用户名: 密码: 验证码:
多分量超冷玻色原子气的平衡态动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了多分量玻色-爱因斯坦凝聚体系中的平衡态以及动力学问题,包括对双阱系统及原子-分子转化过程的讨论。在前两章中我们简要回顾了玻色-爱因斯坦凝聚现象的实验及理论背景知识,并对多分量玻色-爱因斯坦凝聚体的相关进展作了介绍。第三章至第六章则对应于我们的研究成果,具体如下:
     在第三章中,我们在双阱中研究了双分量玻色-爱因斯坦凝聚体的不动点跃迁问题。由于两分量之间存在异种相互作用,这使得体系的不动点解很复杂。根据其对称性,我们将这些不动点解分为四类:对称解,反对称解,各向同性解,以及不对称解。我们给出了各类解的存在情况随着体系参数的依赖关系。通过对这些不动点解作小量展开,我们讨论了它们的动力学稳定性问题,给出了各类解在参数空间的稳定性相图。我们感兴趣的是这些不动点解在Rosen-Zener型的遂穿强度的绝热调制下的演化行为。这里我们通过外加一个高频的周期调制来引入一个有效的遂穿强度,它的值可以通过改变调制的幅度来调节。我们的数值模拟局限在每个分量在两阱间的相位差均为π。对于初值为对称解时,当最大的有效遂穿强度足够大时,末态则有一定的几率处于另一个对称解上,这依赖于体系参数的具体取值。而对于初值为反对称解的情况,末态的情况则更为复杂,随着最大有效遂穿强度的不同取值,末态可能是对称解和反对称解中的任意一个,甚至可能是超出这些不动点解的混沌态。我们对此做了详细讨论。
     在第四章中,我们讨论了在各向同性的三维球谐势中原子-分子混合物的相分离。通过Feshbach共振,我们可以将原子转化为分子,这样我们即在约束势中实现了不对称的两分量玻色-爱因斯坦凝聚。我们通过寻找能量极小值来确定体系的基态,从而确定相应的相图。体系可能的基态只有三种情况,真空态,纯的分子超流态,以及混合的原子-分子超流态。由于转化过程的不对称性,纯的原子超流态是不存在的。我们引入Hessian矩阵来分析每个态的动力学稳定性。在Thomas-Fermi近似下,我们人为定义了两个局域的化学势。在这两个化学势张开的参数空间里,我们给出了体系的基态相图。当原子-分子之间的相互作用改变时,我们在某个特定的临界值附近发现了一个不连续的突变。由于局域化学势空间和约束势实空间之间的映射关系,我们同样给出了原子和分子在实空间的密度分布,并验证了前面的相图分析。
     在第五章中,我们提出了一个实验建议,如何操控Ramsey型的磁场脉冲来提高原子-分子转化率。忽略掉约束势的影响,在平均场近似下,我们用一个经典的类摆模型来描述这个体系。通过求得不动点解,我们可以确定体系相应的本征态。我们假设体系的初态全为原子,当磁场为一个定值(单个脉冲)的时候,随着时间演化,体系会在原子态和分子态之间发生拉比振荡。我们给出了振荡周期随能量失谐之间的依赖关系,发现当能量失谐趋于零时,振荡周期趋于发散。相比于单个脉冲实现的分子转化率,利用双脉冲的相同磁场,我们有可能实现比其更高的转化率。在相空间的能量等高图上,我们给出了合理的解释。拉比振荡的轨迹对应于一条能量等高线,而两脉冲之间的时间间隔会使得体系在不同的能量等高线之间跃迁,从而实现高的分子转化率。
     在第六章中,我们将玻色-爱因斯坦凝聚体置于光学腔中,并讨论光子对Feshbach共振下原子-分子转化率的影响。当光子频率远大于原子和分子两者各自的跃迁频率,光子与原子和分子之间的相互作用呈弥散型。由于腔中光子的衰减率远大于系统的其他特征频率,因此光子的演化绝热地依赖于原子和分子凝聚体的演化,从而可以得到原子和分子满足的有效哈密顿量。利用平均场近似,我们发现非线性项的存在使得系统可能出现更多的解,尤其是当泵浦激光的强度足够大时,我们会观察到双稳现象。我们提出光子与Feshbach共振模型之间的耦合可以被用来提高原子-分子转化率。我们同样给出了系统相应的量子模型,以对比平均场理论所得到的结果。
This essay focuses on the static and dynamical properties of multi-component Bose-Einstein condensates, including the discussion about double-well system and atom-to-molecule conversion process. In the first two chapters, we briefly review the experimental and theoretical backgrounds of Bose-Einstein condensa-tion, and also introduce the relevant investigations of multi-component conden-sates. Our research achievements correspond to the content from Chapter 3 to Chapter 6 which are listed as follows:
     In Chapter 3, we investigate the fixed-point transitions of two-component Bose-Einstein condensates in double-well trapping potentials. Based on the sym-metry between the two kinds of atoms, we classify the fixed-point solutions into four categories:symmetrical, anti-symmetrical, isotropical and asymmetrical. We discuss the existence of each kind of solution and the corresponding dynam-ical stability, and give the stability diagrams in parameter spaces. We apply a high-frequency periodic modulation to the energy bias between the two wells and vary the value of the amplitude to tune the effective tunneling strength. As a result, during the evolution the final state may belong to a different fixed-point solution from the initial one. This is the so-called fixed-point transitions which reply on the parameter values sensitively. We believe this phenomena could be used to transfer condensates between wells.
