用户名: 密码: 验证码:
基于热力学熵和混沌理论的城市道路交通系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市道路交通系统的研究是依据一定的科学理论、科学思想和科学方法,对系统的结构、特性以及系统状态进行分析,对系统内部各个方面以及系统与外界的相互关系和相互作用规律从不同角度不同层面进行研究,并建立相关的数学和物理模型,从而揭示交通系统的发展演化规律。研究城市道路交通系统的特性及其发展演化规律对于城市道路交通系统的控制与管理、系统的规划与建设、甚至对整个城市的经济发展与建设都有着十分重要的意义。
     城市道路交通系统的研究是交通工程基础科学理论研究的重要课题之一,长期以来,人们从不同方面对其进行了研究,并获得了相应的研究成果,对社会和经济产生了积极的促进作用。但是采用物理学方法(包括动力学理论、热力学熵理论、混沌理论等)从系统特征入手对其进行较全面和较深入的研究还不多见。本文在借鉴国内外成熟研究成果的基础上,采用物理学原理和方法从不同角度对包括交通流系统在内的城市道路交通系统的多个方面进行了深入研究。
     论文从系统入手,首先分析了交通系统以及交通流系统的特点和特性,提出了交通系统演化的基本原理。在此基础上,进一步阐述了道路交通系统的热力学特征,构造了该系统的热力学熵。
     在分析道路交通系统特性的基础上,引入了交通势的概念,阐述了交通势的物理意义;分析了交通势的影响因素,通过定义交通势梯度,使相对交通压力得到量化;论文根据交通流基本特性以及交通流与路网相互作用规律,提出了城市道路交通系统供需关系演化的蛛网模型,并基于混沌理论对该蛛网模型相关问题进行了讨论,从中得到了相应的结论。
     基于城市道路交通与城市发展的相互作用中所存在的负反馈特性,提出了道路交通系统发展演化的动力学模型;对城市道路交通系统发展演化的逻辑斯蒂(S形)曲线的特性进行了分析,特别是对曲线上的三个关键点进行了深入分析,得出了有益的结论;最后根据混沌分形理论对其进行了进一步阐述和分析。
     论文依据动力学原理对交通流模型进行了研究。首先,对路段交通压力进行了深入分析,明确了它的物理意义;通过引入相对交通压力和相对动量的概念,并依据动量定理推导得出交通流微分方程;其中粘滞阻力项是在公式推导过程中自然导出的,避免了人为引入参数的随意性,此项的获得对实际交通流的微分方程的应用和相关公式的推导具有重要意义;在推导交通流微分方程的基础上,进一步考虑到实际应用条件,从而导出了格林希尔治方程和一维线性跟驰模型,从而使得交通流理论中的几个重要公式获得了理论上的统一。
     采用热力学熵理论的方法对交通流系统进行了研究。首先,对热力学熵的构成进行了分析研究,总结归纳出了构造方法,并以此建立了交通流系统的热力学熵;然后通过分析熵理论中广义流产生的原因,进而揭示了交通流系统中热力学熵产生的内部机制;最后根据熵理论,推导得出了具有动力学特征的道路交通系统中的交通流微分方程。由于是首次引入了热力学熵对交通流系统进行研究,加之已有的关于交通流系统的统计熵研究和讨论,从而构成了一个较为完整的交通流熵理论体系。
     本文对交通波进行了研究,首先对交通波进行了三个状态的划分,通过分析前后两个断面交通流的流入和流出率,导出交通波的扩展和收缩方程;以此为基础,讨论了起动波及消散时间、停车波及停车长度等问题,还对交通流通过交叉口进行了动态分析。
     以可持续发展为目标,提出了城市路网结构布局评价的基本思想和原则,分析和确定了评价指标以及相应的影响因素和修正系数;建立了路网结构布局的评价模型;并将其应用于实际评价当中,效果良好。
     在分析城市路网结构及其功能的基础上,将路网划分为主通路和连接路段;在分析主通路、连接路段以及交叉口可靠性的基础上,通过引入连通度修正因子,导出了OD路网可靠性公式;通过实例应用和深入分析,揭示了连通度在实际路网中具有的双重效应。
     通过定义路网的微观态、时效及其时效熵,建立了路网系统的时效熵公式,并给出了计算步骤;根据实测数据拟合的通行时间概率分布曲线,定义了路径选择风险和路径选择风险熵,实现了对出行路径选择风险的量化描述。
     在混沌吸引子原理的基础上,通过对交通流时间序列进行相空间重构,分析了临近点与预测点相关性,确定了相关权重;通过对综合权重的确定,建立了修正后的一阶线性预测模型;通过进一步地深入分析指出,预测结果与演化过程中相邻相点间各维分量之间的相互转化关系有关;通过合理地利用转化关系,将实际值的预测转化为了分量百分比的预测,并通过综合分析,建立了基于混沌吸引子的多元线性回归预测模型,其预测结果与实际情况较为接近。
     采用灰关联度和信息熵结合的方法对交通影响因素进行了排序。由于用灰关联度法进行排序可能造成突出个别大关联测度值对结果的影响,进而使排序结果与实际情况不符。本文通过采用灰色数据处理方法对参考列和比较列分别进行数据处理,并在其关联值的基础上进一步定义和确定了灰关联熵,建立了交通影响因素排序公式。实际应用表明,排序效果良好。
The study of urban road traffic system,based on scientific theory and idealogy,throughanalyszing the constructure and features of the system and exploring the mechanism of theinteraction among factors forming the system and reciprocity between the system and theoutside,biuld up a variety of model fiting into practical conditions to reveal the law ofevolution of urban road traffic system.No doubt,it is very important researching on the urbanroad traffic system not only to improvment of the system self but also to development ofwhole city economy.
     The study of urban road taffic system is one of important research items relating totrasportation engineering。In the passed time,it had been studied more widely and deeply,according to different view points.However it is relevent rare to study it further throughmaking use of physics methods,including dynamic theory,entropy theory,and chaos theory.In this paper,different parts of urban road traffic system have been studied synthetically bymeans of physical method and thought.
