用户名: 密码: 验证码:
垃圾渗滤液溶解性有机物在生化—物化处理中的降解规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫生填埋作为一种垃圾最终处置手段具有处理量大、工艺成熟、处理费用低等优势,是大部分城镇生活垃圾处理的主要方法。然而,填埋中所产生的垃圾渗滤液会带来严重的环境污染。由于渗滤液水质水量不稳定、成分复杂、有机物含量高,开发一种高效、经济、灵活的渗滤液处理方法,已经成为亟待解决的问题之一。长期以来,渗滤液特性及处理研究主要从工程可行性角度出发,采用COD、BOD5等宏观指标对渗滤液水质进行表征和污染控制,而微观特性认识的不足,在一定程度上限制了渗滤液环境危害性的表达。本研究以典型生活垃圾填埋场渗滤液为研究对象,采用生化-物化组合工艺,在工艺优化的基础上考察了渗滤液污染物去除效率及其溶解性有机物(dissolved organic matter, DOM)的降解特性,并根据亲疏水性的差异将渗滤液DOM分成不同组分,考察其在处理过程中的降解差异。
     采用以“ASBR—SBR—ACF—GAC”为流程的生化-物化组合工艺处理垃圾渗滤液,在各单元条件优化的基础上分析其对渗滤液各主要污染物的处理效果。试验结果表明ASBR在反应周期为48 h,容积负荷为3.25~4.75 g COD/(L·d)时,COD和TOC去除率分别稳定在80.1%~84.4%和77.1%~83.9%范围内。SBR工艺以缺氧与好氧交替的方式运行,在反应周期为24 h、容积负荷为1.12 g COD/L·d、污泥浓度MLSS为5575 mg/L时,COD和NH4+-N去除率分别维持在70%和83%以上。ACF法在反应pH值为3,反应时间1.5 h,铁投加量50 g/L,铁碳比3.5,絮凝pH为8.5时处理SBR出水,COD、TOC去除率分别可达64.8%和71.6%。活性炭投加量为5 g/L,吸附时间为1.5 h时,COD、TOC、NH4+-N去除率分别为64.6%、69.3%和31.8%。采用组合工艺全流程稳定运行中,渗滤液中主要污染物COD、TOC和NH4+-N的去除率分别可达99.2%,99.4%和90.3%以上,有效改善了出水水质。而在新标准下适用性的提高主要体现在对有机物和氮素污染物处理的优化上。
     垃圾渗滤液有机物以DOM为主要部分,组合工艺处理后DOM去除率可达99%以上,各组分去除率在99.48%~99.73%范围内,出水DOC维持在35 mg/L以下,有机构成中以亲水性有机物为主。芳香性指标SUVA254在处理中表现为生物处理后的增长和物化处理后的明显降低。羧酸类、脂肪族碳氢化合物和氨基化合物在生物处理阶段有显著的去除,但腐殖质类荧光物质的累积效果强烈,ASBR和SBR出水DOM中以富里酸类荧光为主;物化处理阶段则对渗滤液中脂肪族和芳香族有机物有较强的破坏和降解作用,腐殖质类物质去除明显。组合工艺处理出水DOM累计荧光强度ФT,n遵循生物处理段后的增长和物化处理段后的递减规律。
     DOM各单一组分在处理中降解特性不尽相同。厌氧条件下HPI去除优势明显,但其相应SUVA254值最大增幅可达450%。SBR处理中各组分降解表现为反应初期疏水性和过渡亲水性组分比例的提高和亲水性组分比例的降低。生化处理对于色氨酸类荧光物质较为有效而腐殖质类荧光物质去除较难,出水中以富里酸类荧光ФIII,n增长最为显著。在吸附、混凝、氧化的共同作用下,ACF反应表现出对疏水性有机物的高效降解,其降解程度明显高于单一吸附和混凝处理的效果叠加。ACF中吸附、混凝对疏水性和过渡亲水性荧光物质有较好的处理效果,氧气的通入能明显提高亲水性组分中荧光物质的降解程度。各组分单独吸附处理时有机物DOC及UV254的去除率变化上存在HPO < TPI < HPI的规律,但均明显小于相同条件下DOM的去除率。吸附过程中短时间内芳香性蛋白类荧光的去除优势更为显著。
     研究中各处理单元对不同组分有机物的降解特性及光谱特征变化从新的角度加强了对渗滤液及其处理过程的了解,为指导渗滤液处理工艺的选择,合理、经济、有效的处理垃圾渗滤液提供了理论基础。
Sanitary landfill as an efficient, mature, and low-cost means of final disposal is mainly adopted to treat the municipal solid waste in most cities. However, the environment around the landfill is polluted seriously for the leachate produced during the domestic refuse disposal. Because of the instable water quality and quantity, complex composition, and high concentration of organics in landfill leachate, to develop an efficient, economic and flexible treatment process is one of the problems urgent to be solved. For a long time, the characteristics and treatments of leachate are considered from the engineering feasibility. The macroscopical water quality indexes, such as COD and BOD5, are used for the water quality denotation and pollution control. The lack of knowledge about the microcosmic characteristics of leachate to some extent restricts the expression of leachate pollution. In this study, the representative sanitary landfill leachate treating by the biological-physicochemical combined processes was researched. The removal efficiency of contaminants and the characteristics of dissolved organic matter (DOM) degradation were analyzed on the basis of the processes optimization. Furthermore, DOM was divided according to the hydrophobic-hydrophilic property between organic matters in leachate, and distinguished the differences of degradation during anaerobic, aerobic biological units and physicochemical units.
