用户名: 密码: 验证码:
纳豆芽孢杆菌固体发酵低温豆粕的功能活性及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温豆粕是大豆经提取豆油后的湿粕经低温脱溶工艺得到的副产品,是一种蛋白变性低、质量高的植物蛋白资源。也是一种来源易得、价格便宜的大宗农副产品资源,而目前主要用作饲料使用,造成资源浪费。本文着眼于豆粕的深度开发,旨在为开发一种健康食品资源提供试验依据。
     以纳豆芽孢杆菌发酵大豆而得的纳豆具有溶血栓、抗肿瘤、抗氧化、抗菌、预防骨质疏松症以及调节肠功能等许多作用。同时纳豆芽孢杆菌还是FDA规定的43种益生菌之一以及我国农业部公布的16种可直接饲喂的微生物之一。
     本试验以纳豆芽孢杆菌作为发酵菌种,以低温豆粕为基质进行固体发酵,研究发酵豆粕提取物的抗氧化活性、抗氧化活性成分的分离以及发酵豆粕提取物对小鼠肠道菌群的调节作用。
     主要研究内容及结论如下:
     (1)对发酵豆粕提取物的营养成分进行了分析与评价。发酵豆粕提取物蛋白含量高、脂肪含量低,分别为:57.26%和0.86%。发酵豆粕提取物含有铁、镁等多种矿物质元素。豆粕发酵以后的氨基酸组成有一定的变化,但总氨基酸含量基本不变。与发酵豆粕比较,发酵豆粕提取物在天冬氨酸、谷氨酸、异亮氨酸、亮氨酸、酪氨酸、苯丙氨酸、赖氨酸及脯氨酸含量方面占明显优势,总氨基酸含量提高3%,发酵豆粕提取物包含人体所必需的8种氨基酸,尤其亮氨酸、赖氨酸、色氨酸含量较高。
     (2)对发酵豆粕提取物的体外抗氧化活性进行考察。采用相同条件下的60%的乙醇提取物进行试验。分别考察了超氧阴离子自由基及DPPH自由基清除活性,Fe3+还原力,对鼠肝匀浆脂质过氧化的抑制能力以及对小鼠红细胞溶血的抑制能力。结果表明:与豆粕提取物相比,发酵豆粕提取物具有更高的清除DPPH·和O2-·的活性、Fe3+还原能力、抑制脂质过氧化以及红细胞溶血的能力,其IC50分别为0.321mg/mL,7.404mg/mL,2.128mg/mL,0.737mg/mL和4.599mg/mL.
     (3)对以D-半乳糖诱导的衰老模型小鼠的体内抗氧化活性进行研究。发酵豆粕提取物可以提高模型小鼠血清及肝组织中的SOD、 GSH-Px、CAT活性,减少MDA的生成;减少模型小鼠脑组织中的MAO活性、提高NOS、 Na+-K+-ATP酶、Ca2+-Mg2+-ATP酶活性,其抗氧化活性强于未发酵豆粕。
     (4)为分离发酵豆粕提取物中的抗氧化活性物质,进行了豆粕发酵工艺及活性成分提取工艺的优化试验研究,固体发酵条件优化结果为:基质含水量为73%,接种量19%,发酵时间94.5h。在此基础上,通过单因素以及正交试验优化的提取条件,结果为:乙醇体积分数50%,液固比10:1,提取时间90min,提取3次。
     (5)在抗氧化活性指导下,对发酵豆粕提取物进行了系统分离与柱色谱分离,得到一种抗氧化活性物质,高效液相色谱(HPLC)分析显示为单一峰,紫外扫描最大吸收波长为260nm,质谱检测分子量为270,经碳谱、氢谱及文献比对鉴定为染料木素,分子式为C15H10O5.建立了发酵豆粕提取物中染料木素含量测定的HPLC分析法,其具体色谱条件为:色谱柱:KrOmasil C18柱(250mm×4.6mm,5μm);流动相:甲醇-水(60:40);流速:0.8mL/min;检测波长:260nm;进样量:20μL。柱温:室温(25℃)。测定FSME中染料木素含量为545.73±8.14μg/g,即为0.055%;发酵豆粕中染料木素含量为0.024%,而测得的豆粕中染料木素含量为0.011%,低温豆粕经纳豆芽孢杆菌发酵后,染料木素含量提高了1.2倍。
     (6)对健康小鼠及抗生素诱导的腹泻模型小鼠肠道菌群的调节作用进行研究,结果表明:发酵豆粕提取物能够显著促进健康小鼠及抗生素诱导的腹泻模型小鼠肠道中厌氧菌群的生长,抑制好氧菌群的增殖,其调节肠道菌群作用强于未发酵豆粕。发酵豆粕提取物有望成为一种益生元类物质应用于食品、药品等行业
Low-temperature soybean meal is a by-product of the oil extraction of soybean, which is obtained from the wet soybean meal by removing solvent at the condition of low temperature. It is a kind of high-quality protein plant resource and highly produced in China as a source of readily available and inexpensive agricultural resources, but it is mainly used for feed, which results in a waste of resources. It is necessary to develop a kind of healthy food resources in order to make full use of soybean meal.
