用户名: 密码: 验证码:
高性能聚烯烃的微结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯和聚乙烯以其优良的综合性能和高性价比成为产量最多的通用大品种塑料之首。并且目前已有众多大型国际石化公司放弃十年前所奉行的“以生命科学为21世纪石化行业发展的主导,传统聚烯烃行业已过时”的理念,重新转向PP, PE等传统高分子体系的研究,尤其是对高性能新型聚烯烃(即PP, PE)结构的研究,为其进一步高性能化提供理论依据。
     高抗冲共聚聚丙烯(hiPP)的合成基于反应器颗粒技术的开发及应用,使PP与增韧组分直接在聚合釜内实现亚微观程度的混合,从而有效改善PP的抗冲性能并降低生产成本。hiPP的合成一般采用序列聚合工艺:第一步先合成高立构规整度,高孔隙率的丙烯均聚物颗粒(iPP);第二步在iPP粒子内合成橡胶相(乙-丙共聚物EPR)。最终产品具有良好刚性和韧性平衡。
     压力管材专用聚乙烯树脂是由乙烯和不同的烯烃共聚得到的产品,此产品性能优良,具有普通聚烯烃不能比拟的性能。
     本论文采用13C-NMR、DSC、TEM、PLM、SEM、AFM等多种研究手段,同时结合样品分级和不同级分选择性重新共混等方法对不同hiPP和PE共聚物的组成,分子链结构,结晶行为和相结构进行了系统研究,以探讨该体系分子链结构-聚集态结构-性能间的构效关系,取得一些创新性结果。
     1.观察到在均聚阶段得到的iPP原始粒子的三级结构形态:最小的构筑单元-初级粒子(直径约100 nm),由初级粒子聚集而成的次级粒子(直径在几个至上百微米),以及由次级粒子聚集成的宏观iPP粒子(直径约0.6 mm);首次发现由第一阶段液相聚合生成的iPP粒子中含有大量的被低等规度聚丙烯半填充的微孔。在这些微孔中存在着的填充物阻碍乙烯/丙烯共单体向iPP粒子中扩散。正是这种传质阻碍作用使得乙烯/丙烯共单体在iPP粒子内的扩散速度小于聚合速度,从而导致了EPR相在iPP粒子中的形成过程是由外向内发展。在聚合的早期,EPR相仅在iPP粒子的外层形成,随着聚合的不断进行,EPR相逐渐向内层发展,最终形成内外均一的分散相;EPR相在半填充微孔壁和初级粒子之间的间隙的内表面催化剂活性中心上直接生成,随着反应的进行,这些间隙中生成的EPR膨胀进入微孔中。该结果不仅有助于对催化体系聚合工艺和反应动力学的调控,同时加深了对EPR形成机理的理解。
     2.发现hiPP的分散相呈现多层核-壳结构,即内芯由聚乙烯和短序列的乙-丙多嵌段共聚物组成,中间层为EPR,外壳为长序列的乙-丙嵌段共聚物,从而证明短序列乙-丙多嵌段共聚物和长序列乙-丙嵌段共聚物的作用是完全不同的。EPR为增韧相,内芯聚乙烯结晶相对EPR有增刚作用,而外壳长序列乙-丙嵌段共聚物结晶相一方面可增加分散相的刚性,另一方面可视为“增容层”,强化聚丙烯基质与分散相的结合。正是这种内芯和外壳为硬相,中间层为软相的多重结构分散相成为决定材料力学性能的关键因素,在对聚丙烯增韧的同时,还保持其高的刚性,达到刚韧平衡;通过比较几种高抗冲聚丙烯样品的相形态及其与材料性能的关系,进一步证明hiPP中分散相的多层核-壳结构是决定材料力学性能的关键因素。AW191样品分散相的多层核-壳结构最完整,因此力学性能(韧性)最好,SP179样品分散相的外壳相对不明显,故性能较差,而7033N样品的分散相无第三层外壳,故性能最差。该结果一方面深化了对hiPP链结构和多重相形态的认识,另一方面为该材料的高性能化提供了理论依据。
     3.通过对压力管材专用聚乙烯共聚物熔体拉伸薄膜的微结构研究发现,熔体拉伸薄膜除高取向片晶外,还含有较多的纤维晶,纤维晶平行于拉伸方向,穿过几个片晶区,平均直径约为12纳米,其形态特征为晶区和非晶区交替排列的晶桥结构。纤维晶的生成源于聚乙烯共聚物中的超高分子量组分,该组分在压力管材制品中起到缠结和系带分子的增强作用。该结果不仅有助于深入理解和认识聚合物取向结晶机理,同时也为该材料的性能优化提供了实验数据。
The composition, molecular chain structure, crystallization and phase morphology of different hiPP and PE copolymer were investigated by solvent fractionation, 13C NMR, DSC, TEM, PLM, AFM and SEM to establish the molecular chain structure-property relationships of this material. Some novel results are obtained.
     The production of high impact polypropylene copolymer (hiPP) is based on reactor granule technology. A sequential polymerization process is usually applied to produce hiPP. First, isotactic polypropylene (iPP) particles with porosity are prepared. These particles are transferred to the next reactor where the elastomeric phase (EPR) is produced within the iPP particles. The end-products exhibit excellent toughness-rigidity balance.