     A biological-physicochemical combined treatment“ASBR—SBR—ACF—GAC”was set up for the landfill leachate, and the removal efficiencies of the primary pollutants were analyzed on the optimized conditions for each treatment units. The results showed that on the condition of 3.25~4.75 g COD/(L·d) for volume loading rate, 48 h for reaction periods in ASBR, the removal efficiencies of COD and TOC were stabled in the range of 80.1%~84.4% and 77.1%~83.9%, respectively. The operation mode of anoxic and aerobic by turns was chosen for SBR treatment. With the reaction periods of 24 h, volume loading rate of 1.12 g COD/L·d, MLSS of 5575 mg/L, the removal efficiencies of COD and NH4+-N could be over 70% and 83%, respectively. On the condition of 3 for pH, 1.5 h for reaction time, 50 g/L for iron scrap dose, 3.5 for mass ratio of Fe and C, 8.5 for coagulation pH, the removal efficiencies of COD and TOC were high to 64.8% and 71.6%, respectively. As for GAC adsorption treatment, when the dose of GAC was 5 g/L and reaction time was 1.5 h, the removal efficiencies of COD, TOC, and NH4+-N were 64.6%、69.3%, and 31.8%, respectively. During the stable operation of the combined treatment, the main contaminants in landfill leachate could be removed with the removal efficiencies of COD, TOC, and NH4+-N were 99.2%、99.4%, and 90.3%, respectively, improving the effluent quality efficiently. The enhancement of applicability under the new criterion was focused on the optimization of removal for organic matter and nitrogen.
     The main part of organic in leachate was DOM. After treated with combined processes, the DOM in leachate was decreased more than 99%, and each fraction was reduced in the range of 99.48%~99.73%. The DOC concentration of effluent was lower than 35 mg/L, with the dominant organic matter in the hydrophilic fraction. The aromaticity values of SUVA254 were behaved with the increasing after biological treatment part and decreasing after physicochemical treatment part. Carboxylic acids, aliphatic hydrocarbons, and amides were degraded prominently during biological treatments. And the humic fluorescent substances were accumulated strongly, resulting in the fulvic-acid fluorescence present in DOM of ASBR and SBR effluents predominantly. Both of the aliphatic and aromatic compounds were destroyed and reduced during physicochemical treatments, especially the humic fluorescent substances. The cumulative volumeФT,n of fractions in leachate DOM treated by combined processes were increased after biological treatments and decreased after the physicochemical treatments.
     The degradation of each DOM fraction was not all the same. The predominant reduction was obviously observed in HPI during anaerobic degradation, but the values of SUVA254 were increased even high to 450%. During SBR treatment, the proportions of hydrophobic and transphilic fracions were increased, while that of hydrophilic fraction was decreased during the initial stage. Protein tryptophan-like substances were much easier to decrease, whereas the humic-like compounds were more difficult to degrade during the biological treatments. So that theФIII,n for fulvic-acid fluorescence was increased notably. With the combined action of adsorption, coagulation, and oxidation, the hydrophobic substances were degraded effectively during the ACF treatment, with the removal efficiency of organic matters higher than the corresponding value of single adsorption plus single coagulation treatment. The fluorescent substances in hydrophobic and transphilic fractions were decreased efficiently even by single adsorption and single coagulation, and the addition of air improved the degradation of the fluorescent substances in HPI. The removal efficiencies of DOC and UV254 followed the order of HPO < TPI < HPI when each fraction treated by adsorption singly. The aromatic protein fluorescent substances were removed dominantly in short time during adsorption treatment.
     The research on the characteristics of degradation and spectroscopy among different fractions enhance the understanding of leachate and its treatment processes on a new view. The correlative conclusions could guide the choice of proper treatment process and lay the basic foundation for dealing with landfill leachate reasonably, economically, and efficiently.
引文
1李瑜琴.我国城市垃圾处理研究[J].陕西师范大学学报(自然科学版). 2004, 32(2):112~116
    2杨良斌,李丽,王琪.生活垃圾填埋污染控制标准比较研究[J].环境科学与管理. 2006.12, 31(9):48~52
    3 Butt T E, Oduyemi K O K. A Holistic approach to concentration assessment of hazards in the risk assessment of landfill leachate[J]. Environment. International, 2003, 28(7):597-608.
    4赵由才,黄仁华.生活垃圾卫生填埋场运行指南[M].北京:化学工业出版社, 2001:26.
    5蒋海涛,周恭明,高廷耀.城市垃圾填埋场渗滤液的水质特性[J].环境保护科学, 2002, 28(111):11-13.
    6 Thornton S F, Bright M I, Lerner D N, et al. Attenuation of landfill leachate by uk triassic sandstone aquifer materials 2. sorption and degradation of organic pollutants in laboratory columns[J]. Journal of Contaminant Hydrology. 2000, 43(3-4):355-383.
    7 Leenheer J A, Croue J P. Characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(1):18-26,
    8 Kang K H, Shin H S, Park H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36(16):4023-4032.
    9 Xu Y D, Yue D B, Zhu Y, et al. Fractionation of dissolved organic matter in mature landfill leachate and its recycling by ultrafiltration and evaporation combined processes[J]. Chemosphere, 2006, 64(6):903-911.
    10黄健平,鲍姜伶.垃圾渗滤液处理技术[J].环境科学与管理, 2008, 33(1):93-95,98.
    11楼紫阳,赵由才,张全.渗滤液处理处置技术及工程实例[M].北京:化学工业出版社, 2006:35,145.
