用户名: 密码: 验证码:
层状双金属氢氧化物催化生长碳基材料及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管及碳纤维作为碳基材料中最重要的组成部分,不仅传承了纳米材料优越的物理化学性能,并且由于自身特殊的石墨层结构产生了许多优异的电子传导、高抗腐蚀性和高稳定性等优势广泛的应用于诸多领域中,例如传感器、半导体、催化剂及其催化剂载体、储氢材料、超级电容器、生物医药等领域。对于发展简单、绿色、高效、可控的制备方法,获得多功能、结构可调,性能可控的此类碳基材料,具有重要的科学价值与实践意义。在众多影响碳基材料生长的各种因素当中,碳基材料所用催化剂的性质、组成及其微观结构最为关键。而这将影响所得碳基材料的形貌、结构等性质,最终决定碳基材料在应用方面的各种性能。因此,人们不断地积极探索多种形貌碳基材料和所用催化剂的简易制备方法和对其结构与组成的影响,从而进行碳基材料的可控制备,以期获得高质量、高性能的碳基材料。
     水滑石(Layered Double Hydroxide,简写为LDHs)是一类具有特殊层状结构的层状双羟基金属氢氧化物材料。由于LDHs存在着晶格能最低效应及晶格定位效应,使不同种类的金属离子以一定方式均匀分布在层板上。水滑石前驱体在高温焙烧后得到的复合金属氧化物中金属离子保持与前驱体一致的分布。因此,利用LDHs作为前驱体可以制备得到均匀分散的活性金属粒子,高效的生长碳基材料。
     本论文利用水滑石层板中金属离子在原子级别上高度分散的特点制备了一系列含特定活性组分的LDHs材料,并提出了水滑石焙烧产物LDO为前驱体,通过化学气相沉积法(CCVD)的制备,合成一系列管径均匀的多壁碳纳米管(直壁碳纳米管和螺旋碳纳米管)。通过研究不同温度和不同活性组分对水滑石焙烧产物的影响,进而研究对其碳纳米管形貌和结构的影响。水滑石前驱体法制备碳材料不仅克服了单元活性金属粒子容易在反应过程中烧结,使催化剂失去活性的缺点,还可以通过控制水滑石中不同比例的金属组分来实现对碳纳米管形貌生长的控制。此种制备方法操作简便,可控、环境友好。
     本论文还提供一种原位制备碳纳米管的方法。此方法利用水滑石直接作为催化剂,乙炔作为还原剂和碳源,一步法生长碳基材料。在反应中以原位生长得到的尖晶石型金属氧化物作为载体支持所还原的金属粒子分散,而金属氧化物也在此过程中被生长的碳纳米管所分散,负载在碳纳米管管壁的表面。原位合成的碳基材料中碳纳米管和金属氧化物之间均匀分散,相互作用力较强,且各组分之间的比例可以通过控制反应条件来得到。此方法操作简便,表面含有大量的缺陷和含氧官能将有利于提高碳纳米管材料的性能。
     利用水滑石层板组成和结构的可调控性向层板中引入不同的活性组分和助活性组分,一步法生长具有特殊结构的碳纤维。通过对不同反应条件的研究,最优化制备多种形貌碳纤维,包括亚微米级直壁碳纤维(SSCFs)、螺旋碳纤维(扭状螺旋碳纤维CNCs和双螺旋碳纤维CMCs)、花边型碳纤维(LCFs)。
     最后利用以上合成的多形貌碳基材料作为Pt粒子载体制备复合电催化剂应用于甲醇、乙醇电催化氧化当中,拥有较高的电化学活性和抗中毒性能。这是由于所合成的碳基材料不同的形貌、微观结构以及表面所负载的含氧官能团共同作用而导致的。
Carbon nanotubes and carbon fibers as the most important parts of carbon materials, they not only inherit excellent physical and chemical properties from the nanomaterials, but also have superior electronic conductivity, high resistance to corrosion and high stability origined form unique structure of the graphite layer. They are broadly applied as sensors, semiconductors, catalysts and catalyst supports, energy storage materials, super capacitors, biomedicine and other fields. At prsent, it is scientific valuable and has important practical significance to develop a facile, green, efficient and controllable method to prepare this class of materials. The carbon materias can be synthesized by controlling the experimental parameters, such as used catalysts, carbon sources, reaction temperatures, gas flow rates and feedstock pressures. Among them, the type and character of utilized catalyst is the most important factor in the formation of helical nanostructures. The catalysts act as the seeds for the nucleation and growth of nanotubes. Therefore, many researchers actively explore facile preparation methods of multi-morphology carbon materials and catalysts and investigate the effect on the structure and composition of carbon materials, in order to obtain carbon materials with high-quality and superior performance.
     Layered double hydroxides (LDHs), also known as anionic clay with brucite (Mg(OH)2)-like structure, consist of positively charged layers and negative anions in the interlayer. The metal ions are bonded to hydroxyl groups to form two-dimensional brucite-like layers and are uniformly distributed on an atomic level without segregation. Thus, highly dispersed metal particles over oxides matrix can be obtained by designing an appropriate LDHs precursor containing the desired metal cations and subsequent thermal treatment followed by reduction, originating from the ordered prearrangement of metal cations in the layers of LDHs precursor at an atomic level.
     In this thesis, utilizing good dispersion of cation within the LDHs'layered, multi-walled carbon nanotubes with uniform outer diameters has been grown over a series of catalysts derived from calcined LDHs by the CCVD method. The investigation of reaction temperature and compositions of LDHs in order to research the effect on the compositions of LDO and the growth of CNTs. To prepare metal-supported catalysts from calcined LDHs for the growth of CNTs not only overcome the shortcomings of active metal particles easily sinter during the reaction, but also control varying compositions of LDHs with different proportions to control the morphologies of CNTs. This method is simple, controllable, and environmentally friendly.
     Carbon nanotubes have been prepared by one-step synthesis over LDHs. In the system, LDHs is used directly as catalysts and acetylene act both as reducing agent and carbon source. Multi-walled CNTs were synthesized catalytically by active Ni nanoparticles derived from LDHs, and that the co-growing spinel-type NixMg1-xAl2O4 complex metal oxides from LDHs could be highly dispersed in the CNTs matrix. The as-synthesized spinel particles have good crystallinity and uniform particle size result in strong interaction between complex metal oxides and CNTs. This method is simple, effective and controllable. Moreover, the defect and the special surface modification by complex metal oxides on CNTs in favor of better performance of CNTs.
