用户名: 密码: 验证码:
生物活性物质的分离分析新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物活性物质的分离分析在现代分析科学中已显出越来越重要的作用,并广泛用于食品安全、环境监测、临床检验、药物分析、医药卫生和质量控制等诸多领域。在这些领域中通常需要对复杂体系中的一种或多种组分进行分离分析,如中药分析中的某些有效成分的浓度测定、临床诊断中对疾病相关标志物的检测、食品分析中对牛奶中三聚氰胺的检出等。这就使得简便、快速、灵敏、低成本的分离分析方法显得尤为重要。本研究就建立生物活性物质的分离分析方法开展了以下几方面的工作:
     1.高效液相色谱-程序波长设计紫外检测法用于同时测定血浆色氨酸和犬尿氨酸及其应用研究
     本研究通过高效液相色谱-程序波长设置紫外检测建立了血浆色氨酸和犬尿氨酸的同时测定方法,该方法具有简单,快速,灵敏,特异等优点。在Agilent Hypersil ODS(125mm×4.0mm,5μm)柱上6分钟内即可完成血浆色氨酸和犬尿氨酸两种组分的同时分离测定。流出液通过紫外检测器程序波长设计检测,0到4分钟波长设置为360nm以检测犬尿氨酸,4到6分钟波长设置为278nm以检测色氨酸,这样可实现这两种组分在一次流动过程中的同时检测。该方法测定犬尿氨酸的线性范围是0.269到21.20μmol/L,色氨酸的线性范围是3.35到678.0μmol/L。犬尿氨酸和色氨酸的检出限分别是0.028μmol/L和0.053μmol/L。精密度和回收率都符合临床检验要求。该方法被用于分析川崎病、过敏性紫癜、肾病综合征、急性肾炎儿童患者的血浆色氨酸和犬尿氨酸浓度。结果显示川崎病组各指标和对照组间有显著性差异,其它组疾病与对照组无显著性差异。
     2.功能化超顺磁性磁珠用于肿瘤标志物检测
     利用超顺磁性磁珠,结合以丝网印刷电极(SPCE)为工作电极的电化学检测技术,提出一种新型的利用磁场固定生物组分的免疫传感器,用于肿瘤标志物CA199的分离检测。该传感器是通过在环氧基末端修饰的超顺磁性纳米磁珠表面结合上链酶亲和素,利用链酶亲和素和生物素反应,将生物素标记的抗体连接在磁珠表面,再加入经离线温育的样品和辣根过氧化物酶标记的抗体(HRP-anti-CA199),这样酶标抗体被成功连接在超顺磁性磁珠表面,通过磁场将其固定在SPCE表面,加入邻苯二胺.过氧化氢体系进行电化学检测。电化学响应信号与CA199抗原浓度成正比,线性范围为5.0~120U/mL。该方法无需固定化试剂,具有简单、灵敏、低成本等特点。
     3.微流控芯片电化学检测在免疫分析中的应用
     随着分析化学、生物学、电子学、计算机技术和微加工技术的迅速发展,新的分析仪器和方法不断被应用于检验医学,使检验医学也相应地得到了快速发展。检验医学已逐步提出向即时检验(point-of-caretesting,POCT)、家庭检测或野外检测方向发展,以实现标本的快速方便的检测。近年来发展起来的微流控免疫分析在仪器的微型化和便携化方面具有较好的应用前景,使实现POCT的目标成为可能。微流控免疫分析是通过微加工技术在芯片材料上构建出微米级的通道用于免疫分析。微流控免疫分析因其独特的性质,能大大改善常规免疫分析性能:(1)由于微通道结构较大的比表面积,能使免疫反应大大缩短,提高分析效率。微流控芯片分析多在几秒或几十秒时间内就能完成组分的分离检测。(2)由于通道的尺寸小,能大大节约贵重的免疫试剂消耗量,降低检测成本。微流控分析的进样量已降低至纳升级甚至更低的水平。(3)易于实现仪器便携化,微型化和操作自动化,有望用于POCT。本研究通过微流控通道中的免疫反应,将印刷电极整合在芯片上实现微流控芯片免疫分析电化学检测一体化装置用于肿瘤标志物含量测定。研究将微流控芯片电进样技术、免疫分析和微流控通道柱端电化学检测结合起来,试图构建一种集进样、分离、检测于一体的简便易携的微流控免疫分析芯片,实现血清肿瘤标志物检测。
The separation and determination of biological active substances have become more and more important in modern analytical chemistry,which has widely been used in food safety,environmental monitoring,clinical diagnosis,pharmaceutical analysis,medicine sanitation,quality control and other fields.One or several components in a complex system should be separated and analyzed in these fields,such as the quantity determination of some effect components in Chinese medicine or detection of biomarks for some diseases in clinical diagnosis or the determination of melamine in milk in food analysis.Thus,a simple,fast,sensitive and low cost method for separation and determination shows great importance.Based on separation and determination of active substances in biological samples, this work focuses on development of new methods showed as follows.
     1.Simultaneous determination of tryptophan and kynurenine in plasma samples by high-performance liquid chromatography with programmed wavelength ultraviolet detection
     A simple,fast,sensitive and specific high-performance liquid chromatography(HPLC) method is developed for simultaneous determination of kynurenine(Kyn) and tryptophan(Trp) with ultraviolet (UV) detection setting programmed wavelength.The separation was carried out on an Agilent Hypersil ODS column(125 mm×4.0 mm,5μm) in less than 6 min and the eluate was monitored by the programmed wavelength detection setting at 360 nm from 0 to 4 min for Kyn,and at 278 nm from 4 min to 6 min for Trp in a single run with UV detector.The linearities of the method were from 0.269 to 21.20μmol/L for Kyn and 3.35 to 678.0μmol/L for Trp,and the detection limits were 0.028μmol/L for Kyn and 0.053μmol/L for Trp,respectively.Satisfactory precisions and recoveries were obtained by this method.The assay was employed to analyze plasma samples of children patients with Kawasaki disease(KD), allergic purpura(AP),nephrotic syndrome(NS) and nephritis.Compared with the control group,KD group showed great difference while other groups showed little difference.