    12周志洪,戴秋萍,吴清柱.垃圾渗滤液中的有毒有机物浓度分析[J].广州化工, 2006, 34(3):56-58.
    13杨志泉,周少奇.广州大田山垃圾填埋场渗滤液有害成分的检测分析[J].化工学报, 2005, 56(11):2183-2188.
    14周北海,王琪,董路.垃圾填埋场构造对渗滤液成分的影响研究[J].环境科学研究, 2000, 13(3):6-8.
    15 Ragle N, Kissel J, Ongerth J E, et al. Composition and variability of leachate from recent and aged areas within a municipal landfill[J]. Water Environment Research, 1995, 67(2):238-243.
    16王宝贞,王琳.城市固体废物渗滤液处理与处置[M].北京:化学工业出版社, 2005:3-4.
    17赵庆良,李湘中.垃圾渗滤液中的氨氮对微生物活性的抑制作用[J].环境污染与防治, 1998, 20(6):1-4.
    18彭永臻,张树军,郑淑文,等.城市生活垃圾填埋场渗滤液生化处理过程中重金属离子问题[J].环境污染治理技术与设备, 2006, 7(1):1-5.
    19 Oygard J K, Mage A, Gjengedal E. Estimation of the mass-balance of selected metals in four sanitary landfills in western Norway with emphasis on the heavy metal content of the deposited waste and the leachate[J]. Water Research, 2004, 38(12):2851-2858.
    20 Bilgili M S, Demir A, Ince M, et al. Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors[J]. Journal of Hazardous Materials, 2006, 145(1-2):186-194.
    21李广科,牛静,云洋,等.垃圾填埋场渗滤液污染特性分析[J].农业环境科学学报, 2008, 27(1):333-337.
    22方芳,刘国强,郭劲松,等.三峡库区垃圾填埋场和焚烧厂渗滤液水质特征[J].重庆大学学报, 2008, 31(1):77-82.
    23王里奥,顾恒岳.垃圾渗滤液的处理试验研究[J].重庆大学学报自然科学版, 2002, 25(2):99-102.
    24 Rodríguez J, Castrillón L, Mara?óne E, et al. Removal of non-biodegradable organic matter from landfill leachate by adsorption[J]. Water Research, 2004, 38(14-15):3297-3303.
    25张宏忠,梁晓军,方少明,等.反渗透技术在垃圾渗滤液净化处理中的应用[J].郑州轻工业学院学报(自然科学版), 2003, 18(1):60-64.
    26 Steinberg C E W, Meinelt T, Timofeyev M A, et al. Humic substances[J]. Environmental Science and Pollution Research, 2008, 15(2):128-135.
    27 Labanowski J, Feuillade G. Dissolved organic matter: Precautions for the studyof hydrophilic substances using XAD resins[J]. Water Research, 2011,
    45(1):315-327. 28陈蕾,沈超峰,陈英旭.溶解性有机质与水生生物的直接相互作用研究进展[J].湖泊科学, 2011, 23(1):1-8.
    29 Thurman E M, Malcolm R L. Preparative isolation of aqatic substances[J]. Environmental Science & Technology, 1981, 15:463-466.
    30 Artiola-Fortuny J, Fuller W H. Humic substances in landfill leachates: i. Humic acid extraction and identification[J]. Journal of Environmental Quality, 1982, 11(4):663-668.
    31 Frimmel F H, Weis M. Aging effects of high molecular weight organic acids which can be isolated from landfil leachates[J]. Water Science and Technology. 1991, 23(1-3):419-426.
    32楼紫阳,欧远洋,赵由才.老港填埋场新鲜渗滤液性质研究[J].环境污染与防治, 2004, 26(1):8-11.
    33 Cecilia B O, Christian J. Chemical characterization of landfill leachates—400 parameters and compounds[J]. Waste Management, 2008, 28(10):1876-1891.
    34张鸿郭,陈迪云,罗定贵,等.垃圾填埋场渗滤液中有机与重金属污染物特征的研究[J].陕西科技大学学报, 2009, 27(1):86-89.
    35 Caron F, Elchuk S, Walker Z H. High-performance liquid chromatographic characterization of dissolved organic matter from low-level radio active waste leachates[J]. Journal of Chromatography A, 1996, 739(1-2):281-294.
    36刘田,孙卫玲,倪晋仁,等. GC-MS法测定垃圾填埋场渗滤液中的有机污染物[J].四川环境, 2007, 26(2):1-5,10.
    37 Harkey G A, Landrum P F, Klaine S J. Partition coefficients of hydrophobic contaminants in natural water, porewater, and elutriates obtained from dosed sediment: a comparison of methodologies[J]. Chemosphere, 1994, 28(3):583-596.
    38 Imai A, Fukushima T, Matsushige K, et al. Characterization of dissolved organic matter in effluents from wastewater treatment plants[J]. Water Research, 2002, 36(4):859-870.
    39 Leenheer J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastwaters[J]. Environmental Science & Technology, 1981, 15(5):578-587.
    40 Chen W. Fluorescence properties of effluent organic matter and role of mineral adsorption in soil aquatic treatment[D]. Arizona State University, Ph.D. Dissertation, 2002:76.
    41 Gr?n C, Christensen J B, Jensen D L, et al. Organic halogens in landfill leachates[J]. Water, Air, and Soil Pollution, 2000, 120(3-4):331-345.
    42 Mark A N. Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates[J]. Water Research, 2002, 36(6):1572-1584.
    43 He P J. Xue J F, Shao L M, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J]. Water Research, 2006, 40(7):1465-1473.
    44沈耀良,王宝贞.垃圾填埋场渗滤液的水质特征及其变化规律分析[J].污染防治技术, 1999, 12(1):10-13.