     Carbon fibers with different morphologies were prepared via CCVD of acetylene over LDHs. Carbon fibers including submicrometer fibers(SSCFs), helical carbon fibers (twist-shaped nanocoils CNCs and herringbone-type double microcoils CMCs) and lace-type carbon fiber (LCFs) could be controllably obtained only by varying compositions of LDHs.
     Finally, the electrocatalytic activity of electrodes modified with platinum particles supported on as-synthesized a series of carbon materials were studied for the oxidation of methanol/ethanol, as to demonstrate the feasibility of applying carbon materials as Pt electrocatalyst supports in direct alcohol fuel cells. The electrochemical investigation indicates that all as-fabricated electrodes showed superior electrocatalytic properties. The significantly enhanced electrochemical properties were believed to be strongly related to the special microstructure as well as the composition of as-grown carbon-based support materials. Moreover, the method of highly dispersed Pt nanoparticles supported on carbon nanotubes synthesized by a facile and green carbothermal reduction has been proposed. The as-fabricated hybrid Pt-CNTs composite exhibited excellent electrocatalytic property for ethanol oxidation.
引文
[1]Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. "C60:Buckminsterfullerene". Nature, 1985,318:162-163
    [2]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58
    [3]Volodin A, Buntinx D, Ahlskog M, Fonseca A, Nagy J B, Haesendonck C V. Coiled Carbon Nanotubes as Self-sensing mechanical resonators[J]. Nano. Lett.,2004,4(9):1775-1779
    [4]Chen X Q, Motojima S and Iwanaga H. Carbon coatings on carbon micro-coils by pyrolysis of methane and their properties [J]. Carbon,1999,37:1825-1831
    [5]Bessel C A, Laubernds K, Rodriguez N M, and Baker R T K. Graphite Nanofibers as an Electrode for Fuel Cell Applications[J]. J. Phys. Chem. B.,2001,105(6):1115-1118
    [6]程立强,刘应亮,张静娴,袁定胜,徐常威,孙广辉.球形碳材料的研究进展[J].化学进展,2006,18(10):1289-1304
    [7]Kitiyanan, B, Alvarez W E, Harwell J H, Resasco D E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts [J]. Chem. Phys. Lett., 2000,317(3-5):497-503
    [8]Ebbesen T W, Auayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358: 220-222
    [9]Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Colbert D T, Scuseria G, Tomanek D, Fisher J E, Smalley R E. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996,273:483-487
    [10]Hsm W K, Terrones M, Hare J P, Kroto H W, Walton D R M. Electrolytic formation of carbon nanostructure[J]. Chem. Phys. Lett.,1996,262(1-2):161-166
    [11]Hatta N, Murata K. Carbon nanotubes-preparation and propeties[J]. J. Chem. Phys. Oett.,1994,217: 49-54
    [12]闫晓琪,李颖,周江宁.球磨MgO.Ni2O3固溶体为负载纳米Ni催化剂前驱物催化热解法制备碳纳米纤维[J].南开大学学报(自然科学版),2003,36,(1):56-60
    [13]Hulteen J C, Chen H X, Chambliss C K. Template synthesis of carbon nanotubes and nanofiber arrays[J]. Nanostruct. Mater.,1997,9(1-8):133-136
    [14]Ishioka M, Okada T, Maysubara K. Formation of vapor-growth carbon fiber in Co-Co2-H2 mixtures-influence of carrier gas compostion[J]. Carbon,1992, (30):859-863
    [15]Lake L M. Lecture presented at conference[A]. Global outlook for carbon fiber.2002, Raleigh.-NC.USA,2002,21-23
    [16]Chen X H, Wang J X, Yang H S. Preparation, morphology and microstructure of segmented graphite nanofibers[J]. Diamond Relat Mater,2001,10(11):2057-2062
    [17]Nikolaev P, Broniowski M J, Bradlley R K, Rohmund F, Colbert D T, Smith K A, Smalley R E. Gas-phase catalytic growth of single-walled catbon nanotubes from carbon monoxide[J]. Chem. Phys. Lett.,1999,313(1-2):91-97
    [18]Michael D, Diener, Nichelson N, Alford J M. Synthesis of single-wall carbon nanotubes[J]. J. Phys. Chem. B.,2000,104,9615-9620
    [19]Chen X Q, Motojima S.The growth patterns and morphologies of carbon micro-coils produced by chemical vapor deposition[J]. Carbon,1999,37(11):1817-1823
    [20]Chen X Q, Yang S M, Motojima S. Morphology and growth models of circular and flat carbon coils obtained by the catalytic pyrolysis of acetylene[J]. Mater. Lett.,2002,57(1):48-54
    [21]Kiricsi I, Hernadi K, Siska A, Fonreca A, Nagy J B. Production of nanotubes by the catalytic decomposition of different carbon containing compounds[J]. Appl. Catal. A:General,2000,199(2): 245-255
    [22]Dupuis A C. The catalyst in the CCVD of carbon nanotubes-a review[J]. Mater. Lett.,2005,50(8): 929-961
    [23]Qian C, Qi H, Liu J. Effect of tungsten on the purification of few-walled carbon nanotubes synthesized by thermal chemical vapor deposition methods[J]. J. Phys. Chem C.,2007,111: 131-133
    [24]Ishikawa Y, Jinbo H, Yamanaka H. Effect of tungsten on synthesis of multiwalled carbon nanotubes using cobalt as catalyst[J]. Appl Phys,2006,45(1):L50-L53
    [25]Su M, Zheng B, Liu J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity[J]. J. Chem. Phys. Lett,2000,322:321-326
    [26]Su M, Li Y, Maynor B, Buldum A, Lu J P, Liu J. Lattice-oriented growth of single-walled carbon nanotubes[J]. J. Phys. Chem. B.,2000,104:6505-6508
    [27]吕德义,徐铸德,徐丽萍,葛忠华.催化剂载体对CVD法制备碳纳米管的影响[J].无机化学学报,2002,18(05):475-480
    [28]Vander Wal R L, Ticich T M, Curtis V E, Substrate-support interactions in metal-catalyzed carbon nanofiber growth. Carbon,2001,39(15):2277-2289
    [29]刘华平,程国安,彭宜斌,郑瑞廷,赵勇.碳纳米管负载Ni催化剂制备碳纳米管的研究[J].北京师范大学学报,2005,41(01):38-41