     At first,based on the chaostic character of traffic system,this paper put forward theprinciple for the development of urban road traffic system,discussed thermodynamicsfeatures of the system,and constructed the thermodynamics entropy of it.
     In order to describe urban road traffic system effectively,through analysing charactersof traffic flow system,the concept of the traffic potential was established in this paper.Inaddition,the factors affecting traffic potential was discussed.At the same time,the relaventtraffic pressure was quantited by means of defination of the traffic potential grade,whichwould contribut a lot to furthermore describtion of road traffic sustem.According to thecharacters of traffic flow,the cobweb model of the supply-need relationship of urban roadtraffic system was built up,and some problems about the model was discussed on bassis ofchaos theory.
     On the basis of the analysis of thermodynamics entropy,this paper discussed the way tobuild up the thermodynamics entropy of traffic flow,and then established the traffic flowentropy.Through the analysis of the entropy variation of road traffic system,this paperrevealed the mechanism of the traffic flow entropy producing,and set up the equation of theentropy producing.At last,according to the entropy theory,the differentiating equation of thestate and the model of traffic flow were derived.The above method can be used widely todeal with the problem relating to traffic flow,which is meaningful to the development of traffic flow theory.
     Aimed at the problem of traditional traffic flow differentiating equation in theory and inpractical use,the traffic pressure was analysed synthetically,and it was pointed out that trafficpressute results from matual effect between traffic flow and road.According to the idea ofmomentum law,the traffic flow defferentiating equation based on kinetic theory was derivedthrough the introduction of relative traffic pressure and relative momentem,and the factor ofthe viscosity resistance is obtained.Under practical conditions of road and traffic flow,Greenshields equation and car following model were derived by means of the traffic flowdifferentialing equation.The results show that the traffic flow differentiating equation isunitive in theory,clear in concept,and overcome the disadvantage of the man-identified factorof viscosity resistance,which is meaningful to the development of traffic flow theory.
     Based on the principle of sustainable development,this paper put forward the principleof urban road network layout.Through further analyzing,this paper proposed effectioncoefficients of urban road network layout,and finally established the equation for theevaluation of urban road network layout.The results show that the method is feasible inpractice.