    45楼紫阳,赵由才,柴晓利.渗滤液中胶粒的梯度分离[J].环境科学学报, 2004, 24(1):165-167.
    46 Wang F Q, Smith D W, El-Din M G. Aged raw landfill leachate: Membrane fractionation, O3 only and O3/H2O2 oxidation, and molecular size distribution analysis[J]. Water Research, 2006, 40 (3):463-474.
    47 Oman C, Hynning P A. Identification of organic compounds in municipal landfill leachates[J]. Environment Pollution, 1993, 80(3):265-271.
    48 Ganffey J S, Marley N A, Clark S B. Humic and fulvic acids isolation, structure and environmental role[M]. American chemical society, Washington, 1996:42-56.
    49 Lou T, Xie H X. Photochemical alteration of the molecular weight of dissolved organic matter[J]. Chemosphere, 2006, 65(11):2333-2342.
    50 Li F S, Yuasa A, Chiharada H, et al. Polydisperse adsorbability distribution of several natural and synthetic organic matrices[J]. Journal of Colloid and Interface Science, 2003, 265(2):265-275.
    51 Levine A D, Tchobanoglous G, Asano T. Characterization of the size distribution of contaminants in wastewater: treatment and reuse implications[J]. Journey Water Pollution Control Federation, 1985, 57(7):805-816.
    52 Collins M R, Amy G L, King P H. Removal of organic matter in water treatment[J]. Journal of Environmental Engineering, 1985, 111(6):85-86.
    53 Marquet R, Mietton-Peuchot M, Wheatley A D. Characterisation of tricklingfilter effluent by particle size distribution and high performance size exclusion chromatography[J]. Water Research, 1999, 33(6):1415-1424.
    54 Li L, Zhao Z Y, Huang W L, et al. Characterization of humic acids fractionated by ultrafiltration[J]. Organic Geochemistry, 2004, 35(9):1025-1037.
    55 Moon J, Kim S H, Cho J. Characterizations of natural organic matter as nano particle using flow field-flow fractionation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 287(1-3): 232-236.
    56 Thang N M, Geckeis H, Kim J I, et al. Application of the flow field flow fractionation (FFFF) to the characterization of aquatic humic colloids: evaluation and optimization of the method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181(1-3):289-301.
    57 Calace N, Liberatori A, Petronio B M. Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals[J]. Environmental Pollution, 2001, 113(3):331-339.
    58韩芸,杨永哲,刘可,等.垃圾渗滤液及处理出水的有机物MW分布[J].中国给水排水, 2006, 22(1):88-91.
    59陈少华,刘俊新.垃圾渗滤液中有机物分子量的分布及在MBR系统中的变化[J].环境化学, 2005, 24(2): 153-157.
    60 Brown A, McKnighta D M, Chin Y P, et al. Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica[J]. Marine Chemistry, 2004, 89(1-4):327-337.
    61 Michel K, Matzner E, Dignac M F, et al. Properties of dissolved organic matter related to soil organic matter quality and nitrogen additions in Norway spruce forest floors[J]. Geoderma, 2006, 130(3-4):250-264.
    62 Amir S, Hafidi M, Merlina G, et al. Structural characterization of fulvic acids during composting of sewage sludge[J]. Process Biochemistry, 2005, 40(5):1693-1700.
    63 Hewitt L M, Marvin C H. Analytical methods in environmental effects-directed investigations of effluents[J]. Mutation Research/Reviews in Mutation Research, 2005, 589(3):208-232.
    64黄君礼,鲍治宇.紫外吸收光谱法及其应用[M].北京:中国科学技术出版社, 1992:62
    65 Christensen J B, Jensen D L, Gr?n C, et al. Characterization of the dissolvedorganic carbon in landfill leachate-polluted groundwater[J]. Water research, 1998, 32(1):125-135.
    66 Weishaar J L, Aiken G R, Bergamaschi B M, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20):4702-4708.
    67 Chen Y, Senesi N, Schnitzer M. Information provided on humic substances by E4/E6 ratios[J]. Soil Science Society of America Journal, 1977, 41(2):352-358.
    68顾志忙,王晓蓉,顾雪元,等.傅立叶变换红外光谱和核磁共振法对土壤中腐殖酸的表征[J].分析化学研究简报, 2000, 28(3):314-317.
    69 Smidt E, Meissl K. The applicability of Fourier Transform Infrared (FT-IR) spectroscopy in waste management[J]. Waste Management, 2007, 27(2):268-276.
    70张宏忠,方少明,松全元,等.吸收光谱法在垃圾渗滤液膜处理技术中的应用研究[J].光谱学与光谱分析, 2006, 26(8):1049-1053.
    71楼紫阳.填埋场渗滤液性质演化过程研究[D].同济大学博士论文. 2007:83.
    72 Calace N, Massimiani A, Petronio B M, et al. Municipal landfill leachate-soil interactions: a kinetic approach[J]. Chemosphere, 2001, 44(5):1025-1031.
    73 Huo S L, Xi B D, Yu H C, et al. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages[J]. Journal of Environmental Science, 2008, 20(4):492-498.
    74 Fan H J, Shu H Y, Yang H S, et al. Characteristics of landfill leachates in central Taiwan[J]. Science of the Total Environment, 2006, 361(1-3):25-37.
    75 Ryan D K, Weber J H. Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid[J]. Analytical Chemistry, 1982, 54(6):986-990.