     The original homopolymerized iPP particle exhibits a multiple structure, i.e., the iPP particle ( ca. 0.6 mm in diameter) is an agglomerate of many subparticles (ca. several to hundred microns in diameter), while the subparticle is in turn formed by a great deal of primary particles (ca. 100 nm in diameter); It is found for the first time that ethylene-propylene copolymer (EPR) phases in polypropylene (iPP) particle produced in the first stage slurry polymerization exhibit a developing process from exterior to interior. During the early stage of ethylene-propylene copolymerization, with lower content of copolymerized ethylene (7.4 mol%), the EPR phases occur only in external layer of the particle, while at the late stage of the copolymerization with higher content of copolymerized ethylene (26.7 mol%), the elastomer phases distribute uniformly in the whole particle. This phenomenon is due to an effect of mass transfer resistance. The origin of mass transfer resistance is loosely agglomerate inclusions of low tacticity polypropylene within the semi-filled micropores inside the iPP particles. It is the inclusions inside the micropores that resist the diffusion of ethylene/propylene comonomers into the particle.
     It is found that the dispersed phase of hiPP in both the solution-cast films and the bulk exhibits a multilayered core-shell structure, i.e., inner core, intermediate layer and outer shell. The inner core is mainly composed of polyethylene and ethylene-propylene segmented copolymers with shorter sequence length, the intermediate layer is ethylene-propylene random copolymer (EPR), and the outer shell consists of ethylene-propylene block copolymers with longer sequence length. The outer shell could not only increase the stiffness of the dispersed phase, but also be considered a compatibilizing layer to enhance interfacial adhesion between the dispersed phase and the iPP matrix. It is the multiphase morphology that makes the material possess both the high rigidity and the high toughness.
     The study on morphological structure of melt-drawn films of polyethylene containing small amount of copolymerized component indicates that, in addition to highly oriented lamellae, the melt-drawn films of the polyethylene copolymers contain a large amount of fibrous crystals with average diameter about 12 nm, which are parallel to drawing direction. Simulation experiment (adding 1 wt% ultra-high molecular weight polyethylene into regular high density polyethylene) proves that the formation of the fibrous crystals originates from ultra-high molecular weight component in the polyethylene copolymers. However, this kind of fibrous crystal is different from classical extended chain fibrous crystal. Morphological characteristic of the fibrous crystal of the copolymer should be a crystal-bridged structure with an alternating alignment of crystalline and noncrystalline regions. A model of the crystal-bridged fibrous crystal has been proposed, which not only benefits understanding the mechanism of the oriented crystallization of polymers, but also provides a theory foundation for improving properties of the material.
引文
[1] Galli P, Vecellio G. Polyolefins: The most promising large-volume materials for the 21st century[J]. J Polym Sci Part A: Polym Chem, 2004, 42(3): 396-415.
    [2] Karger-Kocsis J. Polypropylene: Structure, blends and composites. Volume 1 Structure and Morphology[M]. First Edition, London: Chapman & Hall, 1995.
    [3]洪定一。聚丙烯-原理、工艺与技术[M].第一版,北京:中国石化出版社,2002年9月。
    [4] Simonazzi T, Cecchin G, Mazzullo S. An outlook on progress in polypropylene-based polymer technology[J]. Prog Polym Sci, 1991, 16(2-3): 303-329.
    [5] Galli P, Haylock J C. Continuing initiator system developments provide a new horizon for polyolefin quality and properties[J]. Prog Polym Sci, 1991, 16(2-3): 443-462.
    [6] Cecchin G, Morini G, Pelliconi A. Polypropene product innovation by reactor granule technology[J]. Macromol Symp, 2001, 173: 195-210.
    [7]姜涛,陈伟,傅聪智,等.石油化工,2005, 34:482。
    [8] Hutchinson R A, Chen C M, Ray W H. Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology[J]. J Appl Polym Sci, 1992, 44(8): 1389-1414, and the references therein.
    [9] Hock C W. How Ticl3 Catalysts Control the Texture of As-Polymerized Polypropylene[J]. J Polym Sci A-1, 1966, 4(12): 3055-3064.
    [10] Mackie P, Berger M N, Grieveson B M, et al. J Polym Sci Polym Lett Ed, 1967, 5: 493.
    [11] Ferrero M A, Koffi E, Conner W C, et al. Characterization of the changes in the initial morphology for MgCl2-supported Ziegler-Natta polymerization catalysts[J]. J Polym Sci Part A: Polym Chem, 1992, 30(10): 2131-2141.
    [12] Ferrero M A, Sommer R, Conner W C, et al. X-ray microtomography studies of nascent polyolefin particles polymerized over magnesium chloride-supported catalysts[J]. J Polym Sci Part A: Polym Chem, 1993, 31(10): 2507-2512.
    [13] Noristi L, Marchetti E, Sgarzi P, et al. Investigation on the particle growth mechanism in propylene polymerization with MgCl2-supported ziegler-natta catalysts[J]. J Polym Sci Part A: Polym Chem, 1994, 32(16): 3047-3059.
    [14] Bukatov G D, Zaikovskii V I, Zagrafskaya R V, et al. Polym Sci U S S R, 1982, 24: 599.
    [15] Skomorokhov V B, Zakharov V A, Bukatov G D, et al. Polym Sci U S S R, 1989, 31: 1420.
    [16] Kakugo M, Sadatoshi H, Kojima K, et al. Transmission electron microscopic observation of nascent polypropylene particles using a new staining method[J]. Macromolecules, 1989, 22(2): 547-551.
    [17] Kakugo M, Sadatoshi H, Yokoyama M, et al. Growth of polypropylene particles inheterogeneous Ziegler-Natta polymerization[J]. Macromolecules, 1989, 22(7): 3172- 3177.
    [18] Kakugo M, Sadatoshi H, Sakai J. Morphology of nascent polypropylene produced by MgCl2 supported Ti catalysts[M]. In: Keii T, Soga K, editors. Catalytic olefin polymerization, proceedings of the international symposium on recent developments in olefin polymerization catalysts[M]. Tokyo, 1989, Kodansha Elsevier, 1990.