     Natto has many functions including thrombolyitc activity, antitumor, antioxidation, prevention of osteoporosis, antibiosis and regulation of intestinal function. Bacillus natto has been recognized as one of strains can be fed directly to animals by Ministry of Agriculture of China and FDA.
     In the present work, Bacillus natto was employed to ferment low-temperature soymean meal and antioxidant activity of fermented soybean meal extract from fermented low-temperature soybean meal was investigated. The ingredients of antioxidant activity waere separated and regulation of intestinal flora in diarrhea mice induced by antibiotics was carried out.
     The main contents and conclusions are as follows:
     (1) Nutritional components were analyed and evaluated on FSME. The content of protein and fat in FSME was57.26%and0.86%, respectively. FSME contained iron, magnesium and other minerals. Compared with soybean meal, the content of some amino acid specicies of FSME were changed, but the total amino acid content remained unchanged. Compared with fermented soybean meal, FSME in aspartic acid, glutamic acid, isoleucine, leucine, tyrosine, phenylalanine, lysine and proline content was dominant; the total amino acid content increased3%. There were8essential amino acids in FSME, especially leucine, lysine, tryptophan content were high.
     (2) The antioxidant activity of fermented low-temperature soybean meal in vitro was studied. Experiments were conducted using60%ethanol extracts prepared under the same conditions. The superoxide anion radical and DPPH radical scavenging activities, Fe3+reducing power, rat liver homogenate inhibitory ability of lipid peroxidation and red blood cells of hemolysis inhibitory ability were checked. The results shows that:compared with soybean meal extract, fermented low-temperature soybean meal extract(FSME) had strong scavenging activities of DPPH radical and superoxide anion radical, had strong Fe+reducing ability, inhibition of lipid peroxidation and red blood cells hemolysis, the IC50was0.321mg/mL,7.404rag/mL, 2.128mg/mL,0.737mg/mL,4.599mg/mL, respectively.
     (3) The antioxidant activity in vivo was investigated by using the D-galactose induced aging mice as models. Fermented soybean meal extract had increased SOD, GSH-Px, CAT activity in the serum and liver tissue of aging mice, decreased the content of lipid peroxide malondialdehyde. Fermented soybean meal extract had reduced MAO activity in brain tissue of aging mice, increased NOS, Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity. The antioxidant activity of fermented soybean meal extract was better than that of soybean meal extract.
     (4) In order to separate antioxidant activity ingredient of fermented soybean meal extract, process conditions are optimized. Solid fermentation optimization result is: matrix water content73%, inoculation19%, fermentation time94.5h. Based on these results, the single factor and orthogonal tests were performed to determine the optimal extraction conditions:volume fraction of ethanol50%, the liquid-solid ratio10:1, extracting time90min, extracted three times.
     (5) The system separation and column chromatography was subjected to FSME, and an active substance was obtained and showed a single peak in HPLC. The maximum absorption wavelength was at260nra by ultraviolet scanning. Molecular weight of MS detection was270, and then genistein was identified by comparison of'H NMR and13C NMR spectra with literature data, formulas was C15H10O5.