    [30]Sharon M, Apte P R, Purandare S C, Zacharia R. Application of the Taguchi analytical method for optimization of effective parameters of the chemocal vapor deposition process controlling the production of nanotubes/nanobeads[J]. Nano. Sci. Nanotech,2005,5:288-295
    [31]Motojima S, Chen X Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition[J]., J. Appl. Phys.,1999,85:3919-3921
    [32]Motojima S, Asakura S, Kasemura T, Takeuchi S, Iwanaga H. Catalytic effects of metal carbides, oxides and Ni single crystal on the vapor growth of microcoiled carbon fibers[J]. Carbon,1996,34: 289-296
    [33]Haggenmueller R, Gommans H H, Rinzler A G, Fischer J E, Winey K I. Aligned sigle-walles carbon nanotubes in composites by melt processing methods[J]. Chem. Phys. Lettes.,2000,330: 219-225
    [34]Zhou C M, Wang H J, Peng F, Liang J H, Yu H, Yang J. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells[J]. Langmuir,2009,25(13):7711-7717
    [35]Lee J Y, Liang K, An K H, Lee Y H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synthetic Met.,2005,150:153-157
    [36]Chen C L, Hu J, Shao D D, Li J X, Wang X K. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(Ⅱ) and Sr(Ⅱ)[J]. J. Hazard. Mate.,2009,164: 923-928
    [37]He Z B, Chen J H, Liu D Y, Zhou H H, Kuang Y F. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation[J]. Diamond Relat. Mater.2004,13:1764-1770
    [38]Hsieh C T, Lin J Y, Wei J L. Deposition and electrochemical activity of Pt-based bimetallic
    nanocatalysts on carbon nanotube electrodes[J]. Int. J. hydrogen energy,2009,34685-34683
    [39]Li Y K, Zhu C C, Liu X H. Field emission display with carbon nanotubes cathode:prepared by a screen-printing process. Diamond Relat. Mater,2002,1845-1847
    [40]Jonge N D, Larny Y, Schoots K, et al. High brightness electron bean from a multi-walled carbon nanotube[J]. Nature,2002,420(28):393-395
    [41]Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science,1999,283:512-514
    [42]Shaijumona M M, Bejoyb N, Ramaprabhua S. Catalytic growth of carbon nanotubes over Ni/Cr hydrotalcite-type anionic clay and their hydrogen storage properties[J]. Applied. Surface. Science., 2005,242:192-198
    [43]姚运金,张素平,颜涌捷,多壁碳纳米管吸附储氢性能的研究[J].太阳能学报,2008,29:767-770
    [44]Chen Y, Shaw D T, Bai X D. Hydrogen storage in aligned carbon nanotubes[J]. Appl. Phys. Lett., 2001,78(15):2128-2130
    [45]曹茂盛,高正娟,朱静.CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程,2003,2:34-36
    [46]王生浩,文峰,李志,郝万军,曹阳.碳纳米管吸波材料的研究现状与展望[J],材料导报,2006,20:99-102
    [47]赵东林,沈曾民.螺旋形手征碳纤维的微波介电特性.无机材料学报[J].2003,18(5):1057-1062
    [48]Tsuji M, Kubokawa M, Yano R, Miyamae N, Tsuji T, Jun M S, Hong S, Lim S, Yoon S H, and Mochida I. Fast Preparation of PtRu Catalysts Supported on Carbon Nanofibers by the Microwave-Polyol Method and Their Application to Fuel Cells[J]. Langmuir,2007,23 (2):387-390
    [49]Rodriguez N M, Kim M S, Baker R T K carbon nanofiers:a unique catalyst support medium[J]. J. Phy Chem B,1994,98:13108-13111
    [50]Wang Q K, Johnson J. Molecular simulation of hyudrogen adsorption in single-walled carbon nanotubes and idealized carbon slir pore[J]. J. Chem. Phys.2003,78:670-675
    [51]Atwood J L, Lehn J M, Davies J E D, MacNicol D D, Vogtle F. Trifiro, A. Vaccan, In Comprehensive Srpramolecular Chemistry[M]. Oxford, Pergamon Press,1996,7(10)
    [52]Rives V. Characterisation of layered double hydroxides and their decomposition products [J]. Mater. Chem. Phys.,2002,75:19-25
    [53]Oriakhi C O, Farr I V, Lerner M M. Incorporation of poly(acrylic acid), poly(vinylsulfonate), and poly(styrenesulfonate) within layered double hydroxides[J]. J. Mater. Chem.,1996,6(1):103-107
    [54]Kloprogge J T, Frost R L. Layered double hydroxides:present and future, chaper 5, infrared and raman spectroscopic studies of layered double hydroxides[J]. J. Mater. Chem.,2005,15:1197-1203
    [55]Kooli F, Rives V, Ulibarri M A. Preparation and study of decavanadate-pillared hydrotalcite-like anionic clays containing transition metal cations in the layers 1 samples containing Ni-Al prepared of anionic exchange and reconstruction. Inorg. Chem.,1995,34(21):5114-5121
    [56]Evans D G and Duan X. Preparation of layered double hydroxides and their applications as additives in polymers as precursors to magnetic materials and in biology and medicine[J]. Chem. Commun.,2006, pp.485-496
    [57]Evans D G, Slade R C T. Structural Aspects of Layered Double Hydroxides[J]. Struct. Bond.,2006, 119:1-87
    [58]Li F, Duan X. Applications of layered double hydroxides[J]. Struct. Bond.,2006,119:193-223
    [59]Genin J M R. Thermodynamic equilibria in aqueous suspersions of synthesis and natural Fe(Ⅱ)-Fe(Ⅲ) green rusts:occurrences of the mineral in hydromorphic soils [J]. Environ. Sci. Tech., 1998,32:1058-1068
    [60]Reichle W T, Kang S Y, Everhardt D S. The nature of the thermal decomposition of a catalytically active anionic clay mineral[J]. J. Catal.,1986,101:352-359
    [61]Fornasari G, Gazzano M, Matteuzzi D, Trifiro F, Vaccari A. Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides[J]. Appl. Clay. Sci.,1995,10(1-2):69-82
    [62]Shen J Y, Guang B, Tu M, Chen Y. Preparation and characterization of Fe/MgO catalysts obtained from hydrotalcite-like compounds[J]. Catal. Today,1996,30(1-3):77-82
    [63]Clause O, Goncalves C C, Gazzano M, Matteuzzi D. Synthesis and thermal reactivity of nickel-containing anionic clays[J]. Appl. Clay Sci.,1993,8(2-3):169-186