     2.Functional paramagnetic beads applied to the detection of tumor marker
     An electrochemical immunoassay method using a novel magnetic field fixation of biological substance by paramagnetic beads combined with sreen-printed carbon electrode was proposed for the separation and detection of tumor marker using CA199 as a model analyte.The immunosensor was prepared with streptavidin immobilized epoxysilane modified paramagnetic beads,and the biotinlated antibody was connected to the surface of the paramagnetic beads though the reaction of streptavidin and biotin,and then after the off-line incubation the sample and HRP-anti-CA199 were added.Thus,the HRP-anti-CA199 was connected to the surface of the paramagnetic beads successfully,which was then added to the surface of the work electrode of the screen-printed carbon electrode.The electrochemical detection was performed after adding the mixture of o-phenylenediamine(OPD) and H_2O_2 as substrate under the magnetic field.The electrochemical response signal was proportional to the concentration of CA199 in the range of 5.0~120 U/mL.No reagent for immobilization was needed in this method,and it also has the characteristic of simple,sensitive and low cost.
     3.Microfluidics applied to immunoassay by electrochemical detection
     In this research,a microfluidic immunoassay method was developed by performing an immunoreaction in a microchannel and integrating the screen-printed electrodes in a chip for electrochemical determination of tumor markers.The convenient carry-home microchip congregates the functions of sampling,separation and detection for immunoassay in detection of tumor markers.
引文
[1]杨先碧,阮慎康.高效液相色谱发展史[J].化学通报.1998,11:56-60.
    [2]Meinhard JE.Chromatography.A Perspective[J].Science.1949,110:387-392.
    [3]Martin AJP,Synge RLM.A new form of chromatogram employing two liquid phases[J].Biochem.J.1941,35:1358-1368.
    [4]Freeman DH.Review:Ultraselectivity through column switching and mode sequencing in liquid chromatography[J].Anal.Chem.1981,53:2-5.
    [5]Lochm(u|¨)ller CH,Majors RE,Barth HG.Column liquid chromatography[J].Anal.Chem.1982,54:323R-353R.
    [6]Freeman DH.Liquid chromatography in 1982[J].Science.1982,218(4569):235-241.
    [7]Yang J,Wang S,Liu J,et al.Determination of tryptophan oxidation of monoclonal antibody by reversed phase high performance liquid chromatography [J].J.Chromatogr.A 2007,1156:174-182.
    [8]Le THH,Pham L,Nguyen XT,et al.Standardization of the conditions for hydrolyze and derivative for determining amino acids in foodstuff by high performance liquid chromatography[J].Tap Chi.Phan.Tich.Hoa.2008,13(1):76-82.
    [9]Ye L,Liu SY,Wang M,et al.High performance liquid chromatography-tandem mass spectrometry for the analysis of bile acid profiles in serum of women with intrahepatic cholestasis of pregnancy[J].J.Chromatogr.B 2007,860:10-17.
    [10]He DX,Chen B,Tian QQ,et al.Simultaneous determination of five anthraquinones in medicinal plants and pharmaceutical preparations by HPLC with fluorescence detection[J].J.Pharmaceut.Biomed.2009,49(4):1123-1127.
    [11]Zhao RS,Wang X,Yuan J,et al.Sensitive determination of phenols in environmental water samples with SPE packed with bamboo carbon prior to HPLC[J].J.Sep.Sci.2009,32(4):630-636.
    [12]Mueller K,Daus B,Mattusch J,et al.Simultaneous determination of inorganic and organic antimony species by anion exchange phases for HPLC-ICP-MS and their application to plant extracts of Pteris vittata[J].Talanta.2009,78(3):820-826.
    [13]焦奎,张书圣,张敏等.电化学免疫分析研究进展[J].分析化学.1995,23(10):1211-1216.
    [14]王重庆.分子免疫学基础[M].北京大学出版社.1997,21.
    [15]K(o|¨)hler G,Milstein C.Continuous cultures of fused cells secreting antibody of predefined specificity[J].Nature.1975,256(5517):495-497.
    [16]姚赟,赵益斌,文孟良等.抗体及其在免疫传感器中的应用[J].云南化工.1999.2:29-32.
    [17]王自正.现代医学标记免疫学[M].人民军医出版社.2000,6.
    [18]徐宜为.免疫检测技术[M].科学出版社.1991,1.
    [19]Hayashi Y,Matsuda R,Maitani T et al.Precision,limit of detection and range of quantitation in competitive ELISA[J].Anal.Chem.2004,76:1295-1301.
    [20]Engvall E,Perimann P.Enzyme-linked immunosorbent assay(ELISA) quantitative assay of immunoglobulin G[J].Immunochemistry.1971,8:871-874.
    [21]Van Weemen BK,Schuurs AHWM.Immunoassay using antigen-enzyme conjugates[J].FEBS Lett.1971,15(3):232-236.
    [22]Spona J,Kessler AC,Deeg R.Multi-center study of a new CEA enzyme immunoassay using monoclonal antibodies[J].J.Clin.Biochem.1987,25:53-59.
    [23]Mekler VM,SM Bystryak.Application of o-phenylenediamine as fluorogenic substance in peroxidase-mediated enzyme-linked immunosorbent assay[J].Anal.Chim.Acta 1992,264:359-363.
    [24]Robinson GA,Cole VM,Forrest GC.A homogeneous electrode-based bioelectrochemical immunoassay for human chorionic gonadotrophin[J].Biosensors.1987-1988,3(3):147-160.
    [25]Wang RY,Lu XN,Ma WY.Non-competitive immunoassay for alpha-fetoprotein using micellar electrokinetic capillary chromatography and laser-induced fluorescence detection[J].J Chromatogr.B 2002,779(2):157-162.
    [26]Yuan JL,Wang GL,Majima K,et al.Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay[J].Anal.Chem.2001,73:1869-1876.
    [27]Freeman TM,Seltz WR.Chemiluminescence fiber optic probe for hydrogen peroxide based on the luminol reaction[J].Anal.Chem.1978,50:1242-1246.
    [28]Forest JC,Masse J,Lane A.Evaluation of the analytical performance of the Boehringer Mannheim Elecsys 2010 immunoanalyzer[J].Clin.Biochem.1998,31:81-88.
    [29]Findeisen R,Albrecht S,Richter B,et al.Chemiluminometric determination of tissue polypeptide antigen(TPA),cancer antigen 15-3(CA15-3),carcinoembryonic antigen(CEA) in comparison with vascular endothelial growth factor(VEGF) in follow-up of breast cancer[J].Luminescence.2000,15(5):283-289.
    [30]Cui G.,Kim SJ,Choi SH,et al.Disposable amperometric sensor screen printed on a nitrocellulose strip:A glucose biosensor employing lead oxide as an interference-removing agent[J].Anal.Chem.2000,72(8):1925 -1929.