     The analytic method with HPLC has been established for quantitation of genistein content in FSME. The chromatography conditions were:chromatographic column: Kromasil C18column (250mm x4.6mm,5u.m); Mobile phase:methanol-water (60:40); Flow rate:0.8mL/min; Detected wavelength:260nm; sample amount:20μL. The column temperature:room temperature (25℃). Genistein content of FSME is545.73±8.14μg/g, is0.055%; Genistein content of fermented soybean meal is0.024%. Genistein content of soybean meal is0.011%, which shows that Genistein content is increased by1.2times when soybean meal is fermented by Bacillus natto.
     (6) Regulation of intestinal flora in nomal mice and diarrhea mice induced by antibiotics was tested with FSME. It could significantly promote the growth of intestinal anaerobic bacteria; inhibit the proliferation of aerobic bacteria. The activity of FSME was better than non-fermented soybean meal. FSME was a potential substance, could be used as a prebiotics in Food or pharmaceutical industry.
引文
[1]齐凤兰,奚锐华,陈有容.纳豆中营养与活性成分的分析研究[J].食品工业,2004,(2):33-35.
    [2]Sumi H, Hamada H, Tsushima H, et al. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto:a typical and popular soybean food in the Japanese diet [J].Exerientia, 1987,43(10):1110-1111.
    [3]Esaki H, Onozaki H, Osawa T. Antioxidative activity of fermented soybean products [J]. L ACS Symposium series,1994, (546):353-360.
    [4]钟青萍,王斌,石木标.多功能保健食品——纳豆[J].食品研究与开发,2003,24(4):81-82.
    [5]Sumi H. Antibacterial Activity of Bacillus natto-Growth inhibition against Escherichia coli-0157 [J]. Bioindustry,1997,14:17.
    [6]Taniguchi-Fukatsu A, Yamanaka-Okumura H, Kawakami Y, et al. Natto and viscous vegetables in a Japanese-style breakfast improved insulin sensitivity, lipid metabolism and oxidative stress in overweight subjects with impaired glucose tolerance subjects [J]. Clinical Nutrition Supplements,2011,6(1):117.
    [7]张莉,于君高,薛鸿毅,等.纳豆食品发酵条件的优化[J].中国酿造,2012,31(2):111-112.
    [8]布坎南R E,吉布斯N E,等.伯杰细菌学鉴定手册(第八版)[M].北京,科学出版社,1984:735.
    [9]Cho Young-Han, Song Jae Yong, Kim Kyung Mi, et al. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis [J].New Biotechnology,2010,27(4):341-346.
    [10]Wang Jau-Kai, Chiu Hua-Hsien, Hsieh Ching-Shieh. Optimization of the medium components by statistical experimental methods to enhance nattokinase activity [J]. Fooyin Journal of Health Sciences,2009,1(1):21-27.
    [11]Chang Chen-Tien, Wang Pei-Ming, Hung Ya-Fang, et al. Purification and biochemical properties of a fibrinolytic enzyme from Bacillus subtilis-fermented red bean [J]. Food Chemistry,2012,133(4):1611-1617.
    [12]Shieh Chwen-Jen, Phan Thi Lan-Anh, Shih Ing-Lung. Milk-clotting enzymes produced by culture of Bacillus subtilis natto [J].Biochemical Engineering Journal,2009,43 (1):85-91.
    [13]Ashok Pandey, George Szakacs, Carlos R Soccol, et al. Production, purification and properties of microbial phytases [J].Bioresource Technology,2001,77(3):203-214.
    [14]Vikash Kumar, Satyanarayana T.Thermo-alkali-stable xylanase of a novel polyextremophilic Bacillus halodurans TSEV1 and its application in biobleaching [J].International Biodeterioration & Biodegradation,2012,75:138-145.
    [15]Bindu Battan, Jitender Sharma, Saurabh Sudha Dhiman, et al.Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry [J].Enzyme and Microbial Technology,2007,41(6-7):733-739.
    [16]Amir Jalal, Naeem Rashid, Nouman Rasool,et al.Gene cloning and characterization of a xylanase from a newly isolated Bacillus subtilis strain R5 [J] Journal of Bioscience and Bioengineering,2009,107(4):360-365.
    [17]Jisheng Ma, Zuoming Zhang, Baijing Wang,et al. Overexpression and characterization of a lipase from Bacillus subtilis [J].Protein Expression and Purification,2006,45(1):22-29.