    [64]Yun S K, Pinnavaia T J. Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides[J]. Chem. Mater.,1995,7(2):348-354
    [65]Zhao Y, Li F, Zhang R, Evans D G, Duan X. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J]. Chem. Mater.,2002,14:4286-4291
    [66]段雪,矫庆泽.全返混液膜反应器及其在制备超细阴离子层状材料中的应用[P].CN Patent,00132145.2000
    [67]冯拥军,李殿卿,李春喜,王子镐,Evans D G,段雪.Cu-Ni-Mg-AI-CO3四元水滑石的合成及结构分析[J].化学学报,2003,61:78-83
    [68]Ogawa M, Kaiho H. Homogeneous Precipitation of Uniform Hydrotalcite Particles. Langmuir,2002, 18(11):4240-4242
    [69]Pausch I, Lohse H H, Schuermann K, and Allmann R. Syntheses of disordered and Al-rich hydrotalcite-like compounds[J]. Clay. Clay Miner.,1986,34:507-510
    [70]Miyata S. Anion-exchange properties of hydrotalcite-like compounds[J].Clay. Clay Miner.,1983, 31:305-311
    [71]Drezdzon M A. Synthesis of isopolymetalate-pillared hydrotalcite via organic-anion-pillared precursors[J]. Inorg. Chem.,1988,27:4628-4632
    [72]Shaw H R, Bordeaux J J. Intercalation of organic of urea in aqueous media[J]. J. Am. Chem. Soc., 1955,77:4729-4733
    [73]Carlino S, Husain S W, Knowles J A. The reaction of molten phenyphosphonic acid with a layered double hydroxide and its calcined oxides[J]. Solid. Sate. Ionics.,1996,84:117-129
    [74]He J, Li B, Evans D G and Duan X. Synthesis of layered double hydroxides in an emulsion solution[J]. Colloid. Surface. A.,2004,251:191-196
    [75]Paulhic J L, Clause O. Surface coprecipitation of Co2+,Ni2+,Zn2+ with Al3+ ions during impregnation of r-alumina at neutral PH[J]. J. Am. Chem. Soc.,1993,115:11602-11603
    [76]Lei X D, Yang L, Zhang F Z, Duan X. A novel gas-liquid contacting route for the synthesis of LDH by decomposition of ammonium carbonate[J]. Chem. Eng. Sci.,2006,61:2730-2735
    [77]杜以波,何静,李峰,Evans D G,段雪,王作新.微波技术在制备水滑石和拄撑水滑石中的应用[J].应用科学学报,1998,16:349
    [78]Kosin J A, Preston B W, Wallace D N. Modified synthetic hydrotalcite[P].US, Patent,4883533. 1988
    [79]Valente J S, Figueras F, Gravelle M, Kumbhar P, Lopez J, Bessey J P. Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions [J]. J. Catal.,2000,189:370-381
    [80]Prihod'ko R, Sychev M, Kolomitsyn I, Stobbelaar P J, Hensen E J M and Santen van R A. Layered double hydroxides as catalysts for aromatic nitrile hydrolysis [J]. Micropor. Mesopor. Mat.,2002, 56 (3):241-255
    [81]Genin J M R, Thermodynamic equilibrium in aqueous suspensions of synthesis and natural Fe(II)-Fe(III) green rusts:Occurrences of the mineral in hydromorphic soils [J]. Environ. Sci. Tech.,1998,32:1058-1068
    [82]Feng J T, Lin Y J, Evans D G, Duan X, Li D Q. Enhanced metal dispersion and hydrodechlorination properties of a Ni/A12O3 catalyst derived from layered double hydroxides[J]. J. Catal.,2009,266: 351-358
    [83]Li F, Tan Q, Evans D G, and Duan X. Synthesis of carbon nanotubes using a novel catalyst derived from hydrotalcite-like Co-Al layered double hydroxide precursor[J]. Catal. Lett.,2005,99(3-4): 151-156
    [84]Reichle W T. Pulse microreactor examination of the vapor-phase aldol condensation of acetone [J]. J. Catal,1980,63(2):295-306
    [85]Roelofs J C A, Van Dillen A J, Jong K P. Base-catalyzed conden2 sation of citral and acetone at low temperature using modified hydro2 talcite catalysts[J]. J. Catal. Today.,2000,60:297-303
    [86]Parker L M, Milestone N B and Newman R H, The use of hydrotacite as an anion absorbent[J]. Ind. Eng. Chem. Res.,1995,34(4):1196-1202
    [87]Li F, Liu J J, Evans D G, Duan X. Stoichiometric synthesis of pure MFe2O4 (M= Mg, Co and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors [J]. Chem. Mater.,2004,16:1597-1602
    [88]Liu J, Li F, Evans D G, Duan X. Stoichiometry synthesis of a pure ferrite from a tailored layered double hydroxides (hydrotalcite-like) precursor [J]. Chem. Commun.,2003,542-543
    [89]Shan D, Yao W J, Xue H G. Amperometric Detection of Glucose with Glucose Oxidase Immobilized in Layered Double Hydroxide[J]. Electroanal,2006,18(15):1485-1491
    [90]Colombari M, Ballarin B, Carpani I, Guadagnini L, Mignani A, Scavetta E, Tonelli D. Glucose Biosensors Based on Electrodes Modified with Ferrocene Derivatives Intercalated into Mg/Al Layered Double Hydroxides[J]. Electroanal,2007,19(22):2321-2327
    [91]Bloment L, Mugerwa M. Fuel Cell System [M]. NewYork:Plenum press,1993.247-283
    [92]Plomp L, Veldhuis J B J, Sitters E F. Van Der Molen S B. Improvement of molten-carbonate fuel cell(MCFC) lifetime[J]. J. Power. Sources.,1992,39(3):369-373
    [93]Li P W, Chyu M K. Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack[J]. J. Power. Sources.,2003,124 (2):487-498
    [94]Vermeiren P, Adriansens W, Moral8 J. Evaluation of the Zirfon separator for use in alkaline water electrolysis and Ni-H2 batteries[J]. Int. J. Hydrogen. Energy,1998,23(5):321-324
    [95]Janarthanan R, Balasubramanian V, Thirukkallam K, et al. Tungsten trioxide nanorods as supports for platinum in methanol oxidation[J]. Mater.Chem. Phys.,2007,106(2/3):168-174
    [96]Han S B, Song Y J, Lee J M, Kim J Y, Park K W. Platinum nanocube catalysts for methanol and ethanol electrooxidation[J]. Electrochem. Commun.,2008,10:1044-1047
    [97]He Z B, Chen J H, Liu D Y, Zhou H H, Kuang Y F. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation[J]. Diamond Relat. Mater.,2004,13:1764-1770