    [19] Urdampilleta I, González A, Asua J M, et al. Morphology of High Impact Polypropylene Particles[J]. Macromolecules, 2005, 38(7): 2795-2801.
    [20] Debling J A, Ray W H. Morphological development of impact polypropylene produced in gas phase with a TiCl4/MgCl2 catalyst [J]. J Appl Polym Sci, 2001, 81(13): 3085-3106.
    [21] Kittilsen P, McKenna T F. Study of the kinetics, mass transfer, and particle morphology in the production of high-impact polypropylene[J]. J Appl Polym Sci, 2001, 82(5): 1047-1060.
    [22] McKenna TF, Bouzid D, Sugano T, et al. Evolution of Particle Morphology During Polymerisation of High Impact Polypropylene[J]. Polym Reac Eng, 2003, 11: 177-197.
    [23] Cecchin G, Marchetti E, Baruzzi G. On the Mechanism of Polypropene Growth over MgCl2/TiCl4 Catalyst Systems[J]. Macromol Chem Phys, 2001, 202(10): 1987-1994.
    [24] Cai H J, Luo X L, Tan H S, et al. Structure and Properties of Impact Copolymer Polypropylene. I. Chain Structure[J]. J Appl Polym Sci, 1999, 71(1):93-101.
    [25] Cai H J, Luo X L, Tan H S, et al. Structure and Properties of Impact Copolymer Polypropylene. II. Phase Structure and Crystalline Morphology[J]. J Appl Polym Sci, 1999;71(1):103-113.
    [26] Soares J B P, Hamielec A E. Temperature rising elution fractionation of linear polyolefins[J]. Polymer, 1995, 36(8): 1639-1654.
    [27] Mirabella F M, Jr. Impact polypropylene copolymers: fractionation and structural characterization[J]. Polymer, 1993, 34(8): 1729-1735.
    [28] Usami T, Gotoh Y, Umemoto H, et al. J Appl Polym Sci: Appl Polym Symp, 1993, 52: 145.
    [29] Usami T, Gotoh Y, Takayama S, et al. J Appl Polym Sci: Appl Polym Symp, 2002, 84: 445.
    [30] Xu J T, Fu Z S, Feng L X, et al. Temperature rising elution fractionation of PP/PE alloy and thermal behavior of the fractions[J]. European Polymer Journal, 2002, 38(9): 1739-1743.
    [31] Zhang Y Q, Fan Z Q, Feng L X. Influences of copolymerization conditions on the structure and properties of isotactic polypropylene/ethylene-propylene random copolymer in situ blends[J]. J Appl Polym Sci, 2002, 84(2): 445-453.
    [32] Fan Z Q, Zhang Y Q, Feng L X, et al. Structure and properties of polypropylene/poly(ethylene-co-propylene) in-situ blends synthesized by spherical Ziegler–Natta catalyst[J]. Polymer, 2001, 42(13): 5559-5566.
    [33] Xu J T, Feng L X, Kong X M. Separation and identification of ethylene- propylene block copolymer[J]. Polymer, 1997, 38(17):4381-4385.
    [34] Tan H S, Li L, Zheng Q, et al. Phase morphology and impact toughness of impactpolypropylene copolymer[J]. Polymer, 2005, 46(10): 3522-3527.
    [35] Zacur R, Goizueta G, Capiati N. Polypropylene reactor blends: Composition evaluation by analytical TREF[J]. Polym Eng Sci 1999, 39(5): 921-929.
    [36] Kakugo M, Mizunuma K, Miyatake T, et al. Carbon-13 NMR determination of monomer sequence distribution in ethylene-propylene copolymers prepared withδ-titanium trichloride-diethylaluminum chloride[J]. Macromolecules, 1982, 15(4): 1150-1152.
    [37] Kakugo M, Miyatake T, Mizunuma K, Kawai Y. Characteristics of ethylene-propylene and propylene-1-butene copolymerization over TiCl3.cntdot.1/3AlCl3-Al(C2H5)2Cl[J]. Macromolecules, 1988, 21(8): 2309-2313.
    [38] Hayashi T, Inoue Y, Chujo R. Ethylene-propylene copolymerization mechanism based on the sequence distributions determined by carbon-13 NMR spectra[J]. Macromolecules, 1988, 21(11): 3139-3146.
    [39] Cheng H N, Kakugo M. Carbon-13 NMR analysis of compositional heterogeneity in ethylene-propylene copolymers[J]. Macromolecules, 1991, 24(8): 1724-1726.
    [40] Pires M, Mauler R S, Liberman S A. Structural characterization of reactor blends of polypropylene and ethylene-propylene rubber[J]. J Appl Polym Sci, 2004, 92(4): 2155-2162.
    [41] Pegoraro M, Severini F, Kolarik J, et al. Structure and morphology of a novel ethylene-propylene copolymer and its blends with poly(propylene)[J]. Macromol Mater Eng, 2000, 280/281(1): 14-19.
    [42] Feng Y, Hay J N. The measurement of compositional heterogeneity in a propylene– ethylene block copolymer[J]. Polymer, 1998,39(26):6723-6731.
    [43] Zhang X Q, Olley R H, Bassett D C, et al. Characterization of Propylene/Ethylene Copolymers Sequentially Polymerized with -TiCl3/Et2AlCl Catalyst System[J]. Polym Inter, 1997, 43(1): 45-54.
    [44] Zacca J J, Debling J A, Ray W H. Reactor residence time distribution effects on the multistage polymerization of olefins—I. Basic principles and illustrative examples, polypropylene[J]. Chem Eng Sci, 1996, 51(21): 4859-4886.