    [18]Akanbi Taiwo Olusesan, Liyana Kamaruzaman Azura, Bita Forghani,et al.Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8 [J].New Biotechnology, 2011,28(6):738-745.
    [19]Chui-Liang Chiang, Chen-Tien Chang, Hsien-Yi Sung.Purification and properties of chitosanase from a mutant of Bacillus subtilis IMR-NK1[J].Enzyme and Microbial Technology, 2003,32(2-3):260-267.
    [20]Salo Toshiro, Yohko Yamada, Yutaka Ohtani, et al. Production of Menaquinone (vitamin K2)-7 by Bacillus subtilis [J]. Journal of Bioscience and Bioengineering,2001,91(1):16-20.
    [21]Christian Larroche, Isabelle Besson, Jean-Bernard Gros. High pyrazine production by Bacillus subtilis in solid substrate fermentation on ground soybeans [J].Process Biochemistry,1999,34 (6-7):667-674.
    [22]Xu Jian, Chen Shouwen, Yu Ziniu. Optimization of process parameters for poly y-glutamate production under solid state fermentation from Bacillus subtilis CCTCC202048 [J].Process Biochemistry,2005,40 (9):3075-3081.
    [23]Ing-Lung Shih, Pei-Jen Wu, Chwen-Jen Shieh. Microbial production of a poly (y-glutamic acid) derivative by Bacillus subtilis [JJ.Process Biochemistry,2005,40 (8):2827-2832.
    [24]Ing-Lung Shih, Li-Dar Chen, Jane-Yii Wu. Levan production using Bacillus subtilis natto cells immobilized on alginate [J]. Carbohydrate Polymers,2010,82 (1-2):111-117.
    [25]Liu Xiang-Yang, Yang Shi-Zhong, Mu Bo-Zhong. Production and characterization of a C15-surfactin-O-methyl ester by a lipopeptide producing strain Bacillus subtilis HSO121 [J].Process Biochemistry,2009,44 (10):1144-1151.
    [26]Hsu Mei-Fang, Chiang Been-Huang. Stimulating effects of Bacillus subtilis natto-fermented Radix astragali on hyaluronic acid production in human skin cells [J].Journal of Ethnopharmacology,2009,125 (3):474-481.
    [27]Hsu Mei-Fang, Chiang Been-Huang. Effect of Bacillus subtilis natto-fermented Radix astragali on collagen production in human skin fibroblasts [J].Process Biochemistry,2009,44 (1): 83-90.
    [28]Wang San-Lang, Shih Ing-Lung, Wang Chi-How, et al. Production of antifungal compounds from chitin by Bacillus subtilis [J].Enzyme and Microbial Technology,2002,31(3):321-328.
    [29]Folarin A, Oguntoyinbo, Abiodun I, et al. In vitro fermentation studies for selection and evaluation of Bacillus strains as starter cultures for the production of okpehe, a traditional African fermented condiment [J].International Journal of Food Microbiology,2007,113(2): 208-218.
    [30]藤田昭一,沈志强.纳豆菌BN株对防制仔猪腹泻的效果和对母猪便中乳酸菌的影响[J].国外兽医学:畜禽传染病,1989,9(3):53-54.
    [31]Samanya Mongkol, Yamauchi Koh-en. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto [J].Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology,2002,133(1):95-104.
    [32]陈兵,缪志伟,朱凤香,等.仔猪日粮中添加纳豆芽抱杆菌的效果试验[J].浙江畜牧兽医2003,(4):5-6.
    [33]陈兵,缪志伟,朱凤香,等.纳豆芽抱杆菌对AA鸡生产性能和十二指肠消化酶的影响[J].浙江农业学报,2003,15(5):289-292.
    [34]杨晓斌,谢拥葵,韦燕鹏,等.益生菌纳豆芽抱杆菌的筛选[J].广州食品工业科技,2003,19(S1):9-13.
    [35]Salah Mesalhy Aly, Yousef Abdel-Galil Ahmed, Ahlam Abdel-Aziz Ghareeb, et al. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections [J].Fish & Shellfish Immunology,2008,25(1-2):128-136.
    [36]Simon M Cutting. Bacillus probiotics [J].Food Microbiology,2011,28(2):214-220.