     In order to reflect the reliability of urban road network objectively,on the basis of theanalysis of urban road network structure and function,it was put forward that OD roadnetwork consists of main roads and connection roads.According to the principle of reliabilityengineering,the relative influence factors on the reliability was analyzed,and the method ofthe reliability calculation was studied.Based on the main roads reliability,the reliabilityequation of OD road network was derived through introducing OD connectivity.Theinfluence of the node number on OD road network reliability and the method of how toimprove OD road network reliability were discussed further.Analysis and calculation resultsshow that the reliability of the OD road network is 0.621 when main roads are not connectedeffectively,the reliability will be 0.704 through the connection of main roads when thecontinuance of main road is not influnced.It was indicated that the reliability of OD roadnetwork depends on not only the continuance and the validity of main road but also theconnectivity of OD road network,so this method is feasible and effective.
     In order to predict chaotic time series of traffic flow accurately,according to theprinciple of chaotic attractor,this paper analyzed correlativity between the central phase pointand the neibour phase point in the region of chaotic attractor,and pointed out that thecorrelativity plays an important role in the prediction.Making use of the principle and method of grey system,this paper obtained the correlativity weight,and established the forecastmodel with the correlativity weight.At last,incorperating distance weight and correlativityweight as synthetic weight,this paper derived the one-order linear prediction model withsynthetic weight and established the multi-dimensional forecast model of chaotic time seriesof traffic flow.The analyzed result shows that it is feasible and effective.
     This paper pointed out the shortcoming of the original grey relation analysis method inranking of influnece factors,which may cause the tendence controlled by relation value ofparticular points and make some useful information lost.In order to overcome theshortcoming,through introducing grey entropy and connecting it with grey relation degree,this paper established the coincidence degree.The applicaton of practical example showsthat the ranking order of thanspoetation factor based on the coincidence degree method isbasically accord with based on others,so it is feasible.
引文
[1]傅祖芸.信息论—基础理论与应用.北京:电子工业出版社,2005
    [2]新疆维吾尔自治区科学技术协会.熵与交叉科学.北京:气象出版社,1988
    [3]王殿海,曲昭伟.对交通流理论的再认识.交通运输工程学报,2001(4)
    [4]朱庆,李渊.道路网络模型研究综述.武汉大学学报,2007(6)
    [5]徐伟民.与车辆跟驰理论统一的一维交通流流体力学模型研究.交通运输系统工程与信息.2002.2(1)
    [6]王明祺.交通流理论的研究进展.力学进展.1995.25(3)
    [7]王殿海.交通流理论.北京:人民交通出版社.2002[7]
    [8]徐吉谦.交通工程总论.北京:人民交通出版社,2002
    [9]俞礼军,严海,严宝杰.最大熵原理在交通流统计分布模型中的应用.交通运输工程学报.2001,1(3)
    [10]王彬.熵与信息.西安:西北工业大学出版社.1994
    [11]冯端,冯少彤.熵的世界.北京:科学出版社,2005
    [12]B.H.Kaye[加拿大](著),徐新阳,康雁,陈旭,刘彤(译).分形漫步.沈阳:东北大学出版社,1994
    [13]刘伟铭.高速公路系统控制方法.北京:人民交通出版社,1998
    [14]刘灿齐,杨佩昆.车队密度散布模型及在车队截尾问题上的应用.中国公路学院,2001,14(1)
    [15]熊烈强,陈明昭,严新平.实际交通流的运动微分方程.交通运输工程学报2001,1(3)
    [16]侯立文,蒋馥.城市道路网络可靠性的研究.系统工程,2000,18(5)
    [17]郭永基.可靠性工程原理.北京:清华大学出版社,2000.6
    [18]王炜,高海龙,李文权.公路交叉口通行能力分析方法.北京:科学出版社,2001。
    [19]李旭红,等.道路交通规划.南京:东南大学出版社,1997
    [20]朱顺应,王炜,邓卫,等.交通网络可靠度及道路算法研究.中国公路学报,2000,13(1)
    [21]冯尉东,等.交通流理论评述.系统工程学报,1998
    [22]蔡良斌,等.公路网评价理论与方法.陕西公路,1996
    [23]许良,高自友.基于路段能力可靠性的城市交通网络设计.中国公路学报,2006,19(2)
    [24]陶经辉,李旭宏,毛海军.无信号交叉口通行能力.交通运输工程学报,2003,3(4)
    [25]陈建壮,周伟.公路网通行可靠度的评价.长安大学学报:自然科学版,2002,22(4)
    [26]何兆成,余志.城市道路网络OD估计模型.交通运输工程学报2005,5(2)
    [27]陈森发.复杂系统建模理论与方法.南京:东南大学出版社,2004
    [28]李英,刘豹,马寿峰.交通流时间序列中混沌特性判定的替代数据法.系统工程,2000.8(6)
    [29]向小东,郭耀煌.基于混沌吸引子的时间序列预测方法及其应用.2001,36(5)
    [30]岳毅宏,韩文秀.混沌系统可预测尺度研究.系统工程理论与实践,2003(6)
    [31]邓聚龙.灰理论基础.华中科技大学出版社,2002.
