1999: 181-196
    [15] 冯蔚东,贾国光,刘豹.交通流理论评述[J].系统工程学报,1998,13(3):71-82
    [16] Pipes L. A. An operational analysis of traffic dynamics [J]. Journal of Applied Physics, 1953, 24:274-281
    [17] Chandler, R. E., Herman, R., and Montroll, E. W., Traffic dynamics: studies in car following [J]. Oper. Res., 1958, 6(2): 165-184
    [18] Herman R., Montroll E. W., Potts R. B., Rothery R. W. Traffic dynamics: analysis of stability in car following [J]. Operations Research, 1959, 7:86-106
    [1
    
    [19] Gazis D. C., Herman R., Potts R. B. Car following theory of steady state traffic flow [J]. Operations Research, 1959, 7:499-505
    [20] Edie L. C. Car following and steady state theory for non-congested traffic [J]. Operations Research, 1960, 9:66-76
    [21] Gazis D. C., Herman R., Rothery R. W. Nonlinear follow the leader models of traffic flow [J]. Operations Research, 1961, 9:545-567
    [22] 马寿峰 贺国光等.一种通用的城市道路交通流微观仿真系统的研究[J].系统工程学报,1998,13(4).-8-15,24
    [23] 金春霞,王慧.跟车模型及其稳定性分析综述[J].交通运输系统工程与信息,2001,1(3):220-225
    [24] Kikuchi, C., Chakroborty, P. Car following model based on a fuzzy inference system [J]. Transportation Research Record, 1365, 82-91
    [25] Chakroborty, P., Kikuchi, C. Evaluation of the general motors based car-following models and a propsed fuzzy inference model [J]. Transportation Research C, 7(1999), 209-235
    [26] Wu, J., Brackstone, M., McDonald, M. Fuzzy sets and systems for a motorway microscopic simulation model [J]. Fuzzy sets and systems, 2000, 116:65-76
    [27] 王亦兵,韩曾晋,史其信.高速公路交通流建模[J].系统工程学报,1998,13(2):83-89
    [28] Lighthill M. H., and Whitham G. B. On kinematics waves Ⅱ: A theory of traffic on long crowded roads [J]. Proceeding of Royal Soc. A., 1955, 229:317-345
    [29] Payne H. J. Models of freeway traffic and control [J]. Mathematical Methods of Public Systems, 1971, 1(1): 51-61
    [30] Papageorgiou M. Application of Automatic Control Concepts in Traffic Flow Modelling and Control [M]. Springer, Berlin, New York, 1983
    [31] Kuhne R. D. Proc. 9th International Symposium on Transportation and Traffic Theory [M], VNU Science Press, Utrecht, 1984
    [32] Michalopoulos, P. G., Yi, P., and Lyrintzis, A. S. Continuum Modeling of Traffic Dynamics for Congested Freeways [J]. International Journal of Transportation Research, 1993, 27B(4): 315-332
    [33] 吴正.低速混合型城市交通的流体力学模型[J].力学学报,1994,26:149-157
    [34] Helbing D. Improved fluid-dynamic model for vehicular traffic [J]. Phys. Res. E., 1995, 51: 3164-3169
    [35] Weits E. Stationary freeway traffic flow modeling by a linear stochastic partial differential equation [J]. Transp. Res., 1992, 26B(2): 115-126
    [36] 周成虎,孙战利,谢一春.地理元胞自动机研究[M].北京:科学出版社,1999
    [37] Wolfram S. Theory and application of cellular automata [J]. Physica, 1978, 24:179-218
    [38] Cremer M., Ludwig J. A fast simulation model for traffic flow on the basis of Boolean operations [J]. Mathematics and Computers in Simulation, 1986, 28(4): 297-303
    [39] Nagel, K., Scheckenberg, M. A cellular automaton model for freeway traffic [J]. J. Phys., 1992, Ⅰ-2:2221-2229
    [40] Nagel K., Paczuski M. Emergent traffic jams [J]. Phys. Rev. E, 1995, 51:2909-2918
    [41] Takayasu M., Takayasu H. l/f noise in a traffic model [J]. Fractals, 1993, 1(4): 860-866
    [42] Benjamin S. C., Johnson N. F., Hui P. M. Cellular automaton models of traffic flow along a highway containing a junction [J]. J. Phys. A, 1996, 29:3119-3127
    