    [31]Liu CH,Liao KT,Huang HJ.Amperometric immunosensors based on protein A coupled polyaniline-perfluorosulfonated ionomer composite electrodes[J].Anal.Chem.2000,72:2925-2929.
    [32]Sarkar P,Pal PS,Ghosh D,et al.Amperometric biosensors for detection of the prostate cancer marker(PSA)[J].Int.J.Pharm.2002,238(1-2):1-9.
    [33]Wu ZY,Yan YH,Shen GL.A novel approach of antibody immobilization based on n-butyl amine plasma-polymerized film for immunosensors[J].Anal.Chim.Acta.2000,412:29-35.
    [34]Ruan CM,Yang LJ,Li YB.Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy[J].Anal.Chem.2002,74:4814-4820.
    [35]赵华文.博士毕业论文.西南大学,2006,11.
    [36] Jain SR, Borowska E, Davidsson R et al. A chemiluminescence flow immunosensor based on a porous monolithic metacrylate and polyethylene composite disc modified with protein G [J]. J. Biosens. Bioelectron. 2004, 19: 795-803.
    [37] Martin-Esteban A, Fernandez P, Cámara C. Immunosorbents: a new tool for pesticide sample handling in environmental analysis [J]. Fresenius J. Anal. Chem. 1997, 357: 927-933.
    [38] Fu ZF, Hao C, Fei XQ, et al. Flow-injection chemiluminescent immunoassay for a-fetoprotein based on epoxysilane modified glass microbeads [J]. J. Immunol. Methods 2006, 312(1-2): 61-67.
    [39] Dai Z, Yan F, Chen J, et al. Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125 [J]. Anal. Chem. 2003, 75(20): 5429-5434.
    [40] Micheli L, Grecco R, Badea M et al. An electrochemical immunosensor for aflatoxin Ml determination in milk using screen-printed electrodes [J]. Biosens. Bioelectron. 2005, 21(4): 588-596.
    [41] Nandakumar R, Nandakumar MP, Mattiasson B. Quantification of nisin in flow-injection immunoassay systems [J]. Biosens. Bioelectron. 2000, 15(5-6): 241-247.
    [42] Yang HH, Zhu QZ, Qu, HY et al. Flow injection fluorescence immunoassay for gentamicin using sol-gel derived mesoporous biomaterial [J]. Anal. Biochem. 2002, 308(1): 71-76.
    [43] Eremenko AV, Bauer CG., Makower A et al. The development of a non-competitive immunoenzymometric assay of cocaine [J]. Anal. Chim. Acta 1998,358:5-13.
    [44] Ivnitski D, Abdel-Hamid I, Atanasov P, et al. Biosensors for detection of pathogenic bacteria [J]. Biosens. Bioelectron. 1999, 14(7):599-624.
    [45] Ivnitski D, Abdel-Hamid I, Atanasov P et al. Application of electrochemical biosensors for detection of food pathogenic bacteria [J]. Electroanalysis. 2000, 12: 317-325.
    [46] Voller A, Bartlett A, Bidwell DE, et al. The detection of viruses by enzyme-linked immunosorbent assay (ELISA) [J]. J. Gen. Virol. 1976, 33:165-167.
    [47] Zhang S. Voltammetric enzyme-linked immunoassay for rrace a-Fetoprotein in human serum using o-, m- and p-Aminophenol as substrates [J]. Anal. Lett. 1999, 32(9): 1761-1773.
    [48] Kreuzer MP, O'Sullivan CK, Pravda M, et al. Development of an immunosensor for the determination of allergy antibody (IgG) in blood samples [J]. Anal. Chim.Acta 2001,442:45-53.
    
    [49] Janata J. An immunoelectrode [J]. J. Am. Chem. Soc. 1975, 97: 2914-2916.
    [50] Ghindilis A, Skorobotko O, Gavnlova V. A new approach to the construction of potentiometric immunosensors [J]. Biosens. Bioelectron. 1992, 7(2): 301-304.
    [51] Alexander PW, Maltra C. Enzyme-linked immunoassay of human immunoglobulin G with the fluoride ion selective electrode [J]. Anal. Chem. 1982, 54(1): 68-71.
    [52] Alexander PW, Rechnitz GA. Ion-electrode based immunoassay and antibody-antigen precipitin reaction monitoring [J]. Anal. Chem. 1974, 46(8): 1253-1257.
    [53] Solsky RL, Rechnitz GA. Automated immunoassay with a silver sulfide ion-selective electrode [J]. Anal. Chim. Acta 1978, 99(2): 241-246.
    [54] Fonong T, Rechnitz GA. Homogeneous potentiometric enzyme immunoassay for human immunoglobulin G [J]. Anal. Chem. 1984, 56(14): 2586-2590.
    [55] Orazlo PD, Rchnitz GA. Ion electrode measurements of complement and antibody levels using marker-loaded sheep red blood cell ghosts [J]. Anal. Chem. 1977, 49(10): 2083-2086.
    
    [56] Aizawa M, Morioka A, Suzuki S, et al. Enzyme immunosensor III amperometric determination of human choriogonadotropin by membrane bound antibody [J]. Anal. Biochem. 1979, 94: 22-28.
    [57] Dai Z, Yan F, Yu H, et al.. Novel amperometric immunosensor for rapid separation-free immunoassay of carcinoembryonic antigen[J].J.Immunol.Methods 2004,287(1-2),13-20(2004)
    [58]Duan C,Meyerhoff ME.Separation-free sandwich enzyme immunoassays using microporous gold electrode and self-assembled monolayer/immobilized capture antibodies[J].Anal.Chem.1994,66:1369-1377.
    [59]Meyerhoff ME,Duan C,Meusel M.Novel nonseparation sandwich-type electrochemical enzyme immunoassay system for detecting marker proteins in undiluted blood[J].Clin.Chem.1995,41,1378-1384.
    [60]Crowley E,O'Sullivan C,Guilbault GG.Amperometric immunosensor for granulocyte -macrophage colony-stimulating factor using screen-printed electrodes[J].Anal.Chim.Acta 1999.389:171-178.
    [61]Wu J,Yan F,Zhang XQ,et al.Disposable reagentless electrochemical immunosensor array based on a biopolymer/sol-gel membrane for simultaneous measurement of several tumor markers[J].Clin.Chem.2008,54:1481-1488.
    [62]Wu J,Yan YT,Yan F,et al.Electric field-driven strategy for fast multiplexed detection of protein biomarkers using a disposable reagentless electrochemical immunosensor array[J].Anal.Chem.2008,80:6072-6077.