    [98]Blum A, Duvdevani T, Philosoph M. Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications [J]. J. Power Sources,2003,117:22-25
    [99]Adjemain K T, Srinivasna S, Benziger J, Boearsly A B. Investigation of PEMFC operation above 100℃ employing perfluorosulfonic acid Silicon oxide composite membranes[J]. J. Power. Sources., 2002,109:356-364
    [100]Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis[J]. Applied Catalysis A: General,2003,253:337-358
    [101]Park K W, Sung Y E, Han S, Yun Y, Hyeon T. Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts[J]. J. Phys. Chem. B.,2004,108:939-944
    [102]Labode H, Leger J M, Lamy C. Electroeatalytic oxidation of methanol and C1 molecules on highly dispersed eleetrodes[J]. Appl. Electrochem.,1994,24:219-220
    [103]吴婉群,万本强,罗维忠.载铂微粒的聚苯胺薄膜电极对甲醇的电催化氧化[J].应用化学,1994,11(2):21-25
    [104]Jiang L, Colmenares L, Jusys Z, Sunb G Q, Behma R J. Ethanol electrooxidation on novel carbon supportedPt/SnOx/C catalysts with varied Pt:Sn ratio[J]. Electrochimica. Acta.,2007,53:377-389
    [105]Spinace E V, Linardi M, Neto A O. Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt-Sn electrocatalysts[J]. Electrochem. Commun.,2005,7:365-369
    [106]Guo D J, Qiu X P, Zhu W T, Chen L Q. Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application[J]. Appl. Catal. B,-Environ.,2009, 89:597-601
    [107]Jiang Z Q, Yu XY, Jiang Z J, Menga Y, Shi Y C. Synthesis of monodispersed Pt nanoparticles on plasma processed carbon nanotubes for methanol electro-oxidation reaction[J]. J. Mater. Chem., 2009,19:6720-6726
    [108]Zhou W J, Zhou Z H, Song S Q, et al. Pt based anode catalysts for direct ethanol fuel cells[J]. Applied Catalysis B, Environmental,2003,46:273-285
    [109]Souza J P I, Queiroz S L, Bergamaski K. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes:a study using DEMS and in-situ FTIR techniques[J]. J. Phys. Chem. B,2002,106: 9825-9830
    [110]Iwasita T, Pastor E. A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum[J]. Electrochimica. Acta.,1994,39:531-537
    [1]Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors[J]. Science,2001, (294):1317-1320
    [2]An K H, Kim W S, Park Y S, Choi Y C, Lee S M, Chung D C, Bae D J, Lim S C, Lee Y H. Supercapacitors using single-walled carbon nanotube electrodes[J]. Adv Mater,2001,13:497-500
    [3]Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, Euen P M, Lundstrom M, Dai H. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates [J]. Nat. Mater,2002,1: 241-246
    [4]Bower C, Zhou O, Zhu W, Werder D J, Jin S, Nucleation and Growth of Carbon Nanotubes by Microwave Plasma Chemical Vapor Decomposition[J]. Appl. Phys. Lett.,2000,77:2767-2769
    [5]Lee S Y, Yamada M, Miyake M, ynthesis of carbon nanotubes over gold nanoparticle supported catalysts[J]. Carbon,2005,43:2654-2663
    [6]Bhaviripudi S, Mile E, Steiner SA 3rd, Zare A T, Dresselhaus M S, Belcher A M, Kong J. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts[J]. J. Am. Chem. Soc, 2007,129(6):1516-1517
    [7]Gournis D, Karakassides M A, Bakas T, Boukos N, Catalytic synthesis of carbon nanotubes on clay minerals[J]. Carbon,2002,40:2641-2646
    [8]Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E. A reexamination of Hydrotalcite Crystal Chemistry[J]. J. Phys. Chem.,1996,100:8527-8534
    [9]Lei X D, Zhang F Z, Yang L, Guo X X, Tian Y Y, Fu S S, Li F, Evans D G, Duan X. Highly crystalline activated layered double hydroxides as solid acid-base catalysts[J]. AlChE. J.,2007, 53(4):932-940
    [10]Zhao Y, Li F, Zhang R, Evans G D, Duan X. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J]. Chem. Mater.,2002,14:4286-4291
    [11]Vaccari A. Preparation and catalytic properties of cationic and anionic clays. [J]. Catal. Today,1998, 41:53-71
    [12]Dresselhaus M S, Dresselhaus G, Jorio A, Annu. Unusual properties and structure of carbon nanotubes[J]. Rev. Mater. Res.,2004,34:247-248
    [13]Dresselhaus M S, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes[J]. Phys. Rep.,2005,409:47-99
    [14]Volodin A, Buntinx D, Ahlskog M, Fonseca A, Nagy J B, Haesendonck C V. Coiled carbon nanotubes as self-sensing mechanical resonators [J]. Nano. Lett.,2004,4:1775-1779
    [15]Chen X Q, Motojima S, Iwanaga H. Synthesis of carbon nanotubes over gold nanoparticle supported catalysts[J]. Carbon,1999,7:1825-1831
    [16]Ihara S, Itoh S. Helically coiled and toroidal cage forms of graphitic carbon[J]. Carbon,1995,33: 931-939
    [17]Ivanov V, Nagy J B, Lambin P H, Lucas A, Zhang X B, Zhang X F. The study of carbon nanotubules produced by catalytic method[J]. Chem. Phys. Lett.,1994,223:329-335
    [18]Amelinckx S, Zhang X B, Bernaerts D, Zhang X F, Ivanov V, Nagy J B. A formation mechanism for catalytically grown helix-shaped graphite nanotubes[J]. Science,1994,265:635-639
    [19]Hou H Q, Jun Z, Weller F, Greiner A. Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 as floating catalyst precursor[J]. Chem. Mater.,2003,15:
    3170-3175
    [20]Cheng J P, Zhang X B, Tu J P, Tao X Y, Ye Y, Liu F. Catalytic chemical vapor deposition synthesis of helical carbon nanotubes and triple helices carbon nanostructure[J]. Mater. Chem. Phys.,2006,95:12-15
    [21]Amelinckx S, Zhang X B, Bernaerts D, Zhang X F, Ivanov V, Nagy J B. A formation mechanism for catalytically grown helix-shaped graphite nanotubes[J]. Science,1994,265:635-639
