用户名: 密码: 验证码:
HAb18G/CD147调控肝癌细胞自噬的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是严重威胁人类健康的主要疾病之一。恶性肿瘤在生长过程中,由于增生过快造成局部组织严重缺氧和营养匮乏,肿瘤细胞通过调整代谢反应、改变DNA修复机制、诱导血管生成等机制适应这种恶劣的环境变化。因此,探讨肿瘤细胞对缺氧和饥饿的适应机制对有效地控制肿瘤的进展具有十分重要的意义。
     自噬性细胞死亡(autophagic cell death)是近年来发现的一种新型的程序性细胞死亡方式。当细胞处于不良环境(如饥饿)时,通过适度的自噬作用降解自身物质以满足细胞生存的基本物质和能量需求,求得生存;但过度的自噬将导致细胞发生自噬性死亡。近年来的研究证实,肿瘤在无血管生成的前期,乏氧/养的肿瘤环境诱导肿瘤细胞发生自噬。自噬是调节肿瘤细胞适应环境的一种新的机制。
     HAb18G/CD147是在多种恶性肿瘤细胞高表达的黏附分子,是基质金属蛋白酶(Matrix metalloproteinase, MMPs)的诱导因子,促进肿瘤的侵袭和转移。目前越来越多的研究表明,HAb18G/CD147还参与了多种细胞信号通路调节,调控肿瘤细胞的能量代谢和物质代谢。HAb18G/CD147被认为是肿瘤发展进程中一个重要的分子。那么HAb18G/CD147是否参与调控肝癌细胞的自噬和自噬性细胞死亡?这是本课题要回答的关键问题。
     本实验分为三部分:
     第一部分:饥饿状态下HAb18G/CD147分子在肝癌细胞中的表达变化
     选取三种肝癌细胞(SMMC7721、HepG2、HCC9204),采用氨基酸饥饿模拟肿瘤细胞的营养缺乏,通过Western Blot分别检测三种细胞在饥饿不同时间后HAb18G/CD147分子的表达变化。结果表明,氨基酸饥饿1,3,6,12 h后三种肝癌细胞的HAb18G/CD147的表达均迅速上调,饥饿24 h后其表达量均有所下降。其中SMMC7721细胞在饥饿1-12 h内HAb18G/CD147的表达相对维持在一个较高的稳定水平。
     第二部分:HAb18G/CD147参与肝癌细胞SMMC7721自噬调控的研究
     在第一部分实验的基础上,选用SMMC7721肝癌细胞作为研究HAb18G/CD147调控饥饿诱导自噬的细胞模型。采用12 h全氨基酸缺乏诱导自噬。我们通过RNA干涉的方法降低了HAb18G/CD147的表达,利用免疫荧光技术和透射电子显微镜(TEM)技术检测自噬。采用台盼蓝排斥实验检测细胞死亡,并利用自噬的特异性抑制剂3-甲基嘌呤(3-MA)抑制自噬,从而观察HAb18G/CD147是否可以下调饥饿诱导的自噬性细胞死亡。结果显示,与无关干涉相比,在转染si-HAb18G的SMMC7721细胞中,经过12 h饥饿后,其HAb18G/CD147无论在RNA水平还是蛋白水平的表达均显著降低;同时,在饥饿12 h后,转染了si-HAb18G干涉片段的SMMC7721细胞的自噬水平明显高于对照组,并且HAb18G/CD147抑制饥饿诱导的自噬存在剂量依赖效应,说明HAb18G/CD147在SMMC7721细胞中可以显著抑制饥饿诱导的自噬;干涉HAb18G后,细胞死亡数量明显增加,加入自噬的抑制剂3-甲基嘌呤(3-MA)可以明显降低细胞的死亡率,说明HAb18G可以抑制饥饿诱导的自噬性细胞死亡。
     第三部分:HAb18G/CD147参与肝癌细胞SMMC7721自噬调控的信号通路
     为了探讨HAb18G/CD147如何调控细胞自噬,我们检测了自噬相关基因ATG5、ATG6/Beclin 1和ATG8/LC3的表达变化。结果发现,在HAb18G干涉组和对照组,ATG5和ATG8的表达水平无显著差异;但在siRNA-HAb18G干涉模型组,ATG6/Beclin 1的表达明显高于无关干涉组。ATG6/Beclin 1是调控自噬的关键蛋白之一,它不仅促进自噬泡(autophagosome)形成,同时与Class III PI3K形成复合物,促进自噬泡(autophagosome)与溶酶体(lysome)融合。我们的进一步研究发现HAb18G/CD147可以抑制ATG6/Beclin 1在蛋白水平的表达,进而抑制饥饿诱导的自噬,从而避免肿瘤细胞因过度自噬导致细胞死亡。同时,我们的研究也发现HAb18G/CD147抑制ATG6/Beclin 1的表达可能涉及到Class I PI3K信号通路。提示HAb18G/CD147抑制肿瘤细胞的过度自噬可能是通过Class I PI3K通路调节ATG6/Beclin 1表达,从而抑制自噬。
Cancer is common diseases and has a serious hazard to human health, which not only endangers the lives of patients, but brings enormous social impact of the medical world. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and ranks sixth among cancers as cause of death worldwide and third in China. It has an annual incidence rate of 564000 cases, and 55% of those are in China.