    [45] Debling J A, Zacca J J, Ray W H. Reactor residence-time distribution effects on the multistage polymerization of olefins—III. Multi-layered products: impact polypropylene[J]. Chem Eng Sci, 1997, 52(12): 1969-2001.
    [46] Debling J A, Ray W H. Heat and Mass Transfer Effects in Multistage Polymerization Processes: Impact Polypropylene[J]. Ind Eng Chem Res, 1995, 34(10): 3466-3480.
    [47] Prasetya A, Liu L, Ko G H, et al. Dynamic model development for residence time distribution control in high-impact polypropylene copolymer process[J]. Chem Eng Sci, 1999, 54(15-16): 3263-3271.
    [48] Radusch H, Doshev P, Lohse G. Phase behavior and mechanical properties of heterophasic polypropylene-ethylene/propylene copolymers systems[J]. Polimery, 2005, 50(4):279-284.
    [49] Bedia E L, Astrini N, Kashiro Y, et al. Characterization of polypropylene and ethylene-propylene copolymer blends for industrial applications[J]. J Appl Polym Sci, 2000, 78(6): 1200-1208.
    [50] Ito J, Mitani K, Mizutani Y. Annealing of Commercial Block Polypropylene. I. Thermal and Physical Properties[J]. J Appl Polym Sci, 1992, 46(7):1221-1233.
    [51] Ramsteiner F, Kanig G, Gruber W, et al. Improved low temperature impact strength of polypropylene by modification with polyethylene[J]. Polymer 1983; 24(3): 365-370.
    [52] Lauprêtre F, Bebelman S, Costa J L, et al. NMR, differential scanning calorimetry, and Fourier transform infrared characterization of the crystalline degree and crystallite dimensions of ethylene runs in isotactic polypropylene/ethylene-propylene copolymer blends[J]. J Appl Polym Sci, 1999, 74(13): 3165-3172.
    [53] Yokoyama Y, Ricco T. Crystallization and morphology of reactor-made blends of isotactic polypropylene and ethylene-propylene rubber[J]. J Appl Polym Sci, 1997, 66(6): 1007-1014.
    [54] Kim G M, Michler G H, Fiebig J, et al. Relationship between morphology and micromechanical toughening mechanisms in modified polypropylenes[J]. J Appl Polym Sci, 1996, 60(9): 1391-1403.
    [55] Tanem B S, Kamfjord T, Lundquist M, et al. Sample preparation and AFM analysis of heterophase polypropylene systems[J]. Polymer, 2003, 44(15): 4283-4291.
    [56] Nysten B, Legras R. Atomic force microscopy imaging of viscoelastic properties in toughened polypropylene resins[J]. J Appl Phys, 1995, 78(10): 5953-5958.
    [57] Swaminathan K, Marr D W M. Morphology characterization of high-impact resistant polypropylene using AFM and SALS[J]. J Appl Polym Sci, 2000, 78(2): 452-457.
    [58] Bouzid D, Gaboriaud F, McKenna T F. Atomic Force Microscopy as a Tool to Study the Distribution of Rubber in High Impact Poly(propylene) Particles[J]. Macromol Mater Eng, 2005, 290(6): 565-572.
    [59] Bar G, Thomann Y, Cantow H J, et al. Factors Affecting the Height and Phase Images in Tapping Mode Atomic Force Microscopy. Study of Phase-Separated Polymer Blends of Poly(ethene-co-styrene) and Poly(2,6-dimethyl-1,4-phenylene oxide)[J]. Langmuir, 1997, 13(14): 3807-3812.
    [60] Godehardt R, Lebek W, Michler G H, et al. Optimum topographical and morphological information in AFM tapping mode investigation of multicomponent polyethylene[J]. Eur Polym J, 2004, 40(5): 917-926.
    [61] Zheng Q, Shangguan Y G, Zhang Q B, et al. Structure, morphology and non-isothermal crystallization behavior of polypropylene catalloys[J]. Polymer, 2005, 46(9): 3163-3174.
    [62] Phillips R A, Wolkowicz M D. Structure and morphology[M]. In: Moore Jr, ed. Polypropylene Handbook. Munich: Hanser Publishers, 1996, p113-170.
    [63] Mirabella F M, Jr. Phase separation and the kinetics of phase coarsening in commercial impact polypropylene copolymers[J]. J Polym Sci, Part B: Polym Phys, 1994, 32(7):1205-1216.
    [64] Inaba N, Sato K, Hashimoto T, et al. Morphology control of binary polymer mixtures by spinodal decomposition and crystallization. 1. Principle of method and preliminary results on PP/EPR[J]. Macromolecules, 1986, 19(6): 1690-1695.
    [65] Inaba N, Yamada T, Hashimoto T, et al. Morphology control of binary polymer mixtures by spinodal decomposition and crystallization. 2. Further studies on PP/EPR[J].Macromolecules, 1988, 21(2): 407-414.
    [66] Sundararaj U, Macosko C W. Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization[J]. Macromolecules, 1995, 28(8): 2647-2657.
    [67] Stehling F C, Huff T, Wissler G, et al. Structure and properties of rubber-modified polypropylene impact blends[J]. J Appl Polym Sci, 1981, 26(8): 2693-2711.
    [68] Ito J, Mitani K, Mizutani Y. Annealing of Polypropylene/Poly(ethylene-co-opylene) Blend. 11. Influence of the Structure and Properties of Poly(ethy1ene-co-Propylene) and Blended Polyethylene on Impact Strength[J]. J Appl Polym Sci, 1985, 30(2):497-513.