     In Chapter 4, we discuss the phase separation of atomic and molecular Bose-Einstein condensates trapped in isotropic three-dimensional harmonic potential. Under Feshbach resonance, atoms can be converted into molecules. By find-ing the energy minimum, we determine the ground state phase diagram. The possible ground states are vacuum state, pure molecular superfluid state and mixed atomic-molecular superfluid state. The asymmetry between atoms and molecules in the Feshbach term inhibits the existence of pure atomic superfluid state. Hessian matrix is introduced to determine the stability of each phase. Under Thomas-Fermi approximation, we plot the phase diagram. Due to the correspondence between the parameter space and coordinate space, we plot the density distribution of atomic and molecular condensates. Both prove the ex-istence of phase separation. We also notice the discontinuous transition about some critical interaction strength.
     In Chapter 5, we give an experimental proposal to show another approach to increase the atom-molecule conversion efficiency by manipulating the Ramsey type of magnetic field pulses. Ignoring the effect of trapping potential, we de-scribe the system with a pendulum-like model under mean-field approximation. We find the fixed-point solutions, and determine the periodicity of Rabi oscilla-tion for one constant magnetic field. The periodicity diverges when the molecular energy approaches the atomic energy. By applying the Ramsey type of magnetic field pulses, we find that if the separation between the two pulses is appropriately tuned, the atom-molecule conversion efficiency could reach the maximum. The basic idea is about the transition of the system between Rabi oscillation orbitals given by different energy contours. We give a simple and easy-understanding picture to explain how our proposal would work.
     In Chapter 6, we put Bose-Einstein condensates in a high-finesse optical cavity, and investigate the influence of photons on the atom-molecule conver-sion efficiency under Feshbach resonance. We consider the dispersive interaction between photons and atoms or molecules. Since photons decay very fast, the corresponding evolution adiabatically follows that of atomic and molecular con-densates. Thus we can get the effective Hamiltonian describing pure atoms and molecules. Based on mean-field approximation, we find the existence of nonlin-ear terms would yield more possible solutions. When the pumping strength is above a critical value, we may observe the bistability phenomena which could be proposed as a way to tune the molecular production rate with photons in cavity. We also give the quantum model and the comparison with the mean-field model is expected.
引文
[1]K. B. Davis, M.O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-Einstein Condensation in a Gas of Sodium Atoms," Phys. Rev. Lett.75,3969 (1995)
    [2]G. Baym, J. P. Blaizot, M. Holzmann, F. Laloe, and D. Vautherin, "The Transition Temperature of the Dilute Interacting Bose Gas," Phys. Rev. Lett.83; 1703 (1999)
    [3]C. J. Pethick and H. Smith, "Bose-Einstein Condensation in Dilute Gases,"
    [4]S. N. Bose, "Plancks Gesetz und Lichtquantenhypothese," Z. Phys.26,178 (1924)
    [5]A. Einstein, "Quantum theorie des einatomigen idealen Gases," Sitzungs-ber. Preuss. Akad. Wiss., Phys. Math. Kl.22,261 (1924)
    [6]A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl.1,3 (1925)
    [7]Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin, "Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure," Phys. Rev. Lett.55,48 (1985)
    [8]M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor," Science 269,198 (1995)
    [9]C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, "Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interac-tions," Phys. Rev. Lett.75,1687 (1995)
    [10]W. M. Fairbank Jr., T. W. Hansch, and A. L. Schawlow, "Absolute mea-surement of very low sodium-vapor densities using laser resonance fluores-cence," J. Opt. Soc. Am.65,199 (1975)
    [11]D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. J. Miesner, J. Stenger, and W. Ketterle, "Optical Confinement of a Bose-Einstein Condensate," Phys. Rev. Lett.80,2027 (1998)
    [12]H. G. Bennewitz and W. Paul. "Eine Methode zur Bestimmung von Kern-momenten mit fokussiertem Atomstrahl," Z. Phys.139,489 (1954)
    [13]H. G. Bennewitz and W. Paul, "Fokussierung polarer Molekule," Z. Phys. 141,6 (1955)
    [14]F. M. Penning, "Die glimmentladung bei niedrigem druck zwischen koaxi-alen zylindern in einem axialen magnetfeld," Physica 3,873 (1936)
    [15]H. Dehmelt, in Advances in Atomic and Molecular Physics, Vol.3, edited by D. R. Bates adn I. Estermann (Academic, New York)(1967)