     High invasion and metastasis abilities of HCC are the important reasons to the high mortality. In the process of tumor metastasis, matrix metalloproteinases (MMPs) play an important role in the degradation extracelluar matrix. HAb18G/CD147 is inducer of MMPs, which plays key functions in cancer metastasis. HAb18G/CD147, a plasmolemma glucoprotein, takes part in many physiological and pathological processes and plays a majar role in many functions, including tumor invasion and metastasis, inflammation, cell adhesion and embryonic development.
     Our lab prepared monoclonal antibody HAb18 in 1987, which is specific to HCC. We obtained a HCC associated antigen, HAb18G using HAb18 as the probe to screen the HCC cDNA library. The ORF (open reading frame) sequence of HAb18G is homologous to that of CD147 molecule. HAb18G has generally been acknowledged as a new member of CD147 superfamily. Our previous studies showed that HAb18G was highly expressed in HCC tissues and lowly expressed in nomal tissues. We have discovered that the function of HAb18G is similar to CD147/EMMPRIN (Extracellar matrix metalloproteinase inducer) and this molecule could induce HCC cells and fibroblast cells to secret MMPs and promote tumor invasion.
     One of most important functions of HAb18G/CD147 is to induce the production of MMPs. However, whether there are other mechanisms explaining the role of HAb18G/CD147 in tumor progression remains to be elucidated. In this study, we investigated the functional effects of HAb18G/CD147 expression on autophagy in hepatoma cell line SMMC 7721 using immunostainning, Western Blot and transmission electronmicroscopy. We found that HAb18G/CD147 could inhibit starvation-induced autophagy in SMMC 7721 cells. The result of RNA interference experiment for HAb18G/CD147 indicated that autophagy significantly increased in SMMC 7721 cells, compared with scramble control. Meanwhile, cell death ratio increased in SMMC7721 cells transfected with HAb18G siRNA. In addition, we found that HAb18G/CD147 inhibited starvation-induced autophagy via down-regulating Beclin1 expression, which led to decrease the formation of autophagosome. Furthermore, HAb18G/CD147 inhibiting ATG6/Beclin 1 expression via the Class I PI3K/AKT pathway, which is confirmed by class I PI3K inhibitor LY294002. Our findings indicate that HAb18G/CD147 can protect cancer cells by inhibiting excessive autophagy to avoid autophagic death pathway in starvation condition. These results may lead to a better understanding of regulation mechanism of human SMMC7721 liver cancer cells in starvation condition.
     Part 1: HAb18G/CD147 expression in hepatoma cells under starvation condition
     To detect HAb18G/CD147 expression in hepatoma cells under starvation condiction, we selected three hepatoma cell lines (SMMC7721, HepG2 and HCC9204), which were synchronized by starvation in amino acids free EBSS buffer for 0, 1, 3, 6, 12, 24 hours at 37°C. HAb18G/CD147 expression was detected by using Western Blot. These results showed that HAb18G/CD147 expression was significantly increased when the hepatoma cells were starvated for 1, 3, 6, 12 h.
     Part 2: HAb18G/CD147 inhibits starvation-induced autophagy in human hepatoma cell SMMC7721.