    [63]钟桐生,刘国东,沈国励等.电化学免疫传感器研究进展[J].化学传感器.2002.22:7-14.
    [64]Bataillard P,Gardies F,Jaffrezic-Renault N,et al.Direct detection of immunospecies by capacitance measurements[J].Anal.Chem.1988,60,2374-2379.
    [65]Sergeyeva TA,Lavrik NV,Rachkov AE,et al.An approach to conductometric immunosensor based on phthalocyanine thin film[J].Biosens.Bioelectron.1998,13:359-369.
    [66]Dijksma M,Kamp B,Hoogvliet JC,et al.Development of an electrochemical immunosensor for direct detection of interferon-gamma at the attomolar level[J].Anal.Chem.2001,73(5):901-907.
    [67]Patolsky F,Zheng G.F,Hayden O,et al.Electrical detection of single viruses[J]. PNAS.2004, 101:14017-14022.
    [68] Sergeyeva TA, Lavrik NV, Rachkov AE, et al. An approach to conductometric immunosensor based on phthalocyanine thin film [J]. Biosens. Bioelectron. 1998, 13: 359-369.
    [69] Kanungo M, Srivastava DN, Kumar A. Contractor: Conductimetric immunosensor based on poly(3, 4-ethylenedioxythiophene) [J]. Chem. Commun. 2002, 8(7): 680-681.
    [70] Karyakin AA, Presnova GA, Rubtsova MY, et al. Oriented immobilization of antibodies onto the gold surface via their native thiol groups [J]. Anal. Chem. 2000, 72(16): 3805-3811.
    [71] Forzani ES, Solis VM, Calvo EJ. Electrochemical behavior of polyphenol oxidase immobilized in self-assembled structures layer-by-layer with cationic polyallylamine [J]. Anal. Chem. 2000, 72(21):5300-5307.
    [72] Wu ZY, Yan YH, Shen GL, et al. A novel approach of antibody immobilization based on N-butyl amine plasa polymerized films for immunosensors [J]. Anal. Chim.Acta 2000, 412(1-2): 29-35.
    [73] Caruso F, Niikurak, Furlong DN, et al. Assembly of alternating polyelectrolyte and protein multilayer film for immunosensing [J]. Langmuir. 1997, 13(13): 3427-3433.
    [74] Wang J, Pamidi PVA, Rogers KR. Sol-gel derived thick film ampero-metric immunosensors [J]. Anal. Chem. 1998,70(6): 1171-1175.
    [75] Barnett D, Laing DG, Skopec S, et al. Determination of p-cresol using a conducting polymer based electroimmunogical sensing system [J]. Anal. Letters 1994, 27(13): 2417-2429.
    [76] Sadik OA, John MJ, Wallace GG, et al. Pulsed amperometric detection of thaumatin using antibody containing poly(pyrrole) electrodes [J]. Analyst. 1994, 119(9): 1997-2000.
    [77] John R, Spencer M, Wallace GG, et al. Development of a polypyrrole based human serum albumin sensor [J]. Anal. Chim. Acta 1991, 249(2): 381-385.
    [78] Tan F, Yan F, Ju HX. A designer ormosil gel for preparation of sensitive immunosensor for carcinoembryonic antigen based on simple direct electron transfer [J]. Electrochem. Commun. 2006, 8: 1835-1839.
    [79] Smith AM, Ducey MW, Meyerhoff ME. Nature of immobilized antibody layers linked to thioctic acid treated gold surfaces [J]. Biosens. Bioelectron. 2000, 15(3-4): 183-192.
    [80] Shriver-Lake LC, Donner B, Edelstein R, et al. Antibody immobilization using heterobifunctional crosslinkers [J]. Biosens. Bioelectron. 1997, 12(11): 1101-1106.
    [81] Muramatsu H, Dicks JM, Tamiya E, et al. Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins [J]. Anal. Chem. 1987, 59(23): 2760-2763.
    [82] Lu B, Smyth MR, O'kennedy R. Immunological activities of IgG antibody on pre-coated Fc receptor surfaces [J]. Anal. Chim. Acta 1996, 331(1-2): 97-102.
    [83] Gorton L. Carbon paste electrodes modified with enzymes, tissues, and cells [J]. Electroanalysis. 1995, 7: 23-45.
    [84] Ugelstad. A process for preparing an aqueous emulsion of dispersion of a partly water-soluble material and use of polymer particles prepared according to this process as a toner in xerography [P]. EP 0003905, 1979-09-05.
    [85] Flynn G, Hackett TJ, McHale AP, et al. Magnetically responsive photosensitizing reagents for possible use in photoradiation therapy [J]. Cancer Lett. 1994, 78(1-3): 109-114.
    [86] Wascher RA, Huynh KT, Giuliano AE, et al. Stanniocalcin-1: A novel molecular blood and bone marrow marker for human breast cancer [J]. Clin. Cancer Res. 2003,9(4): 1427-1435.
    [87] Yu H, Bruno JG. Immunomagnetic-electrocherniluminescent detection of Escherichia coli 0157 and Salmonella typhimurium in foods and environmental water samples [J]. Appl. Environ. Microbiol. 1996, 62(2): 587-592.
    [88] Klimova IM, Efremenko VI and Pushkar' VG. Magnetic immunoenzyme analysis of Yersinia pestis antigens[J].Microbiol.Epidemiol.Immunobiol.1989,7(7):62-66.
    [89]Matsunaga T,Kawasaki M,Yu X.et al.Chemiluminescence enzyme immuno -assay using bacterial magnetic particles[J].Anal.Chem.1996,68(20):3551-3554.
    [90]王瑞年.分子肿瘤学概论[M].上海:上海科技教育出版社.2001.
    [91]程介克.单细胞分析[M].北京:科学出版社.2005,127-128.
    [92]林炳承,秦建华.微流控芯片实验室[M].北京:科学出版社.2006,71-73.
    [93]杨友麒.微尺度和纳米尺度过程系统工程的进展和挑战[J].现代化工.2007,27(10):1-9.
    [94]Kikutani Y,Ueno M,Hisamoto H,et al.Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode[J].QSAR.Comb.Sci.2005,24(6):742-757.
    [95]Harrison DJ,Fluri K,Seiler K,et al.Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip[J].Science.1993,261(5123):895-897.
    [96]Chou HP,Spence C,Scherer A,et al.A microfabricated device for sizing and sorting DNA molecules[J].PNAS.1999,96(1):11-13.