    [69] Hemmati M, Nazokdast H, Panahi H S. Study on morphology of ternary polymer blends. I. Effects of melt viscosity and interfacial interaction[J]. J Appl Polym Sci, 2001, 82(5):1129-1137.
    [70] Marquardt J, Thomann R, Mülhaupt R, et al. Miscibility of Branched Ethene Homopolymers with Iso- and Syndiotactic Polypropenes[J]. Macromolecules, 2001, 34(25): 8669-8674.
    [71] Nomura T, Nishio T, Toki S, et al. Characterization of microstructure and fracture behavior of polypropylene/elastomer blends containing small crystal in elastomeric phase[J]. J Appl Polym Sci, 1995, 55(9): 1307-1315.
    [72] Paul D R, Bucknall C B. Polymer Blends[M]. New York: John Wiley & Sons, 2000, Chap. 9, 16, 36.
    [73]吴培熙,张留城.聚合物共混改性[M].第一版,北京:中国轻工业出版社,1996,p46。
    [74] Guo H F, Packirisamy S, Meier D J, et al. Prediction and manipulation of the phase morphologies of multiphase polymer blends: 1. Ternary systems[J]. Polymer, 1997, 38 (4):785-794.
    [75] Hobbs S Y, Dekkers M E, Watkins V H. Effect of interfacial forces on polymer blend morphologies[J]. Polymer, 1988, 29(9):1598-1602.
    [76] Luzinov I, Xi K, Jér?me R, et al. Composition effect on the core–shell morphology and mechanical properties of ternary polystyrene/styrene–butadiene rubber/polyethylene blends[J]. Polymer, 1999, 40(10): 2511-2520.
    [77] Dekkers M E J, Hobbs S Y, Watkins V H, et al. Migration of polymer blend components during melt compounding[J]. Polym Eng Sci, 1990, 30(24): 1628-1632.
    [78] Bureau M N, kadi H E, Dickson J I, et al. Injection and compression molding of polystyrene/high-density polyethylene blends - phase morphology and tensile behavior[J]. Polym Eng Sci, 1997, 37(2): 377-390.
    [79] Cheng T W, Keskkula H, Paul D R. Property and morphology relationships for ternary blends of polycarbonate, brittle polymers and an impact modifier[J]. Polymer, 1992, 33(8): 1606-1619.
    [80] Everaert V, Aerts L, Groeninckx G. Phase morphology development in immiscible PP/(PS/PPE) blends influence of the melt-viscosity ratio and blend composition[J].Polymer, 1999, 40(24): 6627-6644.
    [81] Harkins W D. The Physical Chemistry of Surface Films[M]. New York: Reinhold Pub Co. 1952, p23.
    [82] Floyd S, Choi KY, Ray W H, et al. Polymerization of olefins through heterogeneous catalysis. III. Polymer particle modelling with an analysis of intraparticle heat and mass transfer effects[J]; Polymerization of olefines through heterogeneous catalysis IV. Modeling of heat and mass transfer resistance in the polymer particle boundary layer[J]. J Appl Polym Sci, 1986a, 32(1): 2935-2960; 1986b, 31(7): 2231-2265.
    [83] McKenna T F, DuPuy J, Spitz R. Modeling of transfer phenomena on heterogeneous Ziegler catalysts: Differences between theory and experiment in olefin polymerization (an introduction)[J]. J Appl Polym Sci, 1995, 57(3): 371-384.
    [84] Shishesaz M R, Donatelli A A. Tensile properties of polyethylene blends[J]. Polym Eng Sci, 1981, 21(13): 869-872.
    [85] Donatelli A A. Characterization of multicomponent polyethylene blends by differential scanning calorimetry[J]. J Appl Polym Sci, 1979, 23(10): 3071-3076.
    [86] Redman J. The Chem Eng, 1991, 26(9): 26.
    [87] Sinn H, Kaminsky W. Adv Organomet Chem, 1990, 18: 99.
    [88] Herwig J, Kaminsky W. Halogen-free soluble Ziegler catalysts with methylalumoxan as catalyst[J]. Polym Bull, 1983, 9(8-9): 464-469.
    [89] Kaminsky W, Miri M, Woldt R, et al. Bis(cyclopentadienyl)zirkon-verbindungen und aluminoxan als Ziegler-Katalysatoren für die polymerisation und copolymerisation von olefinen[J]. Makromol Chem, Rapid Commun, 1983, 4(6): 417-421.
    [90] Kaminsky W, kalper K, Niedoba S. Makromal Chem, Macromol Symp, 1986, 3: 377.
    [91] Schwank D. Modern Plastics International, 1993, August: 40.
    [92] Kaminaka M, Soge K[J]. Chemiical Week, 1992, 150(19): 52.
    [93] Soga K, Kark J R, Shiono T[J]. Polym Commun, 1991, 132: 310.
    [94] Keller A. Investigations on banded spherulites[J]. J Polym Sci, 1959, 39(135): 151-171.
    [95] Allen P, Bevis M[J]. Phil Mag, 1977, 35: 405.
    [96] Eppe R, Fischer E W, Stuait H A. Morphologische strukturen in poly?thylenen, polyamiden und anderen kristallisierenden hochpolymeren[J]. J Polym Sci, 1959, 34(127): 721-740.
    [97] Bassett D C, Hodge A M. On lamellar organization in banded spherulites of polyethylene[J]. Polymer, 1978, 19(4): 469-472.
    [98] Bassett D C, Hodge A M[J]. Proc Roy Soc, 1981, A 377: 61.
    [99] Keith H D, Bull[J]. Am Phys Soc, 1983, 28: 270.
    [100] Sanchez I C[J]. J Macromol Sci (Reviews), 1974, 10: 113.