     In this part, we investigated the functional effects of HAb18G/CD147 on autophagy in hepatoma cell line SMMC7721 using immunofluoscence staining, Western Blot and transmission electronmicroscopy. Our data showed that HAb18G small interference RNA considerably down-regulated the expression of HAb18G/CD147 in SMMC7721 cells at both mRNA and protein levels. The down-regulation of HAb18G/CD147 significantly promoted the starvation-induced autophagy in a dose-dependent manner. Using trypan blue exclusion assay, we found that HAb18G/CD147 notably enhanced the survival of SMMC7721 cells through inhibiting starvation-induced autophagy.
     Part 3: Signaling pathway of starvation-induced autophagy inhibition by HAb18G/CD147
     In this part, we first assayed the epression of autophagy-relative genes including ATG5, ATG6/Beclin 1, and ATG8/LC3 using RT-PCR. We demonstrated that HAb18G/CD147 down-regulated the expression of autophagy-regulating gene ATG6/Beclin 1 in SMMC7721 cells. Then, our result showed that HAb18G/CD147 down-regulated the expression of ATG6/Beclin 1 protein in SMMC7721 cells. Furthermore, our data indicated that HAb18G siRNA-transfected SMMC7721 cells had a significantly decreased level of phosphorylated serine-threonine kinase Akt (pAkt) and the expression of Beclin 1 was inversely associated with the level of pAkt, suggesting that the Class I phosphatidylinositol 3-kinase-Akt pathway might be involved in the down-regulation of ATG6/Beclin 1.
引文
1.陈志南,杨志,米力,蒋建利,郭晓楠,肝癌相关因子HAb18G结构及功能的分析.细胞与分子免疫学杂志, 1999. 15(3): p. 3-3.
    2.郭晓楠,陈志南,肝癌膜相关抗原HAb18G为CD147分子的鉴定.肿瘤防治研究, 2000. 27(1): p. 7-10.
    3. Zhang, Q., et al., Expression of CD147 as a significantly unfavorable prognostic factor in hepatocellular carcinoma. Eur J Cancer Prev, 2007. 16(3): p. 196-202.
    4. Zhang, Q., et al., CD147, MMP-2, MMP-9 and MVD-CD34 are significant predictors of recurrence after liver transplantation in hepatocellular carcinoma patients. Cancer Biol Ther, 2006. 5(7): p. 808-14.
    5. Biswas, C., et al., The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res, 1995. 55(2): p. 434-9.
    6. Fossum, S., S. Mallett, and A.N. Barclay, The MRC OX-47 antigen is a member of the immunoglobulin superfamily with an unusual transmembrane sequence. Eur J Immunol, 1991. 21(3): p. 671-9.
    7. Nehme, C.L., et al., Breaching the diffusion barrier that compartmentalizes the transmembrane glycoprotein CE9 to the posterior-tail plasma membrane domain of the rat spermatozoon. J Cell Biol, 1993. 120(3): p. 687-94.
    8. Altruda, F., et al., Cloning of cDNA for a novel mouse membraneglycoprotein (gp42): shared identity to histocompatibility antigens, immunoglobulins and neural-cell adhesion molecules. Gene, 1989. 85(2): p. 445-51.
    9. Seulberger, H., F. Lottspeich, and W. Risau, The inducible blood--brain barrier specific molecule HT7 is a novel immunoglobulin-like cell surface glycoprotein. Embo J, 1990. 9(7): p. 2151-8.
    10. Seulberger, H., C.M. Unger, and W. Risau, HT7, Neurothelin, Basigin, gp42 and OX-47--many names for one developmentally regulated immuno-globulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barriers and neurons. Neurosci Lett, 1992. 140(1): p. 93-7.
    11. Guirguis, R., et al., A new method for evaluation of urinary autocrine motility factor and tumor cell collagenase stimulating factor as markers for urinary tract cancers. J Occup Med, 1990. 32(9): p. 846-53.
    12. Miyauchi, T., et al., Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J Biochem, 1990. 107(2): p. 316-23.
    13. Butler, J.E., et al., Quantitative changes associated with calving in the levels of bovine immunoglobulins in selected body fluids. I. Changes in the levels of IgA, IgGl and total protein. Can J Comp Med, 1972. 36(3): p. 234-42.
    14. Stockinger H, E.T., Hansmann C, Koch C, Majdic O, Prager E, Patel D. D, Fox A, Horejsi V, Sagawa K, and Shen D, In: Leukocyte Typing VI. New York: Garland Publishing,, 1997: p. 760-763.
    15. Guo, H., et al., Characterization of the gene for human EMMPRIN, a tumor cell surface inducer of matrix metalloproteinases. Gene, 1998. 220(1-2): p. 99-108.