    76 Zarruk K K D, Scholer G, Dudal Y. Fluorescence fingerprints and Cu2+-complexing ability of individual molecular size fractions in soil- and waste-borne DOM[J]. Chemosphere, 2007, 69 (4):540-548.
    77 Fu P Q, Wu F C, Liu C Q, et al. Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II)[J]. Applied Geochemistry, 2007, 22(8):1668-1679.
    78 Wu J, Zhang H, He P J, et al. Insight into the heavy metal binding potential ofdissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J]. Water Research, 2011, 45(4):1711-1719.
    79 Seo D J, Kim Y J, Ham S Y, et al. Characterization of dissolved organic matter in leachate discharged from final disposal sites which contained municipal solid waste incineration residues[J]. Journal of Hazardous Materials, 2007, 148(30):679-692.
    80 Mobed J J, Hemmingsen S L, Autry J L, et al. Fluorescence characterization of IHSS humic substances: Total Iuminescence spectra with absorbance correction[J]. Environmental Science & Technology, 1996, 30(10):3061-3065.
    81 Zhao Y, He X S, Xi B D, et al. Effect of pH on the fluorescence characteristic of dissolved organic matter in landfill leachate[J]. Spectroscopy and Spectral Analysis, 2010, 30(2):382-386.
    82 JafféR, Boyer J N, Lu X, et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry, 2004, 84(3-4):195-210.
    83 Baker A, Curry M. Fluorescence of leachates from three contrasting landfills[J]. Water Research, 2004, 38(10): 2605-2613.
    84孟了.我国垃圾渗滤液处理现状及存在问题[J].给水排水. 2003, 29(10):31-33
    85宋燕杰,彭永臻,刘牡,等.生物组合工艺处理垃圾渗滤液的研究进展[J].水处理技术, 2011, 37(4):9-13.
    86 Ismail T, Imen S, Tarek D, et al. Coupling of anoxic and aerobic biological treatment of landfill leachate[J]. Desalination, 2009, 246(1-3):506-513.
    87 Timur H, ?zturk I. Anaerobic Sequencing Batch Reactor Treatment of Landfill Leachate[J]. Water Research, 1999, 33(15):3225-3230.
    88李晨,高锋,金卫红.城市生活垃圾渗滤液的ASBR-SBR生物脱氮研究[J].环境科学与技术, 2008, 31(5):107-111.
    89 Williams M D, Pirbazari M. Membrane bioreactor process for removing biodegradable organic matter from water[J]. Water Research, 2007, 41(17):3880-3893.
    90 Sun H W, Yang Q, Peng Y Z, et al. Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate[J]. Chinese Journal of Chemical Engineering, 2009, 17(6):1027-1031.
    91宋玉,李鸿江,赵由才,等.垃圾填埋场渗滤液生物处理尾水的性质研究[J].环境污染与防治, 2007, 29(5):330-332, 386.
    92刘卫华,季民,张昕,等.催化臭氧氧化去除垃圾渗滤液中难降解有机物的研究[J].环境化学, 2007, 26 (1):58-61.
    93 Deng Y, Englehardt J D. Kinetics and oxidative mechanism for H2O2-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate[J]. Journal of Hazardous Materials, 2009, 169(1-3):370-375.
    94李亚峰,张玲玲,袁晓东.混凝-Fenton法处理印染废水的试验研究[J].沈阳建筑大学学报(自然科学版), 2006, 22(1):137-140.
    95 Zhang H, Choi H J, Huang C P. Optimization of Fenton process for the treatment of landfill leachate[J]. Journal of Hazardous Materials, 2005, 125(1-3):166-174.
    96覃芳慧,叶秀雅,吴彦瑜,等. Fenton-双泥SBR工艺深度处理难降解反渗透浓缩液[J].环境工程学报, 2011, 5(4):721-725.
    97 Wu Y Y, Zhou S Q, Qin F H, et al. Removal of humic substances from landfill leachate by Fenton oxidation and coagulation[J]. Process Safety and Environmental Protection, 2010, 88(4):276-284.
    98 Gong J L, Liu Y D, Sun X B. O3 and UV/O3 oxidation of organic constituents of biotreated municipal wastewater[J]. Water Research, 2008, 42(4-5):1238-1244.
    99 ?wietlik J, D?browska A, Raczyk-Stanis?awiak U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research, 2004, 38(17):547-558.
    100 Poblete R, Otal E, Vilches L F, et al. Photocatalytic degradation of humic acids and landfill leachate using a solid industrial by-product containing TiO2 and Fe[J]. Applied Catalysis B-Environmental, 2011, 102(1-2):172-179.
    101 Ushikoshi K, Kobayashi T, Uematsu K, et al. Leachate treatment by the reverse osmosis system[J]. Desalination, 2002, 150(2):121-129.
    102杨琦,尚海涛,席宏波,等.超滤反渗透处理城市二级生活污水处理厂出水中试研究[J].膜科学与技术, 2007, 27(3):71-74.
    103 Song Y L, Dong B Z, Gao N Y, et al. Huangpu River water treatment by microfiltration with ozone pretreatment[J]. Desalination, 2010, 250(1):71-75.
    104王成端.低成本污水处理技术及工程实例[M].北京:化学工业出版社, 2008:237.
    105梅从明,郑书盈.双膜法在填埋场渗沥液处理站中的设计与应用[J].污染防治技术, 2010, 23(4):119-123.
    106熊忠华,范显华,罗德礼,等.模拟放射性废水的超滤+反渗透处理工艺[J].核化学与放射化学, 2008, 30(3):142-145.
    107徐守平.反渗透技术在垃圾填埋场渗滤液处理中的应用[J].山东理工大学学报(自然科学版), 2010, 24(4):32-35.