    [32]马海军.复杂非线性系统的重构技术.天律:天津大学出版社,2005
    [33]李克平,陈天仑,刘恒玲.基于混沌算法的自适应预测模型.系统工程理论与实践.2003(1)
    [34]宁宣熙,刘思峰.管理预测与决策方法.北京:科学出版社,2004
    [35]邓聚龙.灰色系统理论教程.武汉:华中理工大学出版社,1990
    [36]周伟,王建军,李继锐.基于人工神经网络的影响高速公路社会效益量化的变量选择方法.西安公路交通大学学报,2000(3)
    [37]汪传旭.交通运输业对国民经济贡献的衡量法.中国公路学报,2004(1)
    [38]李继锐.高速公路社会效益量化分析研究[D].西安公路交通大学,1998
    [39]张岐山.灰关联熵分析方法.系统工程理论与实践,1996(8)
    [40]曾松,杨佩昆.城市道路网络结构分局相对评价指标研究.中国公路学报.2000,1 3(3)
    [41]徐景,罗嵩龄.公路网连通性.中国公路学报,2000,13(1)
    [42]陆建,王炜.城市道路网规划指标体系.交通运输工程学报,2004,4(4)
    [43]肖秋生,徐慰慈.城市交通规划.北京:人民交通出版社,1998
    [44]刘灿齐.现代交通规划学.北京:人民交通出版社,2001
    [45]邹德慈.城市规划导论.北京:中国建筑工业出版社,2005
    [46]王学萌等.灰色系统分析及实用计算程序.华中科技大学出版社,2001
    [47]梅振园.灰色关联度及其计算方法.系统工程,1992(10)
    [48]李学全 等.灰色系统理论研究,系统工程学理论系实践.1996(11)
    [49]刘勇.道路交通系统熵理论应用研究.长安大学硕士学位论文.2003
    [50]邓聚龙.灰理论基础.华中科技大学出版社.2002
    [51]万武辉,陆鑫.基于混沌理论的时间序列区间预测.成都信息工程学院学报,2005(5)
    [52]张生端.城市客运结构评价体系及评价方法,长安大学学报,2004,24(4)
    [53]马荣国.城市客运交通结构评价指标,交通运输工程学报,2004,4(1)
    [54]梁樑,王国华.多层次交互式确定权重的方法,系统工程学报,2002,17(4)
    [55]赵建有.道路交通运输系统工程.北京:人民交通出版社,2004
    [56]刘子真.熵及其在化学中的应用.高等教育出版社,1993
    [57]邱菀华.管理决策与应用熵学.北京:机械工业出版社,2001
    [58]李先,等.北京市路网单位距离行程时间可靠性评价.交通运输系统工程于信息,2007(2)
    [59]刘名龙,等.城市道路网最短路径启发算法研究.公路交通科技,2006(8)
    [60]李眉眉.电力负荷混沌特性分析及预测.四川大学博士学位论文,2004
    [61]龚晓华.关于专业人才市场蛛网模型的思考.中国经济问题,2004(3)
    [62]郑安文,朱晓宏,邵正宇,郭健忠.城市交通供求关系类型分析.中南公路工程,2004(4)
    [63]汪泽焱,顾红芳,益小心,张申如.一种基于熵的线性组合赋权法.系统工程理论与实践,2003(3)
    [64]邹德慈.城市规划导论.北京:中国建筑工业出版社,2005
    [65]赵民,陶小马.城市发展和城市规划的经济学原理.北京:高等教育出版社,2001
    [66]刘洪.经济系统预测的混沌理论原理与方法.北京:科学出版社,2003
    [67]潘红宇.时间序列分析.北京:对外经济贸易大学出版社,2006
    [68]肖秋生.城市总体规划与原理.北京:人民交通出版社,2003
    [69]贺昌政.自组织数据挖掘与经济预测.北京:科学出版社,2005
    [70]方守恩.高速公路.北京:人民交通出版社,2004
    [71]彭光含,等.交通流双车跟驰模型与数值仿真.物理学报,2008
    [72]肖瑞杰,孔令江,刘慕仁.车辆的长度和速度对单车道混合交通流的影响.物理学报,2007
    [73]周永华.交通流预测控制的机制与方法.中国公路学报,2007
    [74]孙勇.城市干道交通流运动状态特性研究.哈尔滨工业大学硕士学位论文,2007
    [75]许良.基于可靠性分析的城市道路交通网络设计问题研究.北京交通大学博士学位论文,2006
    [76]阳丹.城市空间形态与城市道路关系研究.华中科技大学硕士学位论文,2006
    [77]刘运通,石建军,熊辉.交通系统仿真技术.北京:人民交通出版社,2002
    [78]孙东川,林福永.系统工程引论.北京:清华大学出版社,2004
    [79]赵凯华.热学.北京:北京大学出版社,2001
    [80]伊.普里戈金,伊.斯唐热.(曾庆宏,沈小峰译)从混沌到有序.上海:上海译文出版社,1987
    [81]蔡枢,吴铭磊编.大学物理(当代物理前沿专题部分).北京:高等教育出版社,1999
    [82]吴正.低速混合型城市交通的流体力学模型.力学学报,1994.26(2)
    [83]Richard B.Freeman:A cobweb model of supply and starting salary of new engineers,industrial and labor relations review 29,1976
    [84]Rui Jiang,Qing-Song Wu.Study on propagation speed of small disturbance from a car-following approch.Transportation Research Part B,2003(37)
    [85]F.W.C.J.van de Vooren,Modelling transport in interaction with the economy.Transportation Research Part E,2004(40)
    [86]Greenshields B D.A study of traffic capacity.HRB.,Proc.14,1934,part Ⅰ.