    16. Muramatsu, T. and T. Miyauchi, Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol Histopathol, 2003. 18(3): p. 981-7.
    17. Yu, X.L., et al., Crystal structure of HAb18G/CD147: implications for immunoglobulin superfamily homophilic adhesion. J Biol Chem, 2008. 283(26): p. 18056-65.
    18. Buyse, M., et al., Luminal leptin enhances CD147/MCT-1-mediated uptake of butyrate in the human intestinal cell line Caco2-BBE. J Biol Chem, 2002. 277(31): p. 28182-90.
    19. Hashimoto, T., R. Hussien, and G.A. Brooks, Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab, 2006. 290(6): p. E1237-44.
    20. Kirk, P., et al., CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. Embo J, 2000. 19(15): p. 3896-904.
    21. Reeben, M., et al., MCT1 and CD147 gene polymorphisms in standardbred horses. Equine Vet J Suppl, 2006(36): p. 322-5.
    22. Wilson, M.C., et al., Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem, 2005. 280(29): p. 27213-21.
    23. Cho, J.Y., et al., The functional interactions between CD98, beta1-integrins, and CD147 in the induction of U937 homotypic aggregation. Blood, 2001. 98(2): p. 374-82.
    24. Mori, K., et al., The functional interaction between CD98 and CD147 in regulation of virus-induced cell fusion and osteoclast formation. Med Microbiol Immunol, 2004. 193(4): p. 155-62.
    25. Xu, D. and M.E. Hemler, Metabolic activation-related CD147-CD98 complex. Mol Cell Proteomics, 2005. 4(8): p. 1061-71.
    26. Melchior, A., et al., Cyclophilin B induces integrin-mediated cell adhesion by a mechanism involving CD98-dependent activation of protein kinase C-delta and p44/42 mitogen-activated protein kinases. Exp Cell Res, 2008. 314(3): p. 616-28.
    27. Yang, H., et al., Bridge linkage role played by CD98hc of anti-tumor drug resistance and cancer metastasis on cisplatin-resistant ovarian cancer cells. Cancer Biol Ther, 2007. 6(6): p. 942-7.
    28. Rao Vh Fau - Singh, R.K., et al., Regulation of MMP-9 (92 kDa type IV collagenase/gelatinase B) expression in stromal cells of human giant cell tumor of bone. (0262-0898 (Print)).
    29. Faouzi S Fau - Le Bail, B., et al., Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. (0168-8278 (Print)).
    30. Zhu B Fau - Block, N.L., B.L. Block Nl Fau - Lokeshwar, and B.L. Lokeshwar, Interaction between stromal cells and tumor cells induces chemoresistance and matrix metalloproteinase secretion. (0077-8923 (Print)).
    31. Sun J Fau - Hemler, M.E. and M.E. Hemler, Regulation of MMP-1 andMMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. (0008-5472 (Print)).
    32. Li R Fau - Huang, L., et al., Basigin (murine EMMPRIN) stimulates matrix metalloproteinase production by fibroblasts. (0021-9541 (Print)).
    33. Barth, K., R. Blasche, and M. Kasper, Lack of evidence for caveolin-1 and CD147 interaction before and after bleomycin-induced lung injury. Histochem Cell Biol, 2006. 126(5): p. 563-73.
    34. Jia, L., et al., Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines. Int J Biochem Cell Biol, 2006. 38(9): p. 1584-93.
    35. Tang, W., S.B. Chang, and M.E. Hemler, Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell, 2004. 15(9): p. 4043-50.
    36. Pushkarsky T Fau - Zybarth, G., et al., CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. (0027-8424 (Print)).
    37. Boulos, S., et al., Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol Dis, 2007. 25(1): p. 54-64.
    38. Li, M., et al., Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer, 2006. 106(10): p. 2284-94.
    39. Pushkarsky, T., et al., CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A, 2001. 98(11): p. 6360-5.
    40. Yang, Y., et al., Cyclophilin A up-regulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway inrheumatoid arthritis. Rheumatology (Oxford), 2008.
    41. Yurchenko, V., et al., Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem, 2002. 277(25): p. 22959-65.
    42. Pakula, R., et al., Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis. Glycobiology, 2007. 17(5): p. 492-503.
    43. Yurchenko, V., et al., CD147 is a signaling receptor for cyclophilin B. Biochem Biophys Res Commun, 2001. 288(4): p. 786-8.