    [97]Chen Y,Pepin A.Nanofabrication:Conventional and nonconventional methods [J].Electrophoresis.2001,22(2):187-207.
    [98]Vilkner T,Janasek D,Manz A.Micro total analysis systems.Recent developments[J].Anal.Chem.2004,76(12):3373-3386.
    [99]Unger MA,Chou HP,Thorsen T,et al.Monolithic microfabricated valves and pumps by multilayer soft lithography[J].Science.2000,288(5463):113-116.
    [100]Studer V,Hang G,Pandolfi A,et al.Scaling properties of a low-actuation pressure microfluidic valve[J].J.Appl.Phys.2004,95(1):393-398.
    [101]Park SJ,Kim JK,Park J,et al.Rapid three-dimensional passive rotation micromixer using the breakup process[J].J.Micromech.Microeng.2004,14(1):6-14.
    [102]林炳承,秦建华.图解微流控芯片实验室[M].北京:科学出版社.2008,32-34.
    [103]Manz A,Verpoorte E,Effenhauser CS,et al.Planar chip technology for capillary electrophoresis[J].Anal.Chem.1994,66(3):567-571.
    [104]Sato K,Kawanishi H,Kitamori T,et al.Sub-zeptomole detection in a microfabricated glass channel by thermal-lens microscopy[J].Anal.Sci.1999,15:525-529.
    [105]Tokeshi M,Minagawa T,Kitamori T.Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope:subsingle-molecule determination[J].Anal.Chem.2001,73:2112-2116.
    [106]曹小丹,方群,方肇伦.基于复合型微流控芯片的紫外检测毛细管电泳系统[J].高等学校化学学报.2004,25(7):1231-1234.
    [107]Cheek BB,Steel AB,Torres MP,et al.Chemiluminescence detection for hybridization assays on the flow-through chip:A three-dimensional microchannel biochip[J].Anal.Chem.2001,73:5777-5785.
    [108]Greenwood PA,Merrin C,McCreedy T,et al.Chemiluminescence μ-TAS for the determination of atropine and pethidine[J].Talanta.2002,56:539-545.
    [109]Hashimoto M,Tsuagoshi K,Nakajima R,et al.Microchip capillary electrophoresis using on-line chemiluminescence detection[J].J.Chromatogr.A.2000,867:271-279.
    [110]Arora A,Eijkel JCT,Morf WE,et al.A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device[J].Anal.Chem.2001,73(14):3282-3288.
    [111]Xue Q,Foret F,Dunayevskiy YM,et al.Multichannel microchip electrospray mass spectrometry[J].Anal.Chem.1997,69:426-430.
    [112]Ramsey RS,Ramsey JM.Generating electrospray from microchip devices using electroosmotic pumping[J].Anal.Chem.1997,69:1174-1178.
    [113]Grass B,Neyer A,Jonck M,et al.A new PMMA-microchip device for isotachophoresis with integrated conductivity detector[J].Sens.Actuators B 2001,72(3):249-258.
    [114]Woolley AT, Lao K, Glazer AN, et al. Capillary electrophoresis chips with integrated electrochemical detection [J]. Anal. Chem. 1998, 70: 684-688.
    [115]Zhai C, Li C, Qiang W, et al. Amperometric detection of carbohydrates with a portable silicone/quartz capillary microchip by designed fracture sampling [J]. Anal. Chem. 2007, 79: 9427-9432.
    [116] Galloway M, Stryjewski W, Henry A, et al. Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules [J]. Anal. Chem. 2003, 74: 2407-2415.
    [117]Trumbull JD, Glasgow IK, Beebe DJ, et al. Integrating microfabricated fluidic systems and NMR spectroscopy [J]. Biomed. Eng. 2000,47: 3-7.
    [118]Kwok YC, Jefferey NT, Manz A. Velocity measurement of particles flowing in a microfluidic chip using Shah convolution Fourier transform "detection [J]. Anal. Chem.2001,73: 1748-1752.
    [119] Walker PA, Morris MD, Burns MA, et al. Isotachophoretic separations on a microchip normal raman spectroscopy detection [J]. Anal. Chem. 1998, 70: 3766-3769.
    [120]Swinney K, Bornhop DJ. A chip-scale universal detector for electrophoresis based on backscattering interferometry [J]. Analyst. 2000, 125: 1713-1717.
    [121]Kwok YC, Jeffery NT, Manz A. Velocity measurement of particles flowing in a microfluidic chip using Shah convolution Fourier transform detection [J]. Anal. Chem. 2001,73(8): 1748-1753.
    [122] Wang J, Ibanez A, Chatrathi MP, et al. Electrochemical enzyme immunoassays on microchip platforms [J]. Anal. Chem. 2001, 73: 5323-5327.
    [123] Wang J, Ibanez A, Chatrathi MP. Microchip-based amperometric immunoassays using redox tracers [J]. Electrophoresis. 2002, 23: 3744-3749.
    [1] Myint AM, Kim YK, Verkerk R. Kynurenine pathway in major depression: evidence of impaired neuroprotection [J]. J. Affect. Disorders. 2007, 98: 143-151.
    [2] Widner B, Werner ER, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC [J]. Clin. Chem. 1997, 43: 2424-2426.
    [3] Laich A, Neurauter G, Widner B, et al. More rapid method for simultaneous measurement of tryptophan and kynurenine by HPLC [J]. Clin. Chem. 2002, 48: 579-581.
    [4] Matin A, Streete IM, Jamie IM, et al. A fluorescence-based assay for indoleamine 2,3-dioxygenase [J]. Anal. Biochem. 2006, 349: 96-102.
    [5] Pertovaara M, Raitala A, Uusitalo H. Mechanisms dependent on tryptophan catabolism regulate immune responses in primary Sjogren's syndrome [J]. Clin. Exp. Immunol. 2005, 142: 155-161.
    [6] Maneglier B, Kreuz CR, Cordonnier P. Simultaneous measurement of kynurenine and tryptophan in human plasma and supernatants of cultured human cells by HPLC with coulometric detection [J]. Clin. Chem. 2004, 50: 2166-2168.
    [7] Schrocksnadel K, Wirleitner B, Winkler C, et al. Monitoring tryptophan metabolism in chronic immune activation [J]. Clin. Chim. Acta 2006, 364: 82-90.
    [8] Kwidzinski E, Bunse J, Aktas O. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation [J]. FASEB J. 2005, 19: 1347-1349.