    [43] Barlovic R., Santen L., Schadschneider A., Schreckenberg M. Metastable states in cellular automata for traffic flow [J]. Eur. Phys. J., 1998, B5:793-800
    [44] Dietrich E. W. Cellular automata for traffic simulations [J]. Physica A, 1999, 263:438-451
    [45] Xiaobai L., Qingsong W., Rui J. Cellular automaton model considering the velocity effect of a car on the successive car [J]. Phys. Rev. E, 2001, 64:066128
    [46] Rickert M., Nagel K., Schreckenberg M., Latour A. Two lane traffic simulations using cellular automata [J]. Physica A, 1996, 231: 534-550
    [47] Chowdhury D., Wolf D. E., Schreckenberg M., Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules [J]. Physica A, 1997, 235(3-4): 417-439
    [48] Nagel K., Wolf D. E., Wagner P., Simon P. Two-lane traffic rules for cellular automata: a systematic approach [J]. Phys. Rev. E, 1998, 58(2): 1425-1437
    [49] Knospe W., Santen L., Schadschneider A., Schreckenberg M. Disorder effects in cellular automata for two-lane traffic [J], Physica A, 1999, 265(3-4): 614-633
    [50] Simon P., Gutowitz H. A. A cellular automaton model for bi-directional traffic [J]. Phys. Rev. E, 1998, 57(2): 2441-2444
    [51] Fukui M., Ishibashi Y. Traffic flow in 1D cellular automaton model including cars moving with high speed [J]. J. Phys. Soc. Japan, 1996, 65(6): 1868-1870
    [52] Emmerich H., Rank E. An improved cellular automaton model for traffic flow simulation [J]. Physica A, 1997, 234:676-686
    [53] Biham O., Middleton A. A., Levine D. Self-organization and a dynamical transition in traffic flow models [J]. Phys. Rev., 1992, A46(10): 6124-6127
    [54] Cuesta, J. A., Martnez F., Molera J., Sanchez. A. Phase transitions in two-dimensional traffic flow models [J]. Phys. Rev. E, 1993, 48(6): 4175-4178
    [55] Nagtani T., Seno T. Traffic jam induced by a crosscut road in a traffic flow model [J]. Phy. A., 1994, 207:574-583
    [56] Freund J., P(?)schel T. A statistical approach to vehicular traffic [J]. Physica A, 1995, 219: 95-113
    [57] 吕晓阳,陈若航.CA交通流模型的演化方程与转向概率效应[J].物理学报,1997,46(3):435-441
    [58] 顾国庆,许伯铭,戴世强.自动机网络和交通模拟研究[J],自然杂志,1997,19(A10):91-98
    [59] 顾国庆,许伯铭.随机化交通灯的二维元胞自动机交通模型[J].应用数学和力学,1998,19(9):753-758
    [60] Pinghua H., Lingjiang K., et. al. A study of a main-road cellular automata traffic flow model [J]. Chin. Phys, 2002, 11(7): 678-683
    [61] 汪秉宏,王雷.交通流中的自组织临界性研究[J].广西师范大学学报:自然科学版,2002,20(1):45-51
    [62] 谭惠丽,黄乒花,李华兵.交通灯控制下主干道的交通流研究[J].物理学报,2003,52(5):1127-1131
    [63] Chowdhury D., Schadschneider A. Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods [J]. Phys. Rev. E, 1999, 59:1311-1314
    [64] 王红卫.建模与仿真[M].北京:科学出版社,2002年3月
    [65] 刘运通,石建军,熊辉.交通系统仿真技术[M].北京:人民交通出版社,2002年9月
    
    [66] 毛保华,杨肇夏,陈海波.道路交通仿真技术与系统研究[J].北方交通大学学报,2002,26(5):37-46
    [67] 贾顺平,杜怡曼.国外城市交通微观模拟系统简介[J].铁路计算机应用,2002,11(7):1-4
    [68] 邹智军.城市道路交通仿真研究[D].上海:同济大学道路与交通工程系,2000年
    [69] 黄卫.智能运输系统(ITS)概论[M].北京:人民交通出版社,1999年9月
    [70] 史忠植.智能智能体及其应用[M].北京:科学出版社,2000年12月
    [71] 刘金琨,尔联洁.多智能体技术应用综述[J].控制与决策,2001,16(2):133-140
    [72] Bomarius F. A multi-agent approach towards modeling urban traffic scenarios [D]. Research Report RR-92-47. Deutches Forschungszentrum f(?)r K(?)nstliche Intelligenz, September 1992
    [73] Rossetti R. J. F., Bampi, S. An Agent-based framework for the assessment of drivers' decision-making [C]. 2000 IEEE Intelligent Transportation Systems Conference Proceedings, Dearborn, 2000, USA-October: 387-392
    [74] Ehlert P. A. M., Rothkrantz L. J. M. Microscopic traffic simulation with reactive driving Agents. Intelligent Transportation Systems[C], 2001. Proceedings. 2001 IEEE, 2001: 860-865
    [75] 孙晋文,李明树,鄂卓茂.基于Agent的智能交通体系及仿真[J].计算机仿真,2002,19(3):46-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700