    44. Pushkarsky, T., et al., Cell Surface Expression of CD147/EMMPRIN Is Regulated by Cyclophilin 60. J. Biol. Chem. Journal of Biological Chemistry, 2005. 280(30): p. 27866-27871.
    45. Guo H Fau - Li, R., et al., EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. (0008-5472 (Print)).
    46. Guo, H., et al., EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res, 2000. 60(4): p. 888-91.
    47. Tang, Y., et al., Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res, 2005. 65(8): p. 3193-9.
    48. Chen, Y., et al., Upregulation of HAb18G/CD147 in activated human umbilical vein endothelial cells enhances the angiogenesis. Cancer Lett, 2009. 278(1): p. 113-21.
    49. Liotta, L.A. and W.G. Stetler-Stevenson, Tumor invasion and metastasis:an imbalance of positive and negative regulation. Cancer Res, 1991. 51(18 Suppl): p. 5054s-5059s.
    50. Tang, W. and M.E. Hemler, Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/EMMPRIN cell surface clustering. J Biol Chem, 2004. 279(12): p. 11112-8.
    51. Kuno, N., et al., Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Lett, 1998. 425(2): p. 191-4.
    52. Wilson, M.C., D. Meredith, and A.P. Halestrap, Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem, 2002. 277(5): p. 3666-72.
    53. Philp, N.J., et al., Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Invest Ophthalmol Vis Sci, 2003. 44(3): p. 1305-11.
    54. Fan, Q.W., et al., Expression of basigin, a member of the immunoglobulin superfamily, in the mouse central nervous system. Neurosci Res, 1998. 30(1): p. 53-63.
    55. Hori, K., et al., Retinal dysfunction in basigin deficiency. Invest Ophthalmol Vis Sci, 2000. 41(10): p. 3128-33.
    56. Sameshima, T., et al., Correlation of emmprin expression in vascular endothelial cells with blood-brain-barrier function: a study using magnetic resonance imaging enhanced by Gd-DTPA and immunohistochemistry in brain tumors. Virchows Arch, 2003. 442(6): p. 577-84.
    57. Bertossi, M., et al., Effects of 6-aminonicotinamide gliotoxin on blood-brain barrier differentiation in the chick embryo cerebellum. Anat Embryol (Berl), 2003. 207(3): p. 209-19.
    58. MacLean, A.G., et al., Characterization of an in vitro rhesus macaque blood-brain barrier. J Neuroimmunol, 2002. 131(1-2): p. 98-103.
    59. Igakura, T., et al., Roles of basigin, a member of the immunoglobulin superfamily, in behavior as to an irritating odor, lymphocyte response, and blood-brain barrier. Biochem Biophys Res Commun, 1996. 224(1): p. 33-6.
    60. Naruhashi, K., et al., Abnormalities of sensory and memory functions in mice lacking Bsg gene. Biochem Biophys Res Commun, 1997. 236(3): p. 733-7.
    61.续惠云, HAb18G/CD147诱导基质金属蛋白酶产生相关信号通路及其siRNA抑制肝癌进展的实验研究.第四军医大学博士论文, 2006.
    62. Maekawa, M., et al., Stage-specific localization of basigin, a member of the immunoglobulin superfamily, during mouse spermatogenesis. Arch Histol Cytol, 1998. 61(5): p. 405-15.
    63. Toyama, Y., et al., Histological characterization of defective spermatogenesis in mice lacking the basigin gene. Anat Histol Embryol, 1999. 28(3): p. 205-13.
    64. Nakai, M., L. Chen, and R.A. Nowak, Tissue distribution of basigin and monocarboxylate transporter 1 in the adult male mouse: a study using the wild-type and basigin gene knockout mice. Anat Rec A Discov Mol Cell Evol Biol, 2006. 288(5): p. 527-35.
    65. Yuasa, J., et al., Specific localization of the basigin protein in human testes from normal adults, normal juveniles, and patients withazoospermia. Andrologia, 2001. 33(5): p. 293-9.
    66. Yorimitsu, T. and D.J. Klionsky, Autophagy: molecular machinery for self-eating. Cell Death Differ, 2005. 12 Suppl 2: p. 1542-52.