    [9] Fukushima T, Mitsuhashi S, Tomiya M. Determination of kynurenic acid in human serum and its correlation with the concentration of certain amino acids [J]. Clin. Chim. Acta 2007, 377: 174-178.
    [10] Cozzi A, Zignego AL, Carpendo R, et al. Low serum tryptophan levels, reduced macrophage IDO activity and high frequency of psychopathology in HCV patients [J]. J. Viral. Hepatitis. 2006, 13: 402-408.
    [11] Sugimoto H, Oda SI, Shiro Y. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase [J]. PNAS. 2006, 103: 2611-2616.
    [12] Batabyal D, Yeh SR. Human tryptophan dioxygenase: A comparison to indoleamine 2,3-dioxygenase [J]. J. Am. Chem. Soc. 2007,129: 15690-15701.
    [13] Lob S, Konigsrainer A, Schafer R. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells [J]. Blood. 2008, 111: 2152-2154.
    [14] Brown RR, Ozaki Y, Datta SP. Implications of interferon-induced tryptophan catabolism in cancer, autoimmune diseases and AIDS [J]. Adv. Exp. Med. Biol. 1991, 294: 425-435.
    [15] Karola O, Oliver A, Kwang SK. Indoleamine 2,3-dioxygenase mediates cell type-specific anti-measles virus activity of gamma interferon [J]. J. VIROL. 2005, 79: 7768-7776.
    [16] Schroecksnadela K, Winkler C, Fuith LC, et al. Tryptophan degradation in patients with gynecological cancer correlates with immune activation [J]. Cancer Lett. 2005, 223: 323-329.
    [17] Wang W, Qiu B, Xu XQ, et al. Separation and determination of L-tryptophan and its metabolites by capillary micellar electrokinetic chromatography with amperometric detection [J]. Electrophoresis. 2004, 25: 903-910.
    [18] Vignau J, Jacquemont MC, Lefort A, et al. Simultaneous determination of tryptophan and kynurenine in serum by HPLC with UV and fluorescence detection [J]. Biomed. Chromatogr. 2004, 18: 872-874.
    [19] Alegre E, Lopez AS, Gonzalez A. Tryptophan metabolites interfere with the Ehrlich reaction used for the measurement of kynurenine [J]. Anal. Biochem. 2005, 339: 188-189.
    [20] Hwang SL, Chung NPY, Chan JKY, et al. Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines [J]. Cell Res. 2005, 15: 167-175.
    [21] Vaarmann A, Kaska A, Maeorg U. Novel and sensitive high-performance liquid chromatographic method based on electrochemical coulometric array detection for simultaneous determination of catecholamines, kynurenine and indole derivatives of tryptophan [J]. J. Chromatogr. B 2002, 769: 145-153.
    [22] Yamada K, Miyazaki T, Shibata T. Simultaneous measurement of tryptophan and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry [J]. J. Chromatogr. B 2008, 867: 57-61.
    [23] Marklova E, Makovickova H, Krakorova I. Screening for defects in tryptophan metabolism [J]. J. Chromatogr. A 2000, 870: 289-293.
    [24] Wang R, Tang AG. Simultaneous determination of kynurenine and tryptophan in serum by high performance liquid chromatography [J]. Chin. J. Chromatogr. 2006, 24: 140-143.
    [25] Kawai K, Ishikawa H, Ohashi K. Rapid,-simple and simultaneous measurement of kynurenine and tryptophan in plasma by column switching-HPLC method [J]. Intern. Congress Series. 2007, 1304: 415-419.
    [26] Lee KY, Han JW, Lee JS. Kawasaki disease may be a hyperimmune reaction of genetically susceptible children to variants of normal environmental flora [J]. Med. Hypotheses 2007, 69: 642-651.
    [27] Wood LE, Tulloh RMR. Diagnosis and management of Kawasaki disease in children [J]. Paediatr. Child H. 2008, 18: 70-74.
    
    [28] Burns JC, Glodé MP. Kawasaki syndrome [J]. Lancet. 2004, 364: 533-544.
    [29] Fuchs D, Moller AA, Reibnegger G, et al. Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms [J]. Immune Defic. Syndr. 1990, 3: 873-876.
    [1]Daniel RD.A new non-isotopic detection system for immunoassays[J].Nature.1995,377:758-760.
    [2]Benkirane RM,Guillot E,Mouton C.Immunomagnetic PCR and DNA probe for detection and identification of Porphyromonas gingiva[is[J].J.Clin.Microbiol. 1995, 33(11): 2908-2912.
    [3] Chara R, Ohara O. A new solid-phase chemical DNA sequencing method which uses streptavidin-coated magnetic beads [J]. DNA Research. 1995, 2(3): 123-128.
    [4] Estes MD, Do J, Ahn CH. On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers [J]. Biomed. microdevices. 2009,11(2): 509-515.
    [5] Nyren P, Biolumin J. Apyrase immobilized on paramagnetic beads used to improve detection limits in bioluminometric ATP monitoring [J]. Chemilumin. 1994, 9(1): 29-34.
    [6] Soelberg SD, Stevens RC, Limaye AP, et al. Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification [J]. Anal. Chem. 2009, 81(6): 2357-2363.
    [7] Soukka T, Paukkunen J, Harma H, et al. Apyrase immobilized on paramagnetic beads used to improve detection limits in bioluminometric ATP moniSupersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology toring [J]. Clin. Chem. 2001, 47: 1269-1278.
    [8] Kucera E, Kainz C, Tempfer C, et al. Prostate specific antigen (PSA) in breast and ovarian cancer [J]. Anticancer Res. 1997, 17: 4735-4737.
    [9] McKie A, Samuel D, Cohen B, et al. A quantitative immuno-PCR assay for the detection of mumps-specific IgG [J]. J. Immunol. Methods. 2002, 270: 135-141.
    [10] Muller UR. Protein detection using biobarcodes [J]. Mol. Biosyst. 2006, 2: 470-476.
    [11] Henne WA, Doorneweerd DD, Lee J, et al. Detection of folate binding protein with enhanced sensitivity using a functionalized quartz crystal microbalance sensor [J]. Anal. Chem. 2006, 78: 4880-4884.
    [12] Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors [J]. Nat. Biotechnol. 2003,21: 1192-1199.
    [13] Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction [J]. Nat. Biotechnol. 2001, 19: 253-257.
    [14] Georganopoulou DG, Chang L, Nam JM, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease [J]. PNAS 2005, 102: 2273-2276.