    [101] Keith H D, Podden F J, Vadimsky R G, et al. Intercrystalline Links: Critical Evaluation[J]. J Appl Phys, 1971, 42(12): 4585-4592.
    [102] Pennings A J [J]. J Polym Sci (Symposia), 1977, 59: 55.
    [103] Frank F C, Keller A, Mackley M R. Polymer chain extension produced by impinging jets and its effect on polyethylene solution[J]. Polymer, 1971, 12(7): 467-473.
    [104] Odell J A, Grubb D T, Keller A. A new route to high modulus polyethylene by lamellarstructures nucleated onto fibrous substrates with general implications for crystallization behaviour[J]. Polymer, 1978, 19(6): 617-626.
    [105] Yeh G S Y, Geil V H [J]. J Macromol Sci (Phys ), 1967, Bl: 251.
    [106] Geil P H. Polymer Single Crystals[M]. Wiley-Interscienv, N. Y.,1963.
    [107] Petermann J, Gleiter H [J]. Polym Lett Ed, 1977, 15: 649.
    [108] Petermann J, Gleiter H [J]. J Mater Sci Letd, 1979, 14: 2260.
    [109] Peterlin A. Folded chain model of highly drawn polyethylene[J]. Polymer Eng Sci, 1969, 9 (3): 172-181.
    [110] Zhao Y, Zhang W G, Yang D C. Morphology and mechanical properties of melt-drawn films of blends of high-density polyethylene and ultrahigh-molecular-weight polyethylene[J]. J Mater Sci Lett, 1993, 12(16): 1309-1312.
    [1] Galli P, Haylock J C. Continuing initiator system developments provide a new horizon for polyolefin quality and properties[J]. Prog Polym Sci, 1991, 16(2-3): 443-462.
    [2] Dong Q, Wang X F, Fan Z Q, et al. Regulation of morphology and mechanical properties of polypropylene/poly(ethylene-co-propylene) in-reactor alloys by multi-stage sequential polymerization[J]. Polymer, 2007, 48(20):5905-5916.
    [3] Simonazzi T, Cecchin G, Mazzullo S. An outlook on progress in polypropylene-based polymer technology[J]. Prog Polym Sci, 1991, 16(2-3): 303-329.
    [4] Hutchinson R A, Chen C M, Ray W H. Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology[J]. J Appl Polym Sci, 1992, 44(8): 1389-1414, and the references therein.
    [5] Hock C W. How Ticl3 Catalysts Control the Texture of As-Polymerized Polypropylene[J]. J Polym Sci A-1, 1966, 4(12): 3055-3064.
    [6] Mackie P, Berger M N, Lawson D, et al.[J]. J Polym Sci Polym Lett Ed 1967, 5: 493.
    [7] Ferrero M A, Koffi E, Conner W C, et al. Characterization of the changes in the initial morphology for MgCl2-supported Ziegler-Natta polymerization catalysts[J], J Polym Sci Part A Polym Chem, 1992, 30(10): 2131-2141.
    [8] Ferrero M A, Sommer R, Curtis Conner W, et al. X-ray microtomography studies of nascent polyolefin particles polymerized over magnesium chloride-supported catalysts[J]. J Polym Sci Part A Polym Chem, 1993, 31(10): 2507-2512.
    [9] Noristi L, Marchetti E, Sgarzi P, et al. Investigation on the particle growth mechanism in propylene polymerization with MgCl2-supported ziegler-natta catalysts[J]. J Polym Sci Part A Polym Chem, 1994, 32(16): 3047-3059.
    [10] Bukatov G D, Zaikovskii V I, Zagrafskaya R V, et al.[J]. Polym Sci U S S R, 1982, 24: 599.
    [11] Skomorokhov V B, Zakharov V A, Bukatov G D, et al.[J]. Polym Sci U S S R, 1989, 31: 1420.
    [12] Kakugo M, Sadatoshi H, Kojima K, et al. Transmission electron microscopic observation of nascent polypropylene particles using a new staining method[J]. Macromolecules, 1989, 22(2): 547-551.
    [13] Kakugo M, Sadatoshi H, Yokoyama M, et al. Growth of polypropylene particles in heterogeneous Ziegler-Natta polymerization[J]. Macromolecules, 1989, 22(7): 3172- 3177.
    [14] Kakugo M, Sadatoshi H, Sakai J. Morphology of nascent polypropylene produced by MgCl2 supported Ti catalysts[M]. In: Keii T, Soga K, editors. Catalytic olefin polymerization, proceedings of the international symposium on recent developments inolefin polymerization catalysts[M]. Tokyo, 1989, Kodansha Elsevier, 1990.
    [15] Urdampilleta I, González A, Asua J M, et al. Morphology of High Impact Polypropylene Particles[J]. Macromolecules, 2005, 38(7): 2795-2801.
    [16] Debling J A, Ray W H. Morphological development of impact polypropylene produced in gas phase with a TiCl4/MgCl2 catalyst [J]. J Appl Polym Sci, 2001, 81(13): 3085-3106.
    [17] Kittilsen P, McKenna T F. Study of the kinetics, mass transfer, and particle morphology in the production of high-impact polypropylene[J]. J Appl Polym Sci, 2001, 82(5): 1047-1060.
    [18] McKenna TF, Bouzid D, Sugano T, et al. Evolution of Particle Morphology During Polymerisation of High Impact Polypropylene[J]. Polym Reac Eng, 2003, 11: 177-197.
    [19] Cecchin G, Marchetti E, Baruzzi G. On the Mechanism of Polypropene Growth over MgCl2/TiCl4 Catalyst Systems[J]. Macromol Chem Phys, 2001, 202(10): 1987-1994.