    67. Mizushima, N. and D.J. Klionsky, Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr, 2007. 27: p. 19-40.
    68. Mortimore, G.E. and A.R. Poso, Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr, 1987. 7: p. 539-64.
    69. Klionsky, D.J. and S.D. Emr, Autophagy as a regulated pathway of cellular degradation. Science, 2000. 290(5497): p. 1717-21.
    70. Tanida, I., T. Ueno, and E. Kominami, LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol, 2004. 36(12): p. 2503-18.
    71. Osuna, D., et al., Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant J, 2007. 49(3): p. 463-91.
    72. Sakai, M. and K. Ogawa, Energy-dependent lysosomal wrapping mechanism (LWM) during autophagolysosome formation. Histochemistry, 1982. 76(4): p. 479-88.
    73. Akahoshi, M., K. Oshimi, and H. Mizoguchi, Autophagolysosomes exhibiting lysosomophagy in the granular lymphocytes of patients with granular lymphocyte-proliferative disorders. Virchows Arch B Cell Pathol Incl Mol Pathol, 1993. 63(2): p. 99-105.
    74. Reggiori, F. and D.J. Klionsky, Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol, 2005. 17(4): p. 415-22.
    75. Bellu, A.R. and J.A. Kiel, Selective degradation of peroxisomes in yeasts.Microsc Res Tech, 2003. 61(2): p. 161-70.
    76. Lemasters, J.J., et al., Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal, 2002. 4(5): p. 769-81.
    77. Crotzer, V.L. and J.S. Blum, Autophagy and intracellular surveillance: Modulating MHC class II antigen presentation with stress. Proc Natl Acad Sci U S A, 2005. 102(22): p. 7779-80.
    78. Cuervo, A.M. and J.F. Dice, A receptor for the selective uptake and degradation of proteins by lysosomes. Science, 1996. 273(5274): p. 501-3.
    79. Yoshimori, T., Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun, 2004. 313(2): p. 453-8.
    80. Cuervo, A.M., Autophagy: in sickness and in health. Trends Cell Biol, 2004. 14(2): p. 70-7.
    81. Geng, J., et al., Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J Cell Biol, 2008. 182(1): p. 129-40.
    82. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J, 2000. 19(21): p. 5720-8.
    83. Baehrecke, E.H., Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 2005. 6(6): p. 505-10.
    84. Meijer, A.J. and P. Codogno, Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol, 2004. 36(12): p. 2445-62.
    85. Seglen, P.O. and P.B. Gordon, 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes.Proc Natl Acad Sci U S A, 1982. 79(6): p. 1889-92.
    86.郑杰, mTOR信号途径与肿瘤.生命科学, 2006. 18(3): p. 261-265.
    87. Thomas, G. and M.N. Hall, TOR signalling and control of cell growth. Curr Opin Cell Biol, 1997. 9(6): p. 782-7.
    88. Cardenas, M.E., et al., The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev, 1999. 13(24): p. 3271-9.
    89. Cutler, N.S., J. Heitman, and M.E. Cardenas, TOR kinase homologs function in a signal transduction pathway that is conserved from yeast to mammals. Mol Cell Endocrinol, 1999. 155(1-2): p. 135-42.
    90. Cutler, N.S., et al., The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell, 2001. 12(12): p. 4103-13.
    91. Klionsky, D.J., A.J. Meijer, and P. Codogno, Autophagy and p70S6 kinase. Autophagy, 2005. 1(1): p. 59-60; discussion 60-1.
    92. Tassa, A., et al., Class III phosphoinositide 3-kinase--Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J, 2003. 376(Pt 3): p. 577-86.
    93. Petiot, A., et al., Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem, 2000. 275(2): p. 992-8.
    94. Meley, D., S. Pattingre, and P. Codogno, PI3 kinases and the control of autophagia. Bull Cancer, 2006. 93(5): p. 439-44.
    95. Degtyarev, M., et al., Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol, 2008. 183(1): p. 101-16.
    96. Maiuri, M.C., et al., Control of autophagy by oncogenes and tumorsuppressor genes. Cell Death Differ, 2009. 16(1): p. 87-93.
    97. Abraham, M.C. and S. Shaham, Death without caspases, caspases without death. Trends Cell Biol, 2004. 14(4): p. 184-93.
    98. Schmitz, I., S. Kirchhoff, and P.H. Krammer, Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol, 2000. 32(11-12): p. 1123-36.