    [87]Adams W F.Road traffic considered as a random series,J.Inst.Civil Eng.1936(4)
    [88]Greenshields B D,Shapiro D,Ericksen E L.Traffic performance at urban street intersections.Tech.Rep.No.1,Yale Bureau of Highway Traffic,New Heven,Corn.,1947
    [89]Pipes L A.An Operational Analysis of Traffic Dynamics I.Applied Physics,1953,24(3)
    [90]Pipes L A.Proposed dynamic analogy of traffic.J.A P.Phys.,1953(24)
    [91]Chander R E,Herman R,Montroll E W.Traffic Dynamics:Study in car following.Opns.Res.6,1958
    [92]Herman R E,Montroll E W,Potts R B,etal.Traffic dynamics:analysis of stability in carfollowing.Opns. Res.7, 1959
    [93] Lighthill M H,Whitham G B. On Kinematics Wave: Ⅱ. A theory of traffic on long crowded roads. Proc. R. Soc. London, Ser. A. 1955(22)
    [94] Richards P L. Shock waves on the highway,Opns Res., 1956; 4(1)
    [95] Pipes L A. Topics in the hydrodynamic theory of traffic flow. Transph. Res., 1968; 2(2)
    [96] Pipes L A. Vehicle accelerations in the hydrodynamic theory of traffic flow , 1969,3(2)
    [97] Cleveland D E,Capelle D G.Queuing theory approaches:An Introduction to Traffic Flow Theory,Special Report79, Highway Research Board,Washington D.C.,1964
    [98] Gerlough D L ,Huber M J.Traffic Flow Theory. National Research Council,Washington D.C.,1975
    [99] Gazis D C,Herman P, Potts R B. Car-following theory of steady state flow. Opns. Res. 1959; 7(4)
    [100] Farrari P.The instability of motorway traffic. Transpn.Res. 1994 (28B)
    [101] Castillo IM D, Pintado P, Benitcz F G. The reaction time of drivers and the stability of traffic flow.Transpn. Res.,1994(28B)
    [102] Ross P. Traffic dynamics. Transpn. Res. 1988(22B)
    [103] Payne H J. Models of freeway traffic and control. Mathematical Methods of Public Systems, 1971; 1(1)
    [104] Payne H J. A critical review of a macroscopic freeway model. Proc. Research Directions in Computer Control of Urban Traffic System s,ASCE,New York, 1979
    [105] Papageorgion M. A hierarchical control system for freeway traffic. Transpn. Res.,1983(17B)
    [106] Phillips W F. A new continuum traffic model obtained from kinetic theo ry. IEEE Trans. Autom. Control. AC223, 1978
    [107] Kuhne R D. Macroscopic freeway model for dense traffic-stop-start waves and incident detection, In:Volmuller J , Hamerslag R (eds) , Proc. 9th Int, Symp. on Transpn and Traffic Theory,VNU Science Press,Utrecht, 1984
    [108] Michalopoulos P G, Yi P, Lyrintzis A S. Continuum modeling of traffic dynamics for congested freeways. Transpn. Res., 1993(27)
    [109] Weits E. Stationary freeway traffic flow modeled by a linear stochast ic particle differential equation.Transpn. Res., 1992(26B)