    [22]Millange F, Walton R I, O'Hare D. Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds[J]. J. Mater. Chem.,2000,10: 1713-1720
    [23]Fernandez J M, Ulibarri M A, Labajos F M, Rives V. The effect of iron on the crystalline phases formed upon thermal decomposition of Mg-Al-Fe hydrotalcites[J]. J. Mater. Chem.,1998,8: 2507-2514
    [24]Mathur R B, Seth S, Lal C, Rao R, Singh B P, Dhami T L. Co-synthesis, purification and characterization of single-and multi-walled carbon nanotubes using electric arc method[J]. Carbon, 2007,45:132-140
    [25]Abdi Y, Koohsorkhi J, Derakhshandeh J, Mohajerzadeh S, Hoseinzadegan H. PECVD-grown carbon nanotubes on silicon substrates with a nickel-seeded tip-growth structure[J].Mater. Sci. Eng. C.,2006,26:1219-1223
    [26]Saito R, Dresselhaus G, Dresselhaus M S. Physical Properties of Carbon Nanotubes[M]. London: Imperial College Press,1998.183
    [27]Huang C W, Wu H C, Lin W H, Li Y Y. Temperature effect on the formation of catalysts for growth of carbon nanofibers[J]. Carbon,2009,47:795-803
    [28]Ago H, Kugler T, Cacialli F, Salaneck W R, Shaffer M S P, Windle A H, Friend R H. Work function and surface functional groups of multi-wall carbon nanotubes[J]. J. Phys. Chem. B.,1999, 103:8116-8121
    [29]Liu J W, Shao M W, Xie Q, Kong L F, Yu W C. Single-source precursor route to carbon nanotubes at mild temperature[J]. Carbon,2003,41:2101-2104
    [30]Motojima S, Chen X, Yang S, Hasegawa M. Properties and potential applications of carbon microcoils/nanocoils[J].Diamond Relat. Mater,2004,13:1989-1992
    [31]Yang S, Chen X, Motojima S. Morphology of the growth tip of carbon microcoils/nanocoils[J].Diamond Relat. Mater,2004,13:2152-2155
    [32]Lu M, Li H L. Formation and growth mechanism of dissimilar coiled carbon nanotubes by reduced-pressure catalytic chemical vapor deposition[J]. J. Phys. Chem. B.,2004,108:6186-6192
    [1]Wang X F, Wang D Z, Liang J. Carbon Nanotube Capacitor Materials Loaded with Different Amounts of Ruthenium Oxide[J].Acta. Phys.,-Chim.Sin,2003,19(6):509-513
    [2]Seeger T, Ph.Redlith, Grobert N, Terrones M, Walton D R M, Kroto H W, Riihle M. SiOx-coating of carbon nanotubes at room temperature[J]. Chem. Phys. Lett.,2001,339(1-2):41-46
    [3]Zhao L P, Gao L. Coating of multi-walled carbon nanotubes with thick layers of tin(IV) oxide [J]. Carbon,2004,42(8):1858-1861
    [4]Lee J Y, Liang K, An K H, Lee Y H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synthetic. Met.,2005,150(2):153-157
    [5]Chen C L, Hu J, Shao D D, Li J X, Wang X K. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(Ⅱ) and Sr(Ⅱ)[J]. J. Hazard. Mater.,2009,164(2-3): 923-928
    [6]Cao H Q, Zhu M F. Novel carbon nanotubeiron oxide magnetic nanocompo mposites[J]. J. Magn. Magn. Mater.,2006,305:321-324
    [7]Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaim E. A reexamination of Hydrotalcite Crystal Chemistry[J]. J. Phys. Chem.,1996,100(20):8527-8534
    [8]Millange F, Walton R I, O'Hare D. Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds[J]. J. Mater. Chem.,2000,10(7): 1713-1720
    [9]Mathur R B, Seth S, Chhotey L, Raob R, Singha B P, Dhamia T L and Rao A M. Co-synthesis, purification and characterization of single-and multi-walled carbon nanotubes using electric arc method[J]. Carbon,2007,45(1):132-140
    [10]Bettinger H F. The Reactivity of Defects at the sidewalls of single-walled carbon nanotubes:the stone-wales defect[J]. J. Phys. Chem. B.,2005,109(15):6922-6924
    [11]Huang C W, Wu H C, Lin W H, Li Y Y. Temperature effect on the formation of catalysts for growth of carbon nanofibers[J]. Carbon,2009,47(3):795-803
    [12]Ago H, Kugler T, Cacialli F, Salaneck W R, Shaffer M S P, Windle A H. Work function and surface functional groups of multi-wall carbon nanotubes[J]. J. Phys. Chem. B.,1999,103(38):8116-8121
    [13]Yoon C, Cocke D L. The design and preparation of planar models of oxidation catalysts[J]. J. Catal, 1988,113(2):267-280
    [14]Muhler M, Schlogl R, Ertl G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase[J]. Catal,1992,138(2):413-444
    [15]Xia W, Wang Y, Bergstra¨βer R, Kundu S, Muhler M. High-density and well-aligned carbon nanotubes formed by surface decomposition of SiC[J]. Appl. Surf. Sci.,2007,254(1),247-250
    [1]Song Q S, Aravindaraj G K, Sultan H, Chan S L I. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries[J]. Electrochimica. Acta,2007,53:1890-1896
    [2]Bessette R R, Medeiros M G, Patrissi C J, Deschenes C M, LaFratt C N. Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications[J]. J. Power. Sources.,2001,96:240-244
    [3]Shiraishi M, Takenobu T, Yamada A, Ata M, Kataur H. Hydrogen storage in single-walled carbon nanotube bundles and peapods Chem[J]. Phys. Lett.2002,358:213-218
    [4]Tanaka A, Yoon S H, Mochida I. Preparation of highly crystalline nanofibers on Fe and Fe-Ni catalysts with a variety of graphene plane alignments[J]. Carbon,2004,42:591-597
    [5]Wen Y K, Shen Z M. Synthesis of regular coiled carbon nanotubes by Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis[J]. Carbon,2001,39:2369
    [6]Fenelonov V B, Avdeeva L B, Goncharova O V, Okkel L G, Simonov P A, Derevyankin A Y, Likholobov V A. Stud. Surf. Sci. Catal.,1995,91:825-831
    [7]Qiu J S, Li Y F, Wang Y P. Novel fluffy carbon balls obtained from coal which consist of short curly carbon fibres[J]. Carbon,2004,42:2359-2362.