    108 Baun D L, Christensen T H. Speciation of heavy metals in landfill leachate: a review[J]. Waste Management Research, 2004, 22(1):3-23.
    109 Imai A, Onuma K, Inamori Y, et al. Biodegradation and adsorption in refractory leachate treatment by the biological activated carbon fluidized-bed process[J]. Water Research, 1995, 29(2):687-694.
    110夏明.浅谈新标准下的垃圾渗滤液处理方法[J].水处理工艺及设备, 2009, 3(33):49-52.
    111朱泉雯.铁碳微电解法在废水预处理过程中的应用现状及前景[J].科技资讯, 2011, (2):118.
    112 Deng Y, Englehardt J D. Electrochemical oxidation for landfill leachate treatment[J]. Waste Management, 2007, 27(3):380-388.
    113 Wang Y P, Wang L J, Peng P Y, et al.Treatment of naphthalene derivatives with iron-carbon micro-electrolysis[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(6):1442-1447.
    114朱凡,李平,吴锦华,等.铁炭微电解法削减老龄垃圾渗滤液的毒性研究[J].中国给水排水, 2006, 22(11):83-86.
    115汪永红,潘倩,王丽燕,等. Fe-C-H2O2协同催化氧化处理印染废水[J].生态环境学报, 2010, 19(6):1374-1377.
    116 Bernard C, Guido P, Colin J, et al. Estimation of the hazard of landfills through toxicity testing of leachates——I. Determination of leachate toxicity with abattery of acute tests[J]. Chemosphere, 1996, 33(11):2303-2320.
    117 Samadi M T, Saghi M H, Rahmani A, et al. Hamadan landfill leachate treatment by coagulation-flocculation process[J]. Iranian Journal of Environmental Health Science & Engineering, 2010, 7(3):253-258.
    118 Ntampou X, Zouboulis A I, Samaras P. Appropriate combination of physicochemical methods (coagulation/ flocculation and ozonation) for theefficient treatment of landfill leachate[J]. Chemosphere, 2006, 62(5):722-730.
    119 Aziz H A, Alias S, Adlan M N, et al. Colour removal from landfill leachate by coagulation and flocculation processes[J]. Bioresource Technology, 2007. 98(1): 218-220.
    120张涛,任昭,刘智峰.硫酸铝对垃圾渗滤液处理效果的实验研究[J].广州环境科学, 2011, 25(3):16-18.
    121 Zhang C X, Wang Y X. Removal of dissolved organic matter and phthalic acid esters from landfill leachate through a complexation–flocculation process[J]. Waste Management, 2009, 29(1):110-116.
    122薛俊峰,何品晶,邵立明,等.渗滤液循环回灌出水在混凝处理中的去除特性[J].环境污染与防治, 2005, 27(3):164-168.
    123徐新燕,贾金平,吕洲,等.垃圾渗滤液中有机组分在混凝前后的变化[J].环境化学, 2007, 26(1):114-115.
    124 Mara?ón E, Castrillón L, Fernández-Nava Y, et al. Coagulation- flocculation as a pretreatment process at a landfill leachate nitrification-denitrification plant[J]. Journal of Hazardous Materials, 2008, 156(1-3):538-544.
    125 Mori T, Kuroda Y, Yoshikawa Y, et al. Preparation of a water-resistant siliceous mcm-41 sample, through improvement of crystallinity, and its prominent adsorption features[J]. Langmuir, 2002, 18(5):1595-1603.
    126何岩,赵由才,叶文飞,等.强化混凝处理填埋场渗滤液尾水的可行性研究[J].中国给水排水, 2010, 26(11):60-63.
    127刘文君.饮用水可生物降解有机物和消毒副产物特性的研究[M].北京:高等教育出版社, 2003:75-76.
    128 Cossu R, Serra R, Muntoni A. Physico-chemical treatment of leachate[J]. Elsevier Applied Science, 1992:265-304.
    129黄文龙.混凝-吸附法在垃圾渗滤液预处理中的应用研究[J].化学工程与装备, 2011, (5):185-187.
    130 Song L Y, Zhao Y C, Sun W M, et al. Hydrophobic organic chemicals (HOCs) removal from biologically treated landfill leachate by powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC)[J]. Journal of Hazardous Materials, 2009, 163(2-3):1084-1089.
    131 Kargi F, Pamukoglu M Y. Repeated fed-batch biological treatment of pretreated landfill leachate by powdered actived carbon addition[J]. Enzyme and MicrobialTechnology, 2004, 34(5):422-428.
    132 Heavey M. Low-cost treatment of landfill leachate using peat[J]. Waste Management, 2003, 23(5):447-454.
    133 Lavrova S, Koumanova B. Influence of recirculation in a lab-scale vertical flow constructed wetland on the treatment efficiency of landfill leachate[J]. Bioresource Technology, 2010, 101(6):1756-1761.
    134薛俊峰,何品晶,邵立明,等.渗滤液循环回灌厌氧填埋层前后的分类表征[J].水处理技术, 2005, 31(6):24-27.
    135 Benson C H, Barlaz M A, Lane D T, et al. Practice review of five bioreactor/recirculation landfills[J]. Waste Management, 2007, 27(1):13-29.
    136 Zhao Y C, Shao F. Use of an aged-refuse biofilter for the treatment of wastewaters from feedlots[J]. Environmental Engineering Science, 2004, 21(3):349-360.
    137张爱平,刘丹,苏艳萍,等.准好氧矿化垃圾去除渗滤液中有机物的试验研究[J].西南交通大学学报, 2008, 43(1):142-146.