    [16]W. Gerlach and O. Stern, "Der experimentelle Nachweis des magnetischen Moments des Silberatoms," Z. Phys.8,110 (1921)
    [17]Alan L. Migdal, John V. Prodan, William D. Phillips, Thomas H. Berge-man, and Harold J. Metcalf, "First Observation of Magnetically Trapped Neutral Atoms," Phys. Rev. Lett.54,2596-2599 (1985)
    [18]C. Townsend, W. Ketterle, and S. Stringari, "Bose-Einstein Condensation," Physics World, p.29.(1997)
    [19]W. H. Wing, "On neutral particle trapping in quasistatic electromagnetic fields," Prog. Quantum Electronics 8,181 (1984)
    [20]W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, "Sta-ble, Tightly Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms," Phys. Rev. Lett.74,3352 (1995)
    [21]Xiao-Qiang Xu, Li-Hua Lu, and You-Quan Li, "Stability and dynamical property for two-species ultracold atoms in double wells," Phys. Rev. A 78,043609 (2008)
    [22]V. S. Letokhov, Pis'ma. Zh. Eksp. Teor. Fiz.7,348 (1968)
    [23]A. P. Kazantsev, Zh. Eksp. Teor. Fiz.63,1628 (1972)
    [24]V.S. Letokhova, V.G. Minogina, and B.D. Pavlik, "Cooling and trapping of atoms and molecules by a resonant laser field," Optics Communications 19,72 (1976)
    [25]H. F. Hess, "Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen," Phys. Rev. B 34,3476 (1986)
    [26]W. Ketterle and N. J. van Druten, "Evaporative Cooling of Trapped Atoms," Adv. At. Mol. Opt. Phys.37,181-236 (1996)
    [27]M. R. Andrews, M.O. Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Direct, Nondestructive Observation of a Bose Conden-sate," Science 273,84 (1996)
    [28]E. P. Gross, "Structure of quantized vortex," Nuovo Cimento 20,454 (1961)
    [29]L. P. Pitaevskii, "Vortex Lines in an Imperfect Bose Gas," Zh. Eksp. Teor. Fiz 40,646 (1961)
    [30]J. Denschlag, J. E. Simsarian, D. L. Feder, Charles W. Clark, L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D. Phillips, "Generating Solitons by Phase Engineering of a Bose-Einstein Condensate," Science 287,5450 (2000)
    [31]L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, "Formation of a Matter-Wave Bright Soliton," Science 296,1290 (2002)
    [32]K. E. Strecker, Guthrie B. Partridge, Andrew G. Truscott, and Randall G. Hulet, "Formation and propagation of matter-wave soliton trains," Nature 417.150 (2002)
    [33]S. Stringari, "Collective Excitations of a Trapped Bose-Condensed Gas," Phys. Rev. Lett.77,2360 (1996)
    [34]A. L. Fetter and A. A. Svidzinsky, "Vortices in a trapped dilute Bose-Einstein condensate," J. Phys.:Condens. Matter 13,135 (2001)
    [35]Alexander L. Fetter, "Rotating trapped Bose-Einstein condensates," Rev. Mod. Phys.81,647 (2009)
    [36]Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger, "Many-body physics with ultracold gases," Rev. Mod. Phys.80,885 (2008)
    [37]M. Greiner, M. O. Mandel, T. Esslinger, T. Hansch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415,39 (2002)
    [38]F. Brennecke, Stephan Ritter, Tobias Donner, and Tilman Esslinger, "Cav-ity Optomechanics with a Bose-Einstein Condensate," Science 322,235 (2008)
    [39]T. Corbitt and N. Mavalvala, "Review:Quantum noise in gravitational-wave interferometers," J. Opt. B:Quantum Semiclass. Opt.6, S675 (2004)
    [40]Thomas Corbitt, Yanbei Chen, Edith Innerhofer, Helge Miiller-Ebhardt, David Ottaway, Henning Rehbein, Daniel Sigg, Stanley Whitcomb, Christopher Wipf, and Nergis Mavalvalal, "An All-Optical Trap for a Gram-Scale Mirror," Phys. Rev. Lett.98,150802 (2007)
    [41]C. Hohberger-Metzger and K. Karrai, "Cavity cooling of a microlever," Nature 432,1002 (2004)
    [42]S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bauerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444,67 (2006)
    [43]O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, "Radiation-pressure cooling and optomechanical instability of a micromir-ror," Nature 444,71 (2006)
    [44]D. Kleckner and D. Bouwmeester, "Sub-kelvin optical cooling of a microme-chanical resonator," Nature 444,75 (2006)
    [45]I. Favero, C. Metzger, S. Camerer, D. Konig, H. Lorenz, J. P. Kotthaus, and K. Karrai. "Optical cooling of a micromirror of wavelength size," Applied Physics Letters 90,104101 (2007)
    [46]C. Regal, J. Teufel, and K. Lehnert, "Measuring nanomechanical motion with a microwave cavity interferometer," Nature Physics 4,555 (2008)
    [47]T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, "Temporal Behavior of Radiation-Pressure-Induced Vibrations of an Opti-cal Microcavity Phonon Mode," Phys. Rev. Lett.94,223902 (2005)
    [48]A. Schliesser, P. Del'Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dy-namical Backaction," Phys. Rev. Lett.97,243905 (2006)
    [49]J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane," Nature 452,72 (2008)