    [15] Liu YJ, Guo SS, Zhang ZL, et al. Integration of minisolenoids in microfluidic device for magnetic bead-based immunoassays [J]. J. Appl. Phys. 2007, 084911: 102.
    [16] Janssen XJA, IJzendoorn LJV, Prins MWJ. On-chip manipulation and detection of magnetic particles for functional biosensors [J]. Biosens. Bioelectron. 2008, 23: 833-838.
    [17] Aytur T, Foley J, Anwar M, et al. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis [J]. J. Immunol. Methods 2006,314:21-29.
    [18] Hong X, Gao XF, Jiang L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet [J]. J. AM. CHEM. SOC. 2007, 129: 1478-1479.
    [19] Hayes MA, Poison NA., Phayre AN, et al. Flow-based microimmunoassay [J]. Anal. Chem. 2001, 73: 5896-5902.
    [1]Koutny LB,Schmalzing D,Taylor TA,et al.Microchip electrophoretic immunoassay for serum cortisol [J]. Anal. Chem. 1996, 68: 18-22.
    [2] Chiem N, Harrison DJ. Microchip-based capillary electrophoresis for immunoassays: Analysis of monoclonal antibodies and theophylline [J]. Anal. Chem. 1997,69:373-378.
    [3] Chiem N, Harrison DJ. Microchip systems for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination [J]. Clin. Chem. 1998, 44: 591-598.
    [4] Sato K, Tokeshi M, Kimura H, et al. Determination of carcinoembryonic antigen in human sera by integrated bead bed immunoasay in a microchip for cancer diagnosis [J]. Anal. Chem. 2001, 73: 1213-1218.
    [5] Schmalzing D, Koutny LB, Taylor TA, et al. Immunoassay for thyroxine (T4) in serum using capillary electrophoresis and micromachined devices [J]. J. Chromatogr. B 1997, 697 : 175-180.
    [6] Dodge A, Fluri K, Verpoorte E, et al. Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays [J]. Anal. Chem. 2001, 73(14): 3400-3409.
    [7] Rossier J, Girault HH. Enzyme linked immunosorbent assay on a microchip with electrochemical detection [J]. Lab Chip. 2001, 1(2): 153-157.
    [8] Wang J, Ibanez A, Chatrathi MP. On-chip integration of enzyme and immunoassays: simultaneous measurements of insulin and glucose [J]. J. AM. CHEM. SOC. 2003, 125: 8444-8445.
    [9] Wang J, Chatrathi MP, Ibánez A. Glucose biochip: dual analyte response in connection to two pre-column enzymatic reactions [J]. Analyst. 2001, 126: 1203-1206.
    [10] Wang J, Ibanez A, Chatrathi MP, et al. Electrochemical enzyme immunoassays on microchip platforms [J]. Anal. Chem. 2001, 73: 5323-5327.
    [11] Acharya G, Chang CL, Doorneweerd DD, et al. Immunomagnetic diffractometry for detection of diagnostic serum markers [J]. J. AM. CHEM. SOC. 2007, 129: 15824-15829.
    [12] Jiang XY, Ng JMK, Stroock AD, et al. A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens [J]. J. AM. CHEM. SOC. 2003, 125: 5294-5295.
    [13] Lee KH, Su YD, Chen SJ, et al. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay [J]. Biosens. Bioelectron. 2007, 23: 466-472.
    [14] Do J, Ahn CH. A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities [J]. Lab Chip. 2008, 8: 542-549.
    [15] Zhai C, Li C, Qiang W, et al. Amperometric detection of carbohydrates with a portable silicone/quartz capillary microchip by designed fracture sampling [J]. Anal. Chem. 2007, 79: 9427-9432.
    [16] Golden JP, Floyd-Smith TM, Mott DR, et al. Target delivery in a microfluidic immunosensor [J]. Biosens. Bioelectron. 2007, 22: 2763-2767.
    [17] Latham AH, Tarpara AN, Williams ME. Magnetic field switching of nanoparticles between orthogonal microfluidic channels [J]. Anal. Chem. 2007, 79: 5746-5752.
    [18] He XY, Dandy DS, Henry CS. Microfluidic protein patterning on silicon nitride using solvent-extracted poly(dimethylsiloxane) channels [J]. Sens. Actuators B 2008,129:811-817.
    [19] Luo YQ, Yu F, Zare RN. Microfluidic device for immunoassays based on surface plasmon resonance imaging [J]. Lab Chip 2008, 8: 694-700.
    [20] Huang B, Wu HK, Kim S, et al. Coating of poly(dimethylsiloxane) with n-dodecyl-b-D-maltoside to minimize nonspecific protein adsorption [J]. Lab Chip 2005,5: 1005-1007.
    [1]鞠熀先,邱宗荫,丁世家等.生物分析化学[M].北京:科学出版社.2007,216
    [2]方肇伦等.微流控分析芯片[M].北京:科学出版社.2003,243
    [3]贾宏新,吴志勇,方肇伦.微流控免疫分析方法研究进展[J].分析化学.2005,33:1489-1493.
    [4]潘爱平,金庆辉,王惠民等.微流控芯片免疫分析技术及其研究进展[J].检验医学.2007,22:508-510.
    [5]王立凯,冯喜增.微流控芯片技术在生命科学研究中的应用[J].化学进展.2005.17:482-491.
    [6]黄辉.微流控免疫分析芯片的研究进展[J].生物医学工程学杂志.2007,24:928-931.
    [7]Warsinke A,Benkert A,Scheller FW,et al.Electrochemical immunoassays[J].Anal.Chem.,2000,366:622-634.
    [8]Lim CT,Zhang Y.Bead-based microfluidic immunoassays:The next generation [J].Biosens.Bioelectron.2007,22:1197-1204.
    [9] Bange A, Halsall BH, Heineman WR. Microfluidic immunosensor systems [J]. Biosens. Bioelectron. 2005, 20: 2488-2503.
    [10] Bhattacharyya A, Klapperich CM. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples [J]. Biomed. Microdevices 2007, 9: 245-251.
    [11] Sato K, Tokeshi M, Odake T, et al. Integration of an immunosorbent assay system: Analysis of secretory human immunoglobulin A on polystyrene beads in a microchip [J]. Anal. Chem. 2000, 72: 1144-1147.
    [12] Sato K, Tokeshi M, Kimura H, et al. Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis [J]. Anal. Chem. 2001, 73: 1213-1218.
    [13] Sato K, Yamanaka M, Takahashi H, et al. Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma [J]. Electrophoresis. 2002, 23: 734-739.