    138黄一媛.我国垃圾渗滤液处理技术发展历程探讨[J].绿色科技, 2011, (3):98-100.
    139赵玲,尹平河. PAC混凝-粉煤灰吸附对老龄垃圾渗滤液预处理的研究[J].广东化工. 2006, 33(154):41-42,48.
    140沈小星,陈哲铭,方士,等.老龄垃圾渗滤液混凝-催化臭氧氧化工艺研究[J].浙江大学学报(农业与生命科学版). 2006, 32(4):449-454.
    141 Monje-Ramirez I, Orta de Velásquez M T. Removal and tansformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes[J]. Water Research, 2004, 38(9): 2359-2367.
    142 Poznyak T, Bautista G L, Chaírez I, et al. Decomposition of toxic pollutants in landfill leachate by ozone after coagulation treatment[J]. Journal of Hazardous Materials, 2008, 152(3): 1108-1114.
    143 Bohdziewicz J, Kwarciak A. The application of hybrid system UASB reactor-RO in landfill leachate treatment[J]. Desalination, 2008, 222(1-3):128-134.
    144 Sung S, Dgaue R R. Laboartory sutdies on the anaerobic sequencing batch reactor[J]. Water Environmental Research, 1995, 67(3):294-301.
    145 Kennedy K J, Lenzt E M. Treatment of landfill leaehate usnig sequnecnig bacth and continuous flow upflow anaerobic sludge blanket (UASB) reactors[J]. Water Research, 2000, 34(14):3640-3656.
    146 Zehnder A J B, Huser B A, Brock T D, et al. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium[J]. Archives of Microbiology, 1980, 124 (1):1-11.
    147 Shimada T, Zilles J, Raskin L, et al. Carbohydrate storage in anaerobic sequencing batch reactors[J]. Water Research, 2007, 41 (20):4721-4729.
    148肖华,周荣丰.电芬顿法的研究现状与发展[J].上海环境科学. 2004, 23(6):253-256.
    149 Chow A T, Tanji K K, Gao S. Production of dissolved organic carbon (DOC) and trihalomethane (THM) precursor from peat soils[J]. Water Research, 2003, 37(18):4475-4485.
    150 Karanfil T, Erdogan I, Schlautman M A. Selecting filter membranes for measuring DOC and UV254[J]. Journal American Water Works Association, 2003, 95(3):86-100.
    151 Marhaba T F, Pu Y, Bengraine K. Modified dissolved organic matter fractionation technique for natural water[J]. Journal of Hazardous Materials, 2003, 101(1):43-53.
    152 Aiken G L, McKnight D M, Thorn K A, et al. Isolation of hydrophilic organic acids from water using nonionic macroporous resins[J]. Organic Geochemistry, 1992, 18(4):567-573.
    153 Chow A T, Guo F, Gao S, et al. Molecular size and XAD fractionations of trihalomethane precursors from soils[J]. Chemosphere, 2006, 62(10):1636-1646.
    154国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社, 2002:10.
    155王丽娜.城市污水再生用于地下水回灌及健康风险评价[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2006:48.
    156 Marhaba T F, Mangmeechai A, Chaiwatpongsakorn C, et al. Trihalomethanes formation potential of shrimp farm effluents[J]. Journal of Hazardous Materials, 2006, 136(2):151-163.
    157 Quanrud D M, Karpiscak M M, Lansey K E, et al. Transformation of effluentorganic matter during subsurface wetland treatment in the Sonoran Desert[J]. Chemosphere, 2004, 54(6):777-788.
    158郝瑞霞,曹可心,邓亦文.城市污水处理过程中有机污染物三维荧光特性的变化规律[J].分析测试学报, 2007, 26(6):789-792,796.
    159 Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitationemission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710.
    160张龙,李爱民,邓丛林,等.吸附法处理垃圾渗滤液的研究进展[J].环境保护科学, 2008, 34(4):11-14.
    161 Kurniawan T A, Lo W, Chan G, et al. Biological processes for treatment of landfill leachate[J]. Journal of Environmental Monitoring, 2010, 12(11):2032-2047.
    162 Yu J H, Zhou S Q, Wang W F. Combined treatment of domestic wastewater with landfill leachate by using A(2)/O process[J]. Journal of Hazardous Materials, 2010, 178(1-3):81-88.
    163王亮,王丰岭,刘华. ASBR研究现状与展望[J].污染防治技术, 2003, 16(4):92-94, 175.
    164 Ndegwa P M, Hamilton D W, Lalman J A, et al. Effects of cycle-frequency and temperature on the performance of anaerobic swquencing batch reactors (ASBRs) treating swine waste[J]. Bioresource Technology, 2008, 99(6):1972-1980.
    165 Mockaitis G, Ratusznei S M, Rodrigues J A D, et al. Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity[J]. Journal of Environmental Management, 2006, 79 (2):198-206.
    166李颖.垃圾渗滤液处理技术及工程实例[M].北京:中国环境科学出版社, 2008:201.
    167叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社, 2006:33.
    168 Katsoyiannis I A, Ruettimann T, Hug S J. pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water[J]. Environmental Science & Technology, 2008, 42(19): 7424-7430.
    169 Kang S H, Choi W. Oxidative degradation of organic compounds usingzero-valent iron in the presence of natural organic matter serving as an electron shuttle[J]. Environmental Science & Technology, 2009, 43(3):878-883.