    99. Adams, J.M., Ways of dying: multiple pathways to apoptosis. Genes Dev, 2003. 17(20): p. 2481-95.
    100. Ashford, T.P. and K.R. Porter, Cytoplasmic components in hepatic cell lysosomes. J Cell Biol, 1962. 12: p. 198-202.
    101. Mizushima, N., Methods for monitoring autophagy. Int J Biochem Cell Biol, 2004. 36(12): p. 2491-502.
    102. Kabeya, Y., et al., LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 2004. 117(Pt 13): p. 2805-12.
    103. Liang, X.H., et al., Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 1998. 72(11): p. 8586-96.
    104. Liang, X.H., et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999. 402(6762): p. 672-6.
    105. Yue, Z., et al., Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. PNAS Proceedings of the National Academy of Sciences U.S.A., 2003. 100(25): p. 15077-15082.
    106. Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008. 4(2): p.151-75.
    107. Jain, R.K., Molecular regulation of vessel maturation. Nat Med, 2003. 9(6): p. 685-93.
    108. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47.
    109. Vaupel, P., O. Thews, and M. Hoeckel, Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol, 2001. 18(4): p. 243-59.
    110. Kitano, M., et al., Dynamic imaging of pancreatic diseases by contrast enhanced coded phase inversion harmonic ultrasonography. Gut, 2004. 53(6): p. 854-9.
    111. Izuishi, K., et al., Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res, 2000. 60(21): p. 6201-7.
    112. Nelson, D.A., et al., Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev, 2004. 18(17): p. 2095-107.
    113. Semenza, G.L., Mitochondrial autophagy: life and breath of the cell. Autophagy, 2008. 4(4): p. 534-6.
    114. Mizushima N Fau - Levine, B., et al., Autophagy fights disease through cellular self-digestion. (1476-4687 (Electronic)).
    115. Friberg, S. and S. Mattson, On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol, 1997. 65(4): p. 284-97.
    116. Rew Da Fau - Wilson, G.D. and G.D. Wilson, Cell production rates in human tissues and tumours and their significance. Part II: clinical data. (0748-7983 (Print)).
    117. Sato, K., et al., Autophagy is activated in colorectal cancer cells andcontributes to the tolerance to nutrient deprivation. Cancer Res, 2007. 67(20): p. 9677-84.
    118. Lee, S.H., et al., Mutational and expressional analysis of BNIP3, a pro-apoptotic Bcl-2 member, in gastric carcinomas. APMIS, 2007. 115(11): p. 1274-80.
    119. Degenhardt, K., et al., Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006. 10(1): p. 51-64.
    120. Karantza-Wadsworth, V., et al., Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev, 2007. 21(13): p. 1621-35.
    121. Mathew, R., et al., Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev, 2007. 21(11): p. 1367-81.
    122. Qadir, M.A., et al., Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat, 2008.
    123. Amaravadi, R.K., et al., Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest, 2007. 117(2): p. 326-36.
    124. Furuya, N., et al., The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 2005. 1(1): p. 46-52.
    125. Zeng, X., J.H. Overmeyer, and W.A. Maltese, Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J. Cell Sci. Journal of Cell Science, 2006. 119(2): p. 259-270.
    
    126. Aita Vm Fau - Liang, X.H., et al., Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. (0888-7543 (Print)).
    127. Liang, C., et al., Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol, 2006. 8(7): p. 688-99.
    128. Takahashi, Y., et al., Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol, 2007. 9(10): p. 1142-51.
    129. Tsuchihara, K., S. Fujii, and H. Esumi, Autophagy and cancer: Dynamism of the metabolism of tumor cells and tissues. Cancer Lett, 2008.
    130. Ravikumar, B., et al., Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet, 2004. 36(6): p. 585-95.
    131. Lum, J.J., et al., Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005. 120(2): p. 237-48.
    132. Arico, S., et al., The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem, 2001. 276(38): p. 35243-6.
    133. Feng, Z., et al., The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A, 2005. 102(23): p. 8204-9.
    134. Takeuchi, H., et al., Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res, 2005. 65(8): p. 3336-46.
    135. Crighton, D., et al., DRAM, a p53-induced modulator of autophagy, iscritical for apoptosis. Cell, 2006. 126(1): p. 121-34.
    136. Kondo, Y., et al., The role of autophagy in cancer development and response to therapy. Nat Rev Cancer, 2005. 5(9): p. 726-34.