    [8]Fu X B, Yu H, Peng F, Wang H J, Qian Y. Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance [J]. Appl. Catal. A.,2007, 321:190-197
    [9]Zhang H L, Zhang Y, Zhang X G, Li F, Liu C, Tan J, Cheng H M. The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage[J]. Carbon, 2006, (44):2778-2784
    [10]Philippe R, Caussat B, Falqui A, Kihne Y, Kalck P, Bordere S, Plee D, Gaillard P, Bernard D, Serp P. An original growth mode of MWCNTs on alumina supported iron catalysts [J]. J. Catal,2009, 263:pp.345-358
    [11]Takehira K, Ohi T, Shishido T, Kawabata T, Takaki K. Catalytic growth of carbon fibers from methane and ethylene on carbon-supported Ni catalysts[J]. Applied.Catal. A., General.,2005, 283(1-2):137-145
    [12]Jeong N, Lee J. Growth of filamentous carbon by decomposition of ethanol on nickel foam: Influence of synthesis conditions and catalytic nanoparticles on growth yield and mechanism[J]. J. Catal,2008,260:217-226
    [13]Hoshi P F, Tsugawa K, Goto A, Field emission and structure of aligned carbon nanofibers deposited bu ECR-CVD plasma method[J]. Relat. Mater.,2001,10(2):254-259
    [14]Adhyapak P V, Maddanimath T, Pethkar S. Application of electrochemically prepared carbon nanofibers in supercapacitors[J]. J. Power. Soure.,2002,109(1):105-110
    [15]Matsumoto Y, Oo M T, Nakao M. preparation of carbon nanofibers by hot filament-assisted sputtering[J]. Mater. Sci. Eng. B.,2000,74(1-3):218-221
    [16]Chen X H, Wang J X, Yang H S. Preparation, morphology and microstructure of segmented graphite nanofibers[J]. Diam. Relate. Mater.,2001,10(11):2057-2062
    [17]Pham-huu C, Keller N, Ehret G. Carbon nanofiber supported palladium catalyst for liquid-phase reactions, an active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamadehyde[J]. J. Mol. Catal. A,2001,170 (1-2):155-163
    [18]Rodriguez N M, Chambers A, Baker R T K. catalytic engineering of carbon nanostructure. Langmuir,1995,11(10):3862-3866
    [19]Hima H I, Xiang X, Zhang L, Li F. Novel carbon nanostructures of caterpillar-like fibers and interwoven spheres with excellent surface super-hydrophobicity produced by chemical vapor deposition[J]. J. Mater. Chem.,2008, (18):1245-1252
    [20]Chuang C C, Liu W L, Chen W J, Huang J H. Temperature and substrate dependence of structure and growth mechanism of carbon nanofiber[J]. Applied. Surf. Sci.,2008,254,4681-4687.
    [21]Huang C W, Wu H C, Lin W H, Li Y Y. emperature effect on the formation of catalysts for growth of carbon nanofibers[J]. Carbon,2009,47:795-803
    [22]Ago H, Kugler T, Cacialli F, Salaneck W R, Shaffer M S P, Windl A H. Work functions and surface functional groups of multiwall carbon nanotubes[J]. J. Phys. Chem. B.,1999,103:8116-8121
    [23]Yoon C, Cocke D L. The design and preparation of planar models of oxidation catalysts[J]. Catal, 1988,113:267-280
    [24]Muhler M, Schlogl R, Ertl G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase[J]. J. Catal,1992,138:413-444
    [25]Xia W, Wang Y, Bergstraber R, Kundu S, Muhler M. High-density and well-aligned carbon nanotubes formed by surface decomposition of SiC[J]. Applied. Surf. Sci.,2007,254:247-250
    [26]Yu L Y, Sui L N, Qin Y, Cui Z L. Low-temperature synthesis of carbon nanofibers by decomposition of acetylene with a catalyst derived from cupric nitrate[J]. Chem. Eng. J.,2008,144: 514-517
    [27]Liu D Y, Luo Q M, Wang H X, Chen J H. Direct synthesis of micro-coiled carbon fibers on graphite substrate using co-electrodeposition of nickel and sulfur as catalysts [J]. Mater. Design, 2009,30:649-652
    [28]Chen X Q, Yang S M, Motojim S J. Morphology and growth models of circular and flat carbon coils obtained by the catalytic pyrolysis of acetylene[J]. Carbon,1999,37:1817-1823
    [29]Chena X Q, Motojima S J. The growth patterns and morphologies of carbon micro-coils produced by chemical vapor deposition[J]. Carbon,1999,37:1817-1823
    [30]Yang S, Chen X, Kusunoki M, Yamamoto K, Iwanaga H. Microstructure and microscopic deposition mechanism of twist-shaped carbon nanocoils based on the observation of helical nanoparticles on the growth tips[J]. Carbon,2005,43:916-922
    [31]Qin Y, Jiang X. Low-Temperature Synthesis of Amorphous Carbon Nanocoils via Acetylene Coupling on Copper Nanocrystal Surfaces at 468 K:A Reaction Mechanism Analysis[J]. J. Phys. Chem. B.,2005,109:21749-21754
    [32]Wen Y K, Shen Z M. Synthesis of regular coiled carbon nanotubes by Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis[J]. Carbon,2001,39:2369-2386
    [33]Millange F, Walton R I, O'Hare D. Time-resolved in-situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-Carbonate Hydrotalcite-like compounds [J]. J. Mater Chem, 2000,10:1713-1720
    [34]Feng Y J, Li D Q, Li C X, Wang Z H, Evans D G, Duan X. Synthesis of Cu-containing layered double hydroxides with a narrow crystallite-size distribution[J]. Clay. Clay. Miner.,2003,51: 566-569
    [35]Jiang X R, Li F, Evans D G, Duan X. Investigation of Efects of Incorporated Ni2+ on Crystal Structure of Layered Double Hydroxides Containing Cu(Ⅱ)and Cr(Ⅲ)[J]. Acta Chimica Sinica, 2004,62:16-21
    [36]Chen X Q, Yang S M, Motojima S. Morphology and growth models of circular and flat carbon coils obtained by the catalytic pyrolysis of acetylene[J]. Mater. Lett.,2002,57:48-54