    170 Keenan C R, Sedlak D L. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(18):6936-6941.
    171 Fernandez J, Maruthamuthu P, Kiwi J. Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161(2-3):185-192.
    172 Weichgrebe D, Vogelpohl A. A comparative study of wastewater treatment by chemical wet oxidation[J]. Chemical Engineering and Processing. 1994, 33(4):199-203.
    173高迎新,杨敏,王东升,等. Fenton反应中水解Fe(III)的形态分布特征研究[J].环境科学学报, 2002, 22(5):551-556.
    174陈胜兵,何少华,娄金生,等. Fenton试剂的氧化作用机理及其应用[J].环境科学与技术, 2004, 27(3):105-107.
    175马蓉,吕锡武,窦月芹.活性炭结构和性能与饮用水处理中有机物去除率的关系研究[J].安全与环境工程, 2006, 13(2):31-33.
    176孙洪伟,王淑莹,张树军,等.高氮渗滤液短程深度脱氮及反硝化动力学[J].环境科学, 2010, 31(1):129-133.
    177李晨,高锋,金卫红.城市生活垃圾渗滤液的ASBR-SBR生物脱氮研究[J].环境科学与技术, 2008, 31(5):107-111.
    178 Mohammadzadeh H, Clark I, Marschner M, et al. Compound Specific Isotopic Analysis (CSIA) of landfill leachate DOC components[J]. Chemical Geology, 2005, 218(1-2):3-13.
    179 ?wietlik J, Silorska E. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone[J]. Water Research, 2004, 38(17):3791-3799.
    180郭瑾,马军.松花江水中天然有机物的提取分离与特性表征[J].环境科学, 2005, 26(5):77-84.
    181 Janhom T, Wattanachira S, Pavasant P. Characterization of brewery wastewater with spectrofluorometry analysis[J]. Journal of Environmental Management, 2009, 90(2):1184-1190.
    182 Chen S H, Liu J X. Landfill leachate treatment by MBR: Performance and molecular weight distribution of organic contaminant[J]. Chinese Science Bulletin, 2006, 51(23):2831-2838.
    183 Jouraiphy A, Amir S, El Gharous M, et al. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste[J]. International Biodeterioration & Biodegradation, 2005, 56(2):101-108.
    184 Westerhoff P, Pinney M. Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater[J]. Waste Management, 2000, 20(1):75-83.
    185 Hautala K, Peuravuori J, Pihlaja K. Measurement of aquatic humus content by spectroscopic analyses[J]. Water Research, 2000, 34(1):246-258.
    186 McGarry S F, Baker A. Organic acid fluorescence: applications to speleothem palaeoenvironmental reconstruction[J]. Quaternary Science Reviews, 2000, 19(11): 1087-1101.
    187 Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4):325-346.
    188 Coble P G. Marine optical biogeochemistry: the chemistry of ocean color. Chemical Reviews, 2007, 107(2):402-418.
    189 Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters: a review[J]. River Research and Applications, 2007, 23(6):631-649.
    190 ?wietlik J, Raczyk-Stanis?awiak U, Bi?ozor S, et al. Adsorption of natural organic matter oxidized with ClO2 on granular activated carbon[J]. Water Research, 2002, 36(9):2328-2336.
    191 Matilainen A, Lindqvist N, Korhonen S, et al. Removal of NOM in the different stages of the water treatment process[J]. Environmental International, 2002, 28(6):457-465.
    192 Aiken G. R., McKnight D. M., Wershaw R. L., et al. Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization[M], New York, John Wiley & Sons, 1985.
    193 Barber L B, Leenheer J A, Noyes T I, et al. Nature and transformation ofdissolved organic matter in treatment wetlands[J]. Environmental Science & Technology, 2001, 35(24):4805-4816.
    194 Fuentes M, Baigorri R, González-Gaitano G, et al. The complementary use of 1H NMR, 13C NMR, FTIR and size exclusion chromatography to investigate the principal structural changes associated with composting of organic materials with diverse origin[J]. Organic Geochemistry, 2007, 38(12):2012-2023.
    195卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社, 1989:21.
    196 Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997, 337(2):133-149.
    197张军政,杨谦,席北斗,等.垃圾填埋渗滤液溶解性有机物组分的光谱学特性研究[J].光谱学与光谱分析, 2008, 28(11):2583-2587.
    198 He X S, Xi B D, Wei Z M, et al. Three-Dimensional Excitation Emission Matrix Fluorescence Spectroscopic Characterization of Complexation Between Mercury(II) and Dissolved Organic Matter Extracted from Landfill Leachate[J]. Chinese Journal of Analytical Chemistry, 2010, 38(10):1417-1422.
    199 Chen J, LeBoeuf E J, Dai S, et al. Fluorescence spectroscopic studies of natural organic matter fractions[J]. Chemosphere, 2003, 50(5):639-647.
    200 Senesi N, Miano T M, Provenzano M R, et al. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy[J]. Soil Science, 1991, 152(4):259-271.
    201 Imai A, Fukushima T, Matsushige K, et al. Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers, and other organic matter sources[J]. Water Research, 2001, 35(17):4019-4028.
    202孙洪伟,彭永臻,时晓宁,等.高氮渗滤液缺氧/厌氧UASB-SBR工艺低温深度脱氮[J].中国环境科学, 2009, 29(2):207-212.
    203 Newcombe G. Charge vs. porosity– some influence on the adsorption of natural organic matter (NOM) by activated carbon[J]. Water Science and Technology, 1999, 40(9):191-198.
    204 Yuasa A A, Li F F, Matsui Y, et al. Characteristics of competitive adsorption of aquatic humic substances onto activated carbon[J]. Water Science and Technology, 1997, 36(12) 231-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700