    [50]C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, "Self-Induced Oscillations in an Optomechanical System Driven by Bolometric Backaction," Phys. Rev. Lett.101,133903 (2008)
    [51]Florian Marquardt and S. M. Girvin, "Optomechanics," arxiv(2009)
    [52]E. Timmermans, "Phase Separation of Bose-Einstein Condensates," Phys. Rev. Lett.81,26 (1998)
    [53]T. L. Ho and V. B. Shenoy, "Binary Mixtures of Bose Condensates of Alkali Atoms," Phys. Rev. Lett.77,3276 (1996)
    [54]D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, "Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates," Phys. Rev. Lett.81,1539 (1998)
    [55]S. G. Bhongale and Eddy Timmermans, "Phase Separated BEC for High-Sensitivity Force Measurement," Phys. Rev. Lett.100,185301 (2008)
    [56]E. J. Mueller, T. L. Ho, M. Ueda, and G. Baym, "Fragmentation of Bose-Einstein condensates," Phys. Rev. A 74,033612 (2006)
    [57]A. Barone and B. Paterno, "Physics and Applications of the Josephson Effect," Wiley, New York(1982)
    [58]R. P. Feynman, R. B. Leighton, and M. Sands, "The Feynman Lectures on Physics," Addison-Wesley, Reading, MA(1963)
    [59]A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, "Quantum Coher-ent Atomic Tunneling between Two Trapped Bose-Einstein Condensates," Phys. Rev. Lett.79,4950 (1997)
    [60]S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, "Coherent oscillations between two weakly coupled Bose-Einstein condensates:Josephson effects, π oscillations, and macroscopic quantum self-trapping," Phys. Rev. A 59, 620 (1999)
    [61]I. Marino, S. Raghavan, S. Fantoni, S. R. Shenoy, and A. Smerzi, "Bose-condensate tunneling dynamics:Momentum-shortened pendulum with damping," Phys. Rev. A 60,487 (1999)
    [62]M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, "Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction," Phys. Rev. Lett.95,010402 (2005)
    [63]D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Measure-ments of Relative Phase in Two-Component Bose-Einstein Condensates," Phys. Rev. Lett.81,1543 (1998)
    [64]J. Javanainen, "Optical detection of the relative phase between two Bose-Einstein condensates," Phys. Rev. A 54, R4629 (1996)
    [65]J. Ruostekoski and D. F. Walls, "Nondestructive optical measurement of relative phase between two Bose-Einstein condensates," Phys. Rev. A 56, 2996 (1997)
    [66]S. M. Barnett, K. Burnett, and J. A. Vaccaro, "Why a condensate can be thought of as having a definite phase," J. Res. Natl. Inst. Stand. Technol. 101,593 (1996)
    [67]J. Javanainen and S. M. Yoo, "Quantum Phase of a Bose-Einstein Con-densate with an Arbitrary Number of Atoms," Phys. Rev. Lett.76,161 (1996)
    [68]Y. Castin and J. Dalibard, "Relative phase of two Bose-Einstein conden-sates," Phys. Rev. A 55,4330 (1997)
    [69]M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Observation of Interference Between Two Bose Conden-sates," Science 275,637 (1997)
    [70]A. Vardi and J. R. Anglin, "Bose-Einstein Condensates beyond Mean Field Theory:Quantum Backreaction as Decoherence," Phys. Rev. Lett.86,568 (2001)
    [71]M. Lewenstein and L. You, "Quantum Phase Diffusion of a Bose-Einstein Condensate," Phys. Rev. Lett.77,3489 (1996)
    [72]C. K. Law, H. Pu, N. P. Bigelow, and J. H. Eberly, "Quantum phase diffu-sion of a two-component dilute Bose-Einstein condensate," Phys. Rev. A 58,531 (1998)
    [73]H. Xiong, S. Liu, and G. Huang, "Phase diffusion of Bose-Einstein conden-sation close to zero temperature," Phys. Lett. A 301,203 (2002)
    [74]E. Boukobza, M. Chuchem, D. Cohen, and A. Vardi, "Phase-Diffusion Dy-namics in Weakly Coupled Bose-Einstein Condensates," Phys. Rev. Lett. 102,180403 (2009)
    [75]A. Widera, S. Trotzky, P. Cheinet, S. Foiling, F. Gerbier, I. Bloch, V. Grit-sev, M. D. Lukin, and E. Demler, "Quantum Spin Dynamics of Mode-Squeezed Luttinger Liquids in Two-Component Atomic Gases," Phys. Rev. Lett.100,140401 (2008)
    [76]G. B. Jo, J.-H. Choi, C. A. Christensen, T. A. Pasquini, Y.-R. Lee, W. Ket-terle, and D. E. Pritchard, "Phase-Sensitive Recombination of Two Bose-Einstein Condensates on an Atom Chip," Phys. Rev. Lett.98,180401 (2007)
    [77]L. D. Landau, "Zur theorie der energieubertragung," Phys. Z. Sowjetunion 2,46 (1932)
    [78]C. Zener, "Non-adiabatic crossing of energy levels," Proc. R. Soc. London, Ser. A 137,696 (1932)
    [79]J. Liu, B. Wu, and Q. Niu, "Nonlinear Evolution of Quantum States in the Adiabatic Regime," Phys. Rev. Lett.90,170404 (2003)
    [80]B. Wu and J. Liu, "Commutability between the Semiclassical and Adiabatic Limits," Phys. Rev. Lett.96,020405 (2006)
    [81]H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, "Spin-mixing dynamics of a spinor Bose-Einstein condensate," Phys. Rev. A 60, 1463 (1999)