    [20] Floyd S, Choi KY, Ray W H, et al. Polymerization of olefins through heterogeneous catalysis. III. Polymer particle modelling with an analysis of intraparticle heat and mass transfer effects[J]; Polymerization of olefines through heterogeneous catalysis IV. Modeling of heat and mass transfer resistance in the polymer particle boundary layer[J]. J Appl Polym Sci, 1986a, 32(1): 2935-2960; 1986b, 31(7): 2231-2265.
    [21] McKenna T F, DuPuy J, Spitz R. Modeling of transfer phenomena on heterogeneous Ziegler catalysts: Differences between theory and experiment in olefin polymerization (an introduction)[J]. J Appl Polym Sci, 1995, 57(3): 371-384.
    [22] Debling J A, Zacca J J, Ray W H. Reactor residence-time distribution effects on the multistage polymerization of olefins—III. Multi-layered products: impact polypropylene[J]. Chem Eng Sci, 1997, 52(12): 1969-2001.
    [23] Debling J A, Ray W H. Heat and Mass Transfer Effects in Multistage Polymerization Processes: Impact Polypropylene[J]. Ind Eng Chem Res, 1995, 34(10): 3466-3480.
    [24] Chen Y, Chen Y, Yang D C, et al. Morphology of high impact polypropylene particles[J]. Polymer, 2006, 47(19):6808-6813.
    [1] Galli P, Haylock J C. Continuing initiator system developments provide a new horizon for polyolefin quality and properties[J]. Polym Sci, 1991,16(2-3): 443-462.
    [2] Debling J A, Ray W H. Morphological development of impact polypropylene produced in gas phase with a TiCl4/MgCl2 catalyst[J]. J Appl Polym Sci, 2001, 81(13): 3085-3106.
    [3] Kittilsen P, Mckenna T F. Study of the kinetics, mass transfer, and particle morphology in the production of high-impact polypropylene[J]. J Appl Polym Sci, 2001,82(5): 1047-1060.
    [4] Mirabella F M, Jr. Impact polypropylene copolymers: fractionation and structural characterization[J]. Polymer, 1993, 34(8): 1729-1735.
    [5] Usami T, Gotoh Y, Umemoto H, Takayama S.[J]. J Appl Polym Sci Appl Polym Symp, 1993, 52:145.
    [6] Cai H J, Luo X L, Tan H S, et al. Structure and Properties of Impact Copolymer Polypropylene. I. Chain Structure[J]. J Appl Polym Sci, 1999, 71(1):93-101.
    [7] Fan Z Q, Zhang Y Q, Feng L X, et al. Structure and properties of polypropylene/poly(ethylene-co-propylene) in-situ blends synthesized by spherical Ziegler–Natta catalyst[J]. Polymer, 2001, 42(13): 5559-5566.
    [8] Xu J T, Feng L X, Kong X M. Separation and identification of ethylene- propylene block copolymer[J]. Polymer, 1997, 38(17):4381-4385.
    [9] Urdampilleta I, González A, Asua J M, et al. Morphology of High Impact Polypropylene Particles[J]. Macromolecules, 2005, 38(7):2795-2801.
    [10] Feng Y, Hay J N. The measurement of compositional heterogeneity in a propylene– ethylene block copolymer[J]. Polymer, 1998,39(26):6723-6731.
    [11] Sun Z H, Yu F S, Qi Y C. Characterization, morphology and thermal properties of ethylene-propylene block copolymers[J]. Polymer, 1991, 32(6):1059-1064.
    [12] Cogswell F N, Hanson D E. Anomalous melt elasticity of isotactic ethylene—propylene block copolymers[J]. Polymer, 1975, 16(12):936-937.
    [13] Cecchin G, Marchetti E, Baruzzi G. On the Mechanism of Polypropene Growth over MgCl2/TiCl4 Catalyst Systems[J]. Macromol Chem Phys, 2001, 202(10):1987-1994.
    [14] McKenna T F, Bouzid D, Sugano T, et al. Evolution of Particle Morphology During Polymerisation of High Impact Polypropylene[J]. Polym React Eng, 2003, 11(2):177-197.
    [15] Cai H J, Luo X L, Tan H S, et al. Structure and Properties of Impact Copolymer Polypropylene. II. Phase Structure and Crystalline Morphology[J]. J Appl Polym Sci, 1999;71(1):103-113.
    [16] Radusch H, Doshev P, Lohse G. Phase behavior and mechanical properties of heterophasic polypropylene-ethylene/propylene copolymers systems[J]. Polimery, 2005,50(4):279-284.
    [17] Tan H S, Li L, Zheng Q, et al. Phase morphology and impact toughness of impact polypropylene copolymer[J]. Polymer, 2005, 46(10): 3522-3527.
    [18] Pegoraro M, Severini F, Kolarik J, et al. Structure and morphology of a novel ethylene-propylene copolymer and its blends with poly(propylene)[J]. Macromol Mater Eng, 2000, 280/281(1): 14-19.
    [19] Ito J, Mitani K, Mizutani Y. Annealing of Commercial Block Polypropylene. I. Thermal and Physical Properties[J]. J Appl Polym Sci, 1992, 46(7):1221-1233.
    [20] Chen Y, Chen Y, Yang D C, et al. Evolution of phase morphology of high impact polypropylene particles upon thermal treatment[J]. Eur Polym J, 2007, 43(7): 2999-3008.
    [21] Chen Y, Chen Y, Yang D C, et al. Multilayered Core–Shell Structure of the Dispersed Phase in High-Impact Polypropylene[J]. J Appl Polym Sci, 2008, 108(4):2379-2385.