    [14] Vandaveer IV WR, Pasas-Farmer SA, Fischer DJ, et al. Recent developments in electrochemical detection for microchip capillary electrophoresis [J]. Electrophoresis. 2004,25: 3528-3549.
    [15] Koutny L B, Schmalzing D, Taylor TA, Fuchs M. Microchip electrophoretic immunoassay for serum cortisol [J]. Anal. Chem. 1996, 68: 18-22.
    [16] Chiem N, Harrison DJ. Microchip-Based capillary electrophoresis for immunoassays: Analysis of monoclonal antibodies and theophylline [J]. Anal. Chem. 1997,69:373-378.
    [17] Cohen CB, Dixon EC, Jeong S, et al. A microchip-based enzyme assay for protein kinase A [J]. Anal. Biochem. 1999, 273: 89-97.
    [18] Wang J, Ibanez A, Chatrathi MP, et al. Electrochemical enzyme immunoassays on microchip platforms [J]. Anal. Chem. 2001, 73: 5323-5327.
    [19] Wang J, Ibanez A, Chatrathi MP. Microchip-based amperometric immunoassays using redox tracers [J]. Electrophoresis. 2002, 23: 3744-3749.
    [20] Chiem NH, Harrison DJ. Microchip systems for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination [J]. Clin. Chem. 1998,44: 591-598.
    [21] Herr AE, Hatch AV, Throckmorton DJ, et al. Microfluidic immunoassays as rapid saliva-based clinical diagnostics [J]. PNAS 2007, 104: 5268-5273.
    [22] Luo CX, Fu Q, Li H, et al. PDMS microfludic device for optical detection of protein immunoassay using gold nanoparticles [J]. Lab Chip 2005, 5: 726-729.
    [23] Hadd AG, Raymond DE, Halliwell JW, et al. Microchip device for performing enzyme assays [J]. Anal. Chem. 1997, 69: 3407-3412.
    [24] Haes AJ, Terray A, Collins GE. Bead-assisted displacement immunoassay for staphylococcal enterotoxin B on a microchip [J]. Anal. Chem. 2006, 78: 8412-8420.
    [25] Shin KS, Lee SW, Han KC, et al. Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip [J]. Biosens. Bioelectron. 2007, 22: 2261-2267.
    [26] Yasukawa T, Suzuki M, Sekiya T, et al. Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis [J]. Biosens. Bioelectron. 2007, 22: 2730-2736.
    [27] Hayes MA, Poison NA, Phayre AN, et al. Flow-based microimmunoassay [J]. Anal. Chem. 2001, 73: 5896-5902.
    [28] Choi JW, Ahn CH, Bhansali S, et al. A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems [J]. Sens. Actuators B 2000, 68: 34-39.
    [29] Kim KS, Park JK. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel [J]. Lab Chip 2005, 5: 657-664.
    [30] Farrell S, Matsuno NJR, Halsall HB, et al. Bead-based immunoassays with microelectrode detection [J]. Anal. Biochem. 2004, 379: 358-367.
    [31] Dodge A, Fluri K, Verpoorte E, et al. Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays [J]. Anal. Chem. 2001, 73: 3400-3409.
    [32] Eteshola E, Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels [J]. Sens. Actuators B 2001, 72: 129-133.
    [33] Hosokawa K, Omata M, Sato K, et al. Power-free sequential injection for microchip immunoassay toward point-of-care testing [J]. Lab Chip 2006, 6: 236-241.
    [34] Kurita R, Yokota Y, Sato Y, et al. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system [J]. Anal. Chem. 2006,78: 5525-5531.
    [35] Rossier JS, Girault HH. Enzyme linked immunosorbent assay on a microchip with electrochemical detection [J]. Lab Chip 2001, 1: 153-157.
    [36] Du Z, Cheng KH, Vaughn MW, et al. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device [J]. Biomed. Microdevices 2007, 9: 35-42.
    [37] Henares TG, Funano SI, Terabe S, et al. Multiple enzyme linked immunosorbent assay system on a capillary-assembled microchip integrating valving and immuno-reaction functions [J]. Anal. Chim. Acta 2007, 589: 173-179.
    [38] Bernard A, Michel B, Delamarche E. Micromosaic immunoassays [J]. Anal. Chem. 2001,73:8-12.
    [39] Sandro CT, Dernick G, Juncker D, et al. High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems [J]. Lab Chip 2004,4: 563-569.
    [40] Dong Y, Phillips KS, Cheng Q. Immunosensing of Staphylococcus enterotoxin B (SEB) in milk with PDMS microfluidic systems using reinforced supported bilayer membranes (r-SBMs) [J]. Lab Chip 2006, 6: 675-681.
    [41] Bai YL, Koh CG, Boreman M, et al. Surface modification for enhancing antibody binding on polymer-based microfluidic device for enzyme-linked immunosorbent assay [J]. Langmuir. 2006,22: 9458-9467.
    [42] Yang TL, Jung SY, Mao HB, et al. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays [J]. Anal. Chem. 2001, 73: 165-169.
    [43] Linder V, Verpoorte E, Thormann W, et al. Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection [J]. Anal. Chem. 2001, 73: 4181-4189.
    [44] Golden JP, Smith TMF, Mott DR, et al. Target delivery in a microfluidic immunosensor [J]. Biosens. Bioelectron. 2007, 22: 2763-2767.
    [45] Vijayendran RA, Motsegood KM, Beebe DJ, et al. Evaluation of a three-dimensional micromixer in a surface-based biosensor [J]. Langmuir. 2003, 19:1824-1828.
    [46] Zimmermann M, Delamarche E, Wolf M, et al. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays [J]. Biomed. Microdevices 2005, 7: 99-110.
    [47] Aguilar ZP, Vandaveer WR, Fritsch I. Self-contained microelectrochemical immunoassay for small volumes using mouse IgG as a model system [J]. Anal. Chem. 2002,74:3321-3329.
    [48] Dong H, Li CM, Zhou Q, et al. Sensitive electrochemical enzyme immunoassay microdevice based on architecture of dual ring electrodes with a sensing cavity chamber [J]. Biosens. Bioelectron. 2006, 22: 621-626.
    [49] Dong H, Li CM, Zhang YF, et al. Screen-printed microfluidic device for electrochemical immunoassay [J]. Lab Chip. 2007, 7: 1752-1758.
    [50] Nashida N, Satoh W, Fukuda J, et al. Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions [J]. Biosens. Bioelectron. 2007, 22: 3167-3173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700