    [82]H. Pu, S. Raghavan, and N. P. Bigelow, "Manipulating spinor condensates with magnetic fields:Stochastization, metastability, and dynamical spin localization," Phys. Rev. A 61,023602 (2000)
    [83]M.-S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M. Fortier, W. Zhang, L. You, and M. S. Chapman, "Observation of Spinor Dynamics in Optically Trapped 87Rb Bose-Einstein Condensates," Phys. Rev. Lett.92, 140403 (2004)
    [84]S. Yi, O. E. Mustecapliouglu, and L. You, "Dynamics of quantum phases in a spinor condensate," Phys. Rev. A 68,013613 (2003)
    [85]Q. Zhai, L. Chang, R. Lu, and L. You, "Number fluctuation dynamics of a spin-1 atomic condensate," Phys. Rev. A 79,043608 (2009)
    [86]T. L. Ho, "Spinor Bose Condensates in Optical Traps," Phys. Rev. Lett. 81,742 (1998)
    [87]T. Ohmi and K. Machida, "Bose-Einstein Condensation with Internal De-grees of Freedom in Alkali Atom Gases," J. Phys. Soc. Jpn.67,1822 (1998)
    [88]C. K. Law, H. Pu, and N. P. Bigelow, "Quantum Spins Mixing in Spinor Bose-Einstein Condensates," Phys.Rev. Lett.81,5257 (1998)
    [89]S. Yi,0. E. Miistecaphouglu, C. P. Sun, and L. You, "Single-mode approx-imation in a spinor-1 atomic condensate," Phys. Rev. A 66,011601 (2002)
    [90]D. R. Romano and E. J. V. de Passos, "Population and phase dynamics of F=1 spinor condensates in an external magnetic field," Phys. Rev. A 70, 043614 (2004)
    [91]W. Zhang, D. L. Zhou, M.-S. Chang, M. S. Chapman, and L. You, "Coher-ent spin mixing dynamics in a spin-1 atomic condensate," Phys. Rev. A 72,013602 (2005)
    [92]Wenxian Zhang Li You Ming-Shien Chang, Qishu Qin and Michael S. Chap-man, "Coherent spinor dynamics in a spin-1 Bose condensate," Nature Phys.1,111 (2005)
    [93]H. Schmaljohann, M. Erhard, J. Kronjager, M. Kottke, S. van Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock, "Dynamics of F=2 Spinor Bose-Einstein Condensates," Phys. Rev. Lett.92,040402 (2004)
    [94]J. Kronjager, C. Becker, M. Brinkmann, R. Walser, P. Navez, K. Bongs, and K. Sengstock, "Evolution of a spinor condensate:Coherent dynamics, dephasing, and revivals," Phys. Rev. A 72,063619 (2005)
    [95]R. Qi, X. L. Yu, Z. B. Li, and W. M. Liu, "Non-Abelian Josephson Effect between Two F=2 Spinor Bose-Einstein Condensates in Double Optical Traps," Phys. Rev. Lett.102,185301 (2009)
    [96]W. C. Stwalley, "Stability of Spin-Aligned Hydrogen at Low Temperatures and High Magnetic Fields:New Field-Dependent Scattering Resonances and Predissociations," Phys. Rev. Lett.37,1628 (1976)
    [97]Y. H. Uang and W. C. Stwalley, "Close-Coupling Calculations of Spin-Polarized Hydrogen-Deuterium Collisions," Phys. Rev. Lett.45,627 (1980)
    [98]Y. H. Uang, R. F. Ferrante, and W. C. Stwalley, "Model calculations of magnetic-field-induced perturbations and predissociations in 6Li7Li near dissociation," J. Chem. Phys.74,6267 (1981)
    [99]E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, "Threshold and resonance phenomena in ultracold ground-state collisions," Phys. Rev. A 47,4114 (1993)
    [100]E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman, "Feshbach res-onances in atomic Bose-Einstein condensates," Phys. Rep.315,199 (1999)
    [101]P. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar, "Observation of a Feshbach Resonance in Cold Atom Scattering," Phys. Rev. Lett.81,69 (1998)
    [102]J. L. Roberts, N. R. Claussen, J. P. Burke, C. H. Greene, E. A. Cornell, and C. E. Wieman, "Resonant Magnetic Field Control of Elastic Scattering in Cold 85Rb," Phys. Rev. Lett.81,5109 (1998)
    [103]V. Vuletic, A. J. Kerman, C. Chin, and S. Chu, "Observation of Low-Field Feshbach Resonances in Collisions of Cesium Atoms," Phys. Rev. Lett.82, 1406 (1999)
    [104]C. Chin, A. J. Kerman, V. Vuletic, and S. Chu, "Sensitive Detection of Cold Cesium Molecules Formed on Feshbach Resonances," Phys. Rev. Lett.90, 033201 (2003)
    [105]S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, "Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions," Phys. Rev. Lett.85,1795 (2000)
    [106]T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, "Bose-Einstein Condensation of Cesium," Science 299,232 (2003)
    [107]J. L. Roberts, N. R. Claussen, S. L. Cornish, E. A. Donley, E. A. Cornell, and C. E. Wieman, "Controlled Collapse of a Bose-Einstein Condensate," Phys. Rev. Lett.86,4211 (2000)
    [108]S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature (London) 392,151 (1998)
    [109]F. A. van Abeelen and B. J. Verhaar, "Time-Dependent Feshbach Reso-nance Scattering and Anomalous Decay of a Na Bose-Einstein Conden-sate," Phys. Rev. Lett.83,1550 (1999)
    [110]H. Feshbach, "A unified theory of nuclear reactions. Ⅰ," Ann. Phys. (N.Y.) 5,357 (1958)
    [111]H. Feshbach, "A unified theory of nuclear reactions. Ⅱ," Ann. Phys. (N.Y.) 19; 287 (1962)