    137. Ogier-Denis, E. and P. Codogno, Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta, 2003. 1603(2): p. 113-28.
    138. Gozuacik, D. and A. Kimchi, Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004. 23(16): p. 2891-906.
    139. Roca, H., Z. Varsos, and K.J. Pienta, CCL2 protects prostate cancer PC3 cells from autophagic death via PI3K/AKT-dependent survivin up-regulation. J Biol Chem, 2008.
    140. Levine, B. and G. Kroemer, Autophagy in the pathogenesis of disease. Cell, 2008. 132(1): p. 27-42.
    141. Klionsky, D.J., Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol, 2007. 8(11): p. 931-7.
    142. Boya, P., et al., Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol, 2005. 25(3): p. 1025-40.
    143. Yu, L., et al., Regulation of an ATG7-beclin 1 Program of Autophagic Cell Death by Caspase-8. Science Science, 2004. 304(5676): p. 1500-1502.
    144. Bursch, W., The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ, 2001. 8(6): p. 569-81.
    145. Kim, H.P., et al., Analyzing autophagy in clinical tissues of lung and vascular diseases. Methods Enzymol, 2009. 453: p. 197-216.
    146. Scott, R.C., O. Schuldiner, and T.P. Neufeld, Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell, 2004.7(2): p. 167-78.
    147. Xu, H.Y., et al., siRNA targeted against HAb18G/CD147 inhibits MMP-2 secretion, actin and FAK expression in hepatocellular carcinoma cell line via ERK1/2 pathway. Cancer Lett, 2007. 247(2): p. 336-44.
    148. Xu, J., et al., HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res, 2007. 5(6): p. 605-14.
    149. Talloczy, Z., et al., Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci U S A, 2002. 99(1): p. 190-5.
    150. Martinet, W., et al., Amino acid deprivation induces both apoptosis and autophagy in murine C2C12 muscle cells. Biotechnol Lett, 2005. 27(16): p. 1157-63.
    151. Espert, L., et al., Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest, 2006. 116(8): p. 2161-72.
    152. Han, Z.B., et al., [Inducement of tumor cell autophagy and cell cycle analysis]. Ai Zheng, 2006. 25(9): p. 1063-8.
    153. Marieb, E.A., et al., Emmprin promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production. Cancer Res, 2004. 64(4): p. 1229-32.
    154. Baba, M., et al., Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism. Biochem Biophys Res Commun, 2008.
    155. Kuang, Y.H., et al., RNA interference targeting the CD147 induces apoptosis of multi-drug resistant cancer cells related to XIAP depletion. Cancer Lett, 2008.
    156. Qu, X., et al., Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 2003. 112(12): p. 1809-20.
    157. Yang, W., et al., Proteasome inhibition induces both pro- and anti-cell death pathways in prostate cancer cells. Cancer Lett, 2006. 243(2): p. 217-27.
    158.孙晓杰,黄常志, PI3K-Akt信号通路与肿瘤.世界华人消化杂志, 2006. 14(3): p. 306-311.
    159. Katso, R., et al., Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol, 2001. 17: p. 615-75.
    160. Xing, C., et al., Class I phosphatidylinositol 3-kinase inhibitor LY294002 activates autophagy and induces apoptosis through p53 pathway in gastric cancer cell line SGC7901. Acta Biochim Biophys Sin (Shanghai), 2008. 40(3): p. 194-201.
    161. Coward, J., et al., Safingol (L-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase pathway. Autophagy, 2009. 5(2): p. 184-93.
    162. Tang, Y., et al., Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res, 2006. 4(6): p. 371-7.
    163. Wang, C.H., et al., CD147 stimulates the angiogenesis in rheumatoid synovium via the activation of vascular endothelial growth factor. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2007. 23(5): p. 426-8.
    164. Chen, Y., et al., Upregulation of HAb18G/CD147 in activated human umbilical vein endothelial cells enhances the angiogenesis. Cancer Lett, 2009.
    165. Tang, J., et al., Overexpression of HAb18G/CD147 promotes invasion and metastasis via alpha3beta1 integrin mediated FAK-paxillin and FAK-PI3K-Ca2+ pathways. Cell Mol Life Sci, 2008. 65(18): p. 2933-42.
    166. Petiot, A., et al., Distinct Classes of Phosphatidylinositol 3'-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells. J. Biol. Chem. Journal of Biological Chemistry, 2000. 275(2): p. 992-998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700