    [22] Bassett D C, Block S, Piermarini G J. A high-pressure phase of polyethylene and chain-extended growth[J]. J Appl Phys, 1974, 45(10):4146-4150.
    [23] Hu W, Srinivas S, Sirota E B. Crystalline Structure and Properties of EP and EB Copolymers by Solid-State NMR, DSC, and WAXS[J]. Macromolecules, 2002, 35(13):5013-5024.
    [24] Bracco S, Comotti A, Sozzani P, et al. Low-Temperature Crystallization of Ethylene-ran-propylene Copolymers: Conformational Rearrangement of Sequences during the Formation of the Aggregates[J]. Macromolecules, 2002, 35(5):1677-1684.
    [25] Wright K J, Lesser A J. Crystallinity and Mechanical Behavior Evolution in Ethylene-Propylene Random Copolymers[J]. Macromolecules, 2001, 34(11):3626-3633.
    [26] Lieser G, Wegner G, Wagener K B, et al. Morphology and packing behavior of model ethylene/propylene copolymers with precise methyl branch placement[J]. Colloid, Polym Sci 2004, 282(8):773-781.
    [27] Randall J C, Polymer Sequence Determination[M]:Academic Press. New York, 1977.
    [28] Petrovi? Z S, Budinski-Simendi? J, krbi , et al. Effect of Addition of Polyethylene on Properties ofvPolypropylene/Ethylene-Propylene Rubber Blends[J]. J Appl Polym Sci, 1996;59(2):301-310.
    [29] Ito J, Mitani K, Mizutani Y. Annealing of Polypropylene/Poly(ethylene-co-opylene) Blend. 11. Influence of the Structure and Properties of Poly(ethy1ene-co-Propylene) and Blended Polyethylene on Impact Strength[J]. J Appl Polym Sci, 1985, 30(2):497-513.
    [30] Hemmati M, Nazokdast H, Panahi H S. Study on morphology of ternary polymer blends. I. Effects of melt viscosity and interfacial interaction[J]. J Appl Polym Sci, 2001, 82(5):1129-1137.
    [31] Guo H F, Packirisamy S, Meier D J, et al. Prediction and manipulation of the phase morphologies of multiphase polymer blends: 1. Ternary systems[J]. Polymer, 1997, 38 (4):785-794.
    [32] Hobbs S Y, Dekkers M E, Watkins V H. Effect of interfacial forces on polymer blend morphologies[J]. Polymer, 1988, 29(9):1598-1602.
    [1] Blades H. High Strength Polyamide Fibers and Films[P]. USP, 3,869,429. 1975-03-04.
    [2] Blades H. High Modulus, High Tenacity Poly (p-Phenylene Terephthalamide) Fiber[P], USP, 3,869,430. 1975-03-04.
    [3]施红伟,杨德才.分级聚丙烯的取向结晶过程[J].高等学校化学学报, 2002, 23 (1): 152-154.
    [4]王震,谢续明,杨睿,等.聚(ε-己内酯)薄膜结晶形貌及分子取向研究[J].高等学校化学学报, 2006, 27(1): 161-165.
    [5]陈晔,杨德才,胡雁鸣,等.结晶性间同立构1, 2聚丁二烯的单晶结构[J].高等学校化学学报, 2003, 24(12): 2321-2323.
    [6] Cherian Z, Lehman R, VanNess K. Investigation into the morphology and mechanical properties of melt-drawn filaments from uncompatibilized blends of polystyrene and high-density polyethylene[J]. J Appl Polym Sci, 2007, 103(3): 1616-1625.
    [7] Larin B, Feldman A Y, Harel H, et al. Morphology and mechanical properties of melt drawn chopped UHMWPE fiber/HDPE blends[J]. Polym Eng Sci, 2006, 46(6): 807-811.
    [8] Na B, Wang K, Zhao P, et al. Epitaxy growth and directed crystallization of high-density polyethylene in the oriented blends with isotactic polypropylene[J]. Polymer, 2005, 46(14): 5258-5267.
    [9] Mahendrasingam A, Blundell D J, Wright A K, et al. Time resolved WAXS/SAXS observations of crystallisation in oriented melts of ultra high molecular weight polyethylene[J].Polymer, 2004, 45(16): 5641-5652.
    [10]晏超,张建明,闫寿科.熔体拉伸聚乙烯超薄膜的结构表征[J].科学通报, 2006, 51(15):1751-1756.
    [11] Du B Y, Yang D C, He T B, et al. Nanostructure and Mechanical Measurement of Highly Oriented Lamellae of Melt-Drawn HDPE by Scanning Probe Microscopy[J]. Macromolecules, 2000, 33(20): 7521-7528.
    [12] Zhao Y, Zhang B L, Yang D C, et al. Scanning tunneling microscope on highly oriented lamellae in meltdrawn polyethylene films[J]. J Mater Sci Lett, 1995, 14(16):1123-1125.
    [13] Petermann J, Gohil R M. A new method for the preparation of high modulus thermoplastic films[J]. J Mater Sci, 1979, 14(9): 2260-2264.
    [14] Yang D C, Thomas E L. An electron microscopy and X-ray diffraction study of the microstructures of melt-drawn polyethylene films[J]. J Mater Sci, 1984, 19(7): 2098-2110.
    [15]陈晔,杨德才.超高分子量组分对熔体拉伸聚乙烯薄膜结构和性能的影响[J].材料科学进展, 1989, 3(6): 563-566.
    [16] Zhao Y, Zhang W G, Yang D C. Morphology and mechanical properties of melt-drawn films of blends of high-density polyethylene and ultrahigh-molecular-weight polyethylene[J]. J Mater. Sci Lett, 1993, 12(16):1309-1312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700