    [112]F. H. Mies, E. Tiesinga, and P. S. Julienne, "Manipulation of Feshbach resonances in ultracold atomic collisions using time-dependent magnetic fields," Phys. Rev. A 61,022721 (2000)
    [113]K. Goral, T. Kohler, S. A. Gardiner, E. Tiesinga, and P. S. Julienne, "Adi-abatic association of ultracold molecules via magnetic-field tunable inter-actions," J. Phys. B 37,3457 (2004)
    [114]C. A. Regal, M. Greiner, and D. S. Jin, "Lifetime of Molecule-Atom Mix-tures near a Feshbach Resonance in 40K," Phys. Rev. Lett.92,083201 (2004)
    [115]J. Cubizolles, T. Bourdel, S. J. J. M. F. Kokkelmans, G. V. Shlyapnikov, and C. Salomon, "Production of Long-Lived Ultracold Li2 Molecules from a Fermi Gas," Phys. Rev. Lett.91,240401 (2003)
    [116]S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. H. Denschlag, and R. Grimm, "Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms," Phys. Rev. Lett.91,240402 (2003)
    [117]D. M. Eagles, "Possible Pairing without Superconductivity at Low Carrier Concentrations in Bulk and Thin-Film Superconducting Semiconductors," Phys. Rev.186,456 (1969)
    [118]A. J. Leggett, in Modern Trends in the Theory of Condensed Matter edited by A. Pekalski and R. Przystawa Springer-Verlag, Berlin, p.13.(1980)
    [119]P. Nozieres and S. Schmitt-Rink,"Bose condensation in an attractive fermion gas:From weak to strong coupling superconductivity," J. Low Temp. Phys.59,195 (1985)
    [120]M. Randeria, in Bose-Einstein Condensation, edited by A. Griffin, D. W. Snoke, and S. Stringari Cambridge University Press, Cambridge, p. 355.(1995)
    [121]M. Greiner, C. A. Regal, and D. S. Jin, "Emergence of a molecular Bose-Einstein condensate from a Fermi gas," Nature (London) 426,537 (2003)
    [122]Cindy A. Regal, Christopher Ticknor, John L. Bohn, and Deborah S. Jin, "Creation of ultracold molecules from a Fermi gas of atoms," Nature (London) 424,47 (2003)
    [123]J. Herbig, Tobias Kraemer, Michael Mark, Tino Weber, Cheng Chin, Hanns-Christoph Nagerl, and Rudolf Grimm, "Preparation of a Pure Molecular Quantum Gas," Science 301,1510 (2003)
    [124]S. T. Thompson, E. Hodby, and C. E. Wieman, "Ultracold Molecule Pro-duction via a Resonant Oscillating Magnetic Field," Phys. Rev. Lett.95, 190404 (2005)
    [125]Elizabeth A. Donley, Sarah T. Thompson, Carl E. Wieman, and Neil R. Claussen, "Atom-molecule coherence in a Bose-Einstein condensate," Nature (London) 417,529 (2002)
    [126]A. Fioretti, D. Comparat, A. Crubellier,O. Dulieu, F. Masnou-Seeuws, and P. Pillet, "Formation of Cold Cs2 Molecules through Photoassociation," Phys. Rev. Lett.80,4402 (1998)
    [127]A. N. Nikolov, E. E. Eyler, X. T. Wang, J. Li, H. Wang, W. C. Stwal-ley, and P. L. Gould, "Observation of Ultracold Ground-State Potassium Molecules," Phys. Rev. Lett.82,703 (1999)
    [128]T. Takekoshi, B. M. Patterson, and R. J. Knize, "Observation of cold ground-state cesium molecules produced in a magneto-optical trap," Phys. Rev. A 59, R5 (1999)
    [129]R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J. Heinzen, "Molecules in a Bose-Einstein Condensate," Science 287,1016 (2000)
    [130]J. Weiner, V. S. Bagnato, S. Zilio. and P. S. Julienne, "Experiments and theory in cold and ultracold collisions," Rev. Mod. Phys.71,1 (1999)
    [131]I. Tikhonenkov, E. Pazy, Y. B. Band, and A. Vardi, "Matter-wave squeez-ing and the generation of SU(1.1) and SU(2) coherent states via Feshbach resonances," Phys. Rev. A 77,063624 (2008)
    [132]M. Grifoni and P. Hanggi, "Driven quantum tunneling," Phys. Rep.304, 229 (1998)
    [133]G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, "Quantum dy-namics of an atomic Bose-Einstein condensate in a double-well potential," Phys. Rev. A 55,4318 (1997)
    [134]K. W. Mahmud, H. Perry, and W. P. Reinhardt, "Quantum phase-space picture of Bose-Einstein condensates in a double well," Phys. Rev. A 71, 023615 (2005)
    [135]L. B. Fu and J. Liu, "Quantum entanglement manifestation of transition to nonlinear self-trapping for Bose-Einstein condensates in a symmetric double well," Phys. Rev. A 74,063614 (2006)
    [136]N. Rosen and C. Zener, "Double Stern-Gerlach Experiment and Related Collision Phenomena," Phys. Rev.40,502 (1932)
    [137]N. Tsukada, M. Gotoda, Y. Nomura, and T. Isu, "Laser-assisted coherent atomic tunneling between two trapped Bose-Einstein condensates," Phys. Rev. A 59,3862 (1999)
    [138]A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, "Analog of Photon-Assisted Tunneling in a Bose-Einstein Condensate," Phys. Rev. Lett.95, 200401 (2005)
    [139]C. E. Creffield and T. S. Monteiro, "Tuning the Mott Transition in a Bose-Einstein Condensate by Multiple Photon Absorption," Phys. Rev. Lett.96, 210403 (2006)
    [140]E. V. Goldstein, M. G. Moore, H. Pu, and P. Meystre, "Eliminating the Mean-Field Shift in Two-Component Bose-Einstein Condensates," Phys. Rev. Lett.85,5030 (2000)