    [37]Xiong Y J, Xie Y, Li X X, Li Z Q. Production of novel amorphous carbon nanostructures from ferrocene in low-temperature solution[J]. Carbon,2004,42:1447-1453
    [38]Wen Y K, Shen Z M. Synthesis of regular coiled carbon nanotubes by Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis[J]. Carbon,2001,39:2369-2386
    [1]Yuan D S, Xu C W, Liu Y L, Tan S Z, Wang X, Wei Z D,Shen P K. Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation[J]. Electrochem.Commun.,2007,9:2473-2478
    [2]Pang H L, Lu J P, Chen J H, Huang C T, Liu B, Zhang X H. Preparation of SnO2-CNTs supported Pt catalysts and their electrocatalytic properties for ethanol oxidation[J]. Electrochimica Acta,2009,54: 2610-2615
    [3]He D M, Yang L X, Kuang S Y, Cai Q Y. abrication and catalytic properties of Pt and Ru decorated TiO2/CNTs catalyst for methanol electrooxidation[J]. Electrochem. Commun.,2007,9:2467-2472
    [4]Tsuji M, Kubokawa M,Yano R, Miyamae N, Tsuji T, Jun M S, Hong S,Lim S,Yoon S H, Mochida I. Fast Preparation of PtRu Catalysts Supported on Carbon Nanofibers by the Microwave-Polyol Method and Their Application to Fuel Cells[J]. Langmuir,2007,23(26):387-390
    [5]Liu B, Chen J H, Xiao C H, Cui K Z, Yang L, Pang H L, Kuang Y F. Preparation of Pt/MgO/CNT Hybrid Catalysts and Their Electrocatalytic Properties for Ethanol Electrooxidation. Energy & Fuels, 2007,21:1365-1369
    [6]Liu B, Chen J H, Zhong X X, Cui K Z, Zhou H H, Kuang Y F. Preparation and electrocatalytic properties of Pt-SiO2 nanocatalyts for ethanol electrooxidation[J]. J. Colloid. Interf. Sci.,2007, 307(26):139-144
    [7]Yu R Q, Chen L W, Liu Q P, et al. Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater,1998,10(3):718-722
    [8]Li W Z, Liang C H, Qiu J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell[J]. Carbon,2002,40(5):787-803
    [9]Li W Z, Liang C H, Zhou W J, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells[J]. J. Phys. Chem. B, 2003,107(26):6292-6299
    [10]Tang H, Chen J H, Huang Z P, et al. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays [J]. Carbon,2004,42(1):191-197
    [11]Chen J H, Wang M Y, Liu B, Fan Z, Cui K Z, and K Y F. Platinum Catalysts Prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation[J]. J. Phys. Chem. B,2006,110(24):11775-11779
    [12]Wang M Y, Chen J H, Fan Z, Tang H, Deng G H, He D L, Kuang Y F. Ethanol electro-oxidation with Pt and Pt-Ru catalysts supported on carbon nanotubes[J]. Carbon 2004,42(15):3257-3260
    [13]Prabhuram J, Zhao T S, Tang Z K, Chen R., Liang Z X. Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells[J]. J. Phys. Chem. B.,2006,110(10):5245-5252
    [14]Shen P K, Xu C W. Alcohol oxidation on nanocrytalline oxide Pd/C promoted electrocatalys[J]. Electrochem. Commun..,2006,8(1):184-188.
    [15]Lee J Y, Liang K, Ana K H, Lee Y H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synthetic Met,2005,150(2):153-157
    [16]Xu C W, Shen P K, Ji X H, Zeng R, Liu Y L. Enhanced activity for ethanol electro oxidation on Pt-MgO/C catalysts[J]. Electrochem. Commun.,2005,7(12):1305-1308
    [17]Xu C W, Zeng R, Shen P K, Wei Z D. Synergistic effect of CeO2 modified Pt/C catalysts on the
    alcohols oxidation[J]. Electrochimica. Acta.,2005,51(6):1031-1035
    [18]Razmi H, Habibi E, Heidari H. Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles[J]. Electrochimica. Acta.,2008,53(28): 8178-8185
    [19]Hsieh C T, Lin J Y, Wei J L. Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes [J]. Interational J. Hydr. Energy,2009,34(2):685-693
    [20]Han S B, Song Y J, Lee J M, Kim J Y, Park K W. Platinum nanocube catalysts for methanol and ethanol electrooxidation. Electrochem. Commun.2008,10:1044-1047
    [21]Liang C N, Lu G X. Hydrothermal synthesis of size-dependent Pt in Pt/MWCNTs nanocomposites for methanol electro-oxidation[J]. Electrochimica Acta,2008,53 (12):4316-4323
    [22]Min H S, Sung M C, Hyung J K, Jae H K, Beong K C, Won B K. A polyoxometalate-deposited Pt/CNT electrocatalyst via chemical synthesis for methanol electrooxidation[J]. J. Power Sources, 2008,179(1):81-86
    [23]He Z B, Chen J H, Liu D Y, Zhou H H, Kuang Y F. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation[J]. Diamond Relat. Mater.,2004,13(10):1764-1770
    [24]Park C, Baker R T K. Catalytic behavior of graphite nanofibersupported nickel particles.3.The effect of chemical blocking onthe performance of the system[J]. J. Phys. Chem. B.,1999,103(13): 1999
    [25]Bessel C A, Laubernds K, Rodriguez N M, Baker R T K. Graphite Nanofibers as an electrode for fuel cell applications[J]. J. Phys. Chem. B.,2001,105(6):1115-1118.
    [26]Park K W, Sung Y E, Han S J, Yun Y, and Hyeon T. Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts[J]. J. Phys. Chem. B.,2004,108(3):939-944
    [27]Ren X M, Thomas E S, Zawodzinski T A. Methanol transport through nation membranes electro-osmotic drag effects on potential step measurements[J]. Electrochem. Soc.,2000,147(2): 466-474.
    [28]Manoharan R, Prabhuram J. Possibilities of prevention of formation of poisoning species on direct methanol fuel cell anodes. The 22nd International Power Sources Symposium[C]. Manchester, England, UK,2001.9-11
    [29]Lee J, Eickes C, Eiswirth M, et al. Electrochemical oscillations in the methanol oxidation on Pt[J]. Electrochimica Acta,2002,47 (13):2297-2301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700