    [110] Vaughan R, Hurdle V F,Hauer EA. Traffic flow model with time-dependent O-D pattern, In: Volmuller J , Hamerslag R.(eds),Proc. 9th Int.Symp.on Transpn. and Traffic Theory, VNU Science Press,Utrecht, 1984
    [111] Vaughan R,Hurdle V F. A theory of traffic flow for congested conditions on urban arterial streets I:theoretical development. Transpn. Res., 1992(26B)
    [112] Hurdle V F. A theory of traffic flow for congested conditions on urban arterial streets Ⅱ: Four illustrative examples, Transpn. Res., 1992(26B)
    [113] Daganzo C F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transpn. Res., 1994;28B(4)
    [114] Daganzo C F. The cell transmission model, part Ⅱ: network traffic, Transpn. Res.,1995,29B(2)
    [115] Baras J S, Levin W S. Discrete time point process in urban traffic queue estimation.IEEE Trans, on AC, 1979(24)
    [116] Navin F P D. Traffic congestion catast rophes. Transpn. Planning and Tech., 1986(11).
    [117] Hall F L. An interpretation of speed-flow concentratio relationships using catastrophe theory.Transpn. Res., 1987 (21A)
    [118] Dillon D S, Hall F L. Freeway operations and the cusp catastrophe: An empirical analysis, Transpn.Res. Record 1132, 1988
    [119] Jorge A. A cha-Daza, Hall L. Application of catastrophe theory to traffic flow variables. Transpn.Res., 1994,28B(3)
    [120] Prigogine I, Herman R. Kinetic theory of vehicular traffic. New York: American Elservier, 1971
    [121] Haken H. Advanced Synergetics Springer-Verlag,BerlinHeidelberg, New York, 1983
    [122] Nicolis G, P rigogine I. Self-organization in nonequilibrium systems. New York: John Willey & SonsPress, 1977
    [123] Biham O ,Middleton A. A Self-organization and a dynamical transition in traffic flow models. Physical Review ,1992; 46A (10)
    [124] Takashi Nagatani. Effect of jam-avoiding turn on jamming transition in two-dimensional traffic flow model, J. Phys. Soc. Jpn., 1994; 63 (4)
    [125] Payne H J. Design of a traffic responsive control system for a Los Angels freeway. IEEE Trans. On SMC, 1973, 3 (3)
    [126] Dentrinos D S. Traffic flow Dynamics:A Search for Chaos, Chaos, Soliton & Fractals, 1994,4(4)
    [127] Sugimoto T ,Nonaka S, Oohama H. Traffic Prediction and Qualitative Reasoning. Proceedings of the International Conference on Artificial Intelligence Applications in Transportation Engineering, Institute of Transportation Studies. University of California. Irvine, Ca. 1992
    [128] Stefania B, Antonella C, Paolo P. Traffic modeling and simulation from a cognitive and qualitative reasoning perspective. IF AC Transportation Systems, Chania, Greece,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700