    [141]H. T. Ng, C. K. Law, and P. T. Leung, "Quantum-correlated double-well tunneling of two-component Bose-Einstein condensates," Phys. Rev. A 68, 013604 (2003)
    [142]L. H. Wen and J. H. Li, "Tunneling dynamics between two-component Bose-Einstein condensates," Phys. Lett. A 369,307-311 (2007)
    [143]S. Ashhab and C. Lobo, "External Josephson effect in Bose-Einstein con-densates with a spin degree of freedom," Phys. Rev. A 66,013609 (2002)
    [144]H. Pu, W. P. Zhang, and P. Meystre, "Macroscopic Spin Tunneling and Quantum Critical Behavior of a Condensate in a Double-Well Potential," Phys. Rev. Lett.89,090401 (2002)
    [145]O. E. Mustecaplioglu, W. X. Zhang, and L. You, "Quantum dynamics of a spin-1 condensate in a double-well potential," Phys. Rev. A 75,023605 (2007)
    [146]D. F. Ye, L. B. Fu, and J. Liu, "Rosen-Zener transition in a nonlinear two-level system," Phys. Rev. A 77,013402 (2008)
    [147]C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, "Production of Two Overlapping Bose-Einstein Condensates by Sympa-thetic Cooling," Phys. Rev. Lett.78,586 (1997)
    [148]J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. J. Miesner, A. P. Chikkatur, and W. Ketterle, "Spin domains in ground-state Bose-Einstein conden-sates," Nature 396,345 (1998)
    [149]C. Weber, G. Barontini, J. Catani, G. Thalhammer, M. Inguscio, and F. Minardi, "Association of ultracold double-species bosonic molecules," Phys. Rev. A 78,061601 (R) (2008)
    [150]L. H. Lu and Y. Q. Li, "Conversion of 40K-87Rb mixtures into stable molecules," Phys. Rev. A 76,053608 (2007)
    [151]D. J. Heinzen, R. Wynar, P. D. Drummond, and K. V. Kheruntsyan, "Su-perchemistry:Dynamics of Coupled Atomic and Molecular Bose-Einstein Condensates," Phys. Rev. Lett.84,5029 (2000)
    [152]B. J. Cusack, T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, "Ex-istence and stability of coupled atomic-molecular Bose-Einstein conden-sates," Phys. Rev. A 65,013609 (2001)
    [153]G. Santos, A. Tonel, A. Foerster, and J. Links, "Classical and quantum dy-namics of a model for atomic-molecular Bose-Einstein condensates," Phys. Rev. A 73,023609 (2006)
    [154]J. Li, D. F. Ye, C. Ma, L. B. Fu, and J. Liu, "The role of particle interac-tions in a many-body model of Feshbach molecular formation in bosonic systems," Phys. Rev. A 79,025602 (2009)
    [155]L. Radzihovsky and J. Park, "Superfluid Transitions in Bosonic Atom-Molecule Mixtures near a Feshbach Resonance," Phys. Rev. Lett.92, 160402 (2004)
    [156]M. W. J. Romans, R. A. Duine, S. Sachdev, and H. T. C. Stoof, "Quantum Phase Transition in an Atomic Bose Gas with a Feshbach Resonance," Phys. Rev. Lett.93,020405 (2004)
    [157]Y. W. Lee and Y. L. Lee, "Quantum phase transition in an atomic Bose gas near a Feshbach resonance," Phys. Rev. B 70,224506 (2004)
    [158]S. Basu and E. J. Mueller, "Stability of bosonic atomic and molecular con-densates near a Feshbach resonance," Phys. Rev. A 78,053603 (2008)
    [159]M. Duncan, A. Foerster. J. Links, E. Mattei, N. Oelkers, and A. P. Tonel, "Emergent quantum phases in a heteronuclear molecular Bose-Einstein condensate model," Nucl. Phys. B 767,227 (2007)
    [160]L. Zhou, J. Qian, H. Pu, W. Zhang, and H. Y. Ling, "Phase separation in a two-species atomic Bose-Einstein condensate with an interspecies Feshbach resonance," Phys. Rev. A 78,053612 (2008)
    [161]M. Edwards and K. Burnett, "Numerical solution of the nonlinear Schrodinger equation for small samples of trapped neutral atoms," Phys. Rev. A 51,1382 (1995)
    [162]R. A. Duine and H. T. C. Stoof, "Dynamics of a Bose-Einstein condensate near a Feshbach resonance," Phys. Rev. A 68,013602 (2003)
    [163]J. Stajic, Q. Chen, and K. Levin, "Density Profiles of Strongly Interacting Trapped Fermi Gases," Phys. Rev. Lett.94,060401 (2005)
    [164]C. A. Regal, M. Greiner, and D. S. Jin, "Observation of Resonance Con-densation of Fermionic Atom Pairs," Phys. Rev. Lett.92,040403 (2004)
    [165]Roman V. Krems, "Molecules near absolute zero and ex-ternal field control of atomic and molecular dynamics," International Reviews in Physical Chemistry 24,99 (2005)
    [166]D. W. Rein, "Some remarks on parity violating effects of intramolecular interactions," Journal of Molecular Evolution 4,15 (1974)
    [167]V. S. Letokhov, "On difference of energy levels of left and right molecules due to weak interactions," Physics Letters A 53,275 (1975)
    [168]V. V. Flambaum and M. G. Kozlov, "Enhanced Sensitivity to the Time Variation of the Fine-Structure Constant and mp/me in Diatomic Molecules," Phys. Rev. Lett.99,150801 (2007)
    [169]D. DeMille, F. Bay, S. Bickman, D. Kawall, D. Krause, S. E. Maxwell, and L. R. Hunter, "Investigation of PbO as a system for measuring the electric dipole moment of the electron," Phys. Rev. A 61,052507 (2000)
    [170]J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, "Measure-ment of the Electron Electric Dipole Moment Using YbF Molecules," Phys. Rev. Lett.89,023003 (2002)
    [171]Kevin E. Strecker, Guthrie B. Partridge, and Randall G. Hulet, "Con-version of an Atomic Fermi Gas to a Long-Lived Molecular Bose Gas," Phys. Rev. Lett.91,080406 (2003)
    [172]K. Xu, T. Mukaiyama, J. R. Abo-Shaeer, J. K. Chin, D. E. Miller, and W. Ketterle, "Formation of Quantum-Degenerate Sodium Molecules," Phys. Rev. Lett.91,210402 (2003)
    [173]Stephan Durr, Thomas Volz, Andreas Marte, and Gerhard Rempe, "Observation of Molecules Produced from a Bose-Einstein Condensate," Phys. Rev. Lett.92,020406 (2004)
    [174]M. Mark, T. Kraemer, J. Herbig, C. Chin, H.-C. Nagerl, and R. Grimm, "Efficient creation of molecules from a cesium Bose-Einstein condensate," Europhys. Lett.69,706 (2005)
    [175]E. Hodby, S. T. Thompson, C. A. Regal, M. Greiner, A. C. Wilson, D. S. Jin, E. A. Cornell, and C. E. Wieman, "Production Efficiency of Ultracold Feshbach Molecules in Bosonic and Fermionic Systems," Phys. Rev. Lett. 94,120402 (2005)
    [176]An-Chun Ji, Qing Sun, X. C. Xie, and W. M. Liu, "Josephson Effect for Photons in Two Weakly Linked Microcavities," Phys. Rev. Lett.102, 023602 (2009)
    [177]M. J. Bhaseen, M. Hohenadler, A. O. Silver, and B. D. Simons, "Polaritons and Pairing Phenomena in Bose-Hubbard Mixtures," Phys. Rev. Lett.102, 135301 (2009.04)
    [178]J. M. Zhang, W. M. Liu, and D. L. Zhou, "Cavity QED with cold atoms trapped in a double-well potential," Phys. Rev. A 77,033620 (2008)
    [179]J. M. Zhang, W. M. Liu, and D. L. Zhou, "Mean-field dynamics of a Bose Josephson junction in an optical cavity," Phys. Rev. A 78,043618 (2008)
    [180]Lu Zhou, Han Pu, Hong Y. Ling, and Weiping Zhang, "Cavity-Mediated Strong Matter Wave Bistability in a Spin-1 Condensate," Phys. Rev. Lett. 103,160403 (2009)
    [181]J. M. Zhang, S. Cui, H. Jing, D. L. Zhou, and W. M. Liu, "Probing the quantum ground state of a spin-1 Bose-Einstein condensate with cavity transmission spectra," Phys. Rev. A 80,043623 (2009)
    [182]S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, "Su-perradiant Rayleigh Scattering and Collective Atomic Recoil Lasing in a Ring Cavity," Phys. Rev. Lett.98,053603 (2007)
    [183]S. Gupta, Kevin L. Moore, Kater W. Murch, and Dan M. Stamper-Kurn, "Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion," Phys. Rev. Lett.99,213601 (2007)
    [184]K. W. Murch, Kevin L. Moore, Subhadeep Gupta, and Dan M. Stamper-Kurn, "Observation of quantum-measurement backaction with an ultracold atomic gas," Nature Phys.4,561 (2008)
    [185]S. Ritter, F. Brennecke, K. Baumann, T. Donner, C. Guerlin, and T. Esslinger, "Dynamical coupling between a Bose-Einstein condensate and a cavity optical lattice," Appl. Phys. B 95,213 (2009)
    [186]M. G. Moore and P. Meystre, "Optical control and entanglement of atomic Schrodinger fields," Phys. Rev. A 59, R1754 (1999)
    [187]M. G. Moore,O. Zobay, and P. Meystre, "Quantum optics of a Bose-Einstein condensate coupled to a quantized light field," Phys. Rev. A 60, 1491 (1999)
    [188]P. Horak, S. M. Barnett, and H. Ritsch, "Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities," Phys. Rev. A 61, 033609 (2000)
    [189]P. Horak and H. Ritsch, "Dissipative dynamics of Bose condensates in op-tical cavities," Phys. Rev. A 63,023603 (2001)
    [190]J. Larson, Bogdan Damski, Giovanna Morigi, and Maciej Lewenstein, "Mott-Insulator States of Ultracold Atoms in Optical Resonators," Phys. Rev. Lett.100,050401 (2008)
    [191]J. M. Zhang, F. C. Cui, D. L. Zhou, and W. M. Liu, "Nonlinear dynamics of a cigar-shaped Bose-Einstein condensate in an optical cavity," Phys. Rev. A 79,033401 (2009)
    [192]Christoph Maschler and Helmut Ritsch, "Cold Atom Dynamics in a Quan-tum Optical Lattice Potential," Phys. Rev. Lett.95,260401 (2005)
    [193]R. Kanamoto and P. Meystre, "Optomechanics of a Quantum-Degenerate Fermi Gas," Phys. Rev. Lett.104,063601 (2010)
    [194]Markku Jaaskelainen, Jaeyoon Jeong, and Christopher P. Search, "Bifurca-tions and bistability in cavity-assisted photoassociation of Bose-Einstein-condensed molecules," Phys. Rev. A 76,063615 (2007)
    [195]Christopher P. Search, J. Mauricio Campuzano, and Marko Zivkovic, "Quantum dynamics of cavity-assisted photoassociation of Bose-Einstein-condensed atoms," Phys. Rev. A 80,043619 (2009)
    [196]H. Jing and M. Zhan, "Quantum state transfer from light to molecules via coherent two-color photo-association in an atomic Bose-Einstein conden-sate," Eur. Phys. J. D 42,183-187 (2007)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700