    [37]Marcelo Muller dos Santos, Alexandre Souza da Rosa et al. Thermal denaturation:is solid-state fermentation really a good technology for the production of enzymes? [J].Bioresouree Technology,2004,93:261-268.
    [38]Ashok Pandy.New Developments in solid state Fermentation:Ⅰ-bioprocesses and products [J]. Process Biochemistry,2000,35:1153-1169.
    [39]Ashok Pandy. New Developments in Solid State Fermentation:Ⅱ Rational Approaches to the Design.Operation and Scale-up of Bioreactors [J].Process Biochemistry,2000,35:1211-1225.
    [40]Sandro Germano, Ashok Pandey, Clarice A, et al. Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation [J].Enzyme and Microbial Technology,2003,32(2,3):246-251.
    [41]Chandran Sandhya, Alagarsamy Sumantha, George Szakacs. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation [J].Process Biochemistry 2005,40(8):2689-2694.
    [42]Fikret Uyar, Zubeyde Baysal. Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation [J].Process Biochemistry,2004,39(12):1893-1898.
    [43]Chahal D S. Solid-state fermentation with trichoderma reesei for cellulase production [J]. Appl Environ Microbiol,1985,49 (1):205-210.
    [44]Liming Xia, Peilin Cen. Cellulase production by solidstate fermentation on lignocellulosic waste from the xylose industry [J].Process Biochemistry,1999,34 (9):909-912.
    [45]Chundakkadu Krishna. Production of bacterial cellulases by solidstate bioprocessing of banana wastes [J].Bioresource Technology,1999,69(3):231-239.
    [46]Heinz Purkarthofer, Michael Sinner, Walter Steiner. Cellulase-free xylanase from Thermomyces lanuginosus:Optimization of production in submerged and solid-state culture [J].Enzyme and Microbial Technology,1993,15(8):677-682.
    [47]Yang S Q, Yan Q J, Jiang Z Q, et al. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation[J].Bioresource Technology,2006,97(15):1794-1800.
    [48]Someet Narang, Vikram Sahai, Virendra S Bisaria. Optimization of xylanase production by Melanocarpus albomyces IIS68 in solid state fermentation using response surface methodology [J].Journal of Bioscience and Bioengineering,2001,91(4):425-427.
    [49]Nevine B Ghanem, Hoda H Yusef, Heba K Mahrouse. Production of Aspergillus terreus xylanase in solid-state cultures:application of the Plackett-Burman experimental design to evaluate nutritional requirements [J]. Bioresource Technology,2000,73(2):113-121.
    [50]Denis Silva, Kivia Tokuioshi, Eduardo da Silva Martins, et al. Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3 [J].Process Biochemistry,2005, 40(8):2885-2889.
    [51]Raj Kashyap D, Kumar Soni S, Tewari R. Enhanced production of pectinase by Bacillus sp. DT7 using solidstate fermentation [J]. Bioresource Technology,2003,88(3):251-254.
    [52]Denis Silva, Eduardo da Silva Martins,Roberto da Silva, et al. Pectinase production by Penicillium viridicatum RFC3 by solid state fermentation using agricultural wastes and agro-industrial by-products [J]BrazJ Microbiol,2002,33(4):318-324.
    [53]Castilho L R, Alves T L M, Medronho R A. Production and extraction of pectinases obtained by solid state fermentation of agro-industrial residues with Aspergillus Niger [J]. Biores Technol, 2000,71:45-50.
    [54]Crotti L B, Jabopr V A, Chellegatti M A, et al. Studies of pectic enzymes produced by Talaromyces flavus in submerged and solid substrate cultures [J].J Basic Microbiol,1999,39: 27-35.
    [55]Xu Fujian, Chen Hongzhang, Li Zuohu. Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate [J].Bioresource Technology,2001,80(2):149-151.
    [56]Zubeyde Baysala, Fikret Uyarb, Qetin Aytekin. Solidstate fermentation for production of a-amylase by a thermotolerant Bacillus subtilis from hot-spring water [J].Process Biochemistry, 2003,38(12):1665-1668.
    [57]Harmeet K Sodhi, Kanupriya Sharma, Jugal K Gupta, et al. Production of a thermostable a-amylase from Bacillus sp. PS-7 by solidstate fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production [J].Process Biochemistry,2005,40(2): 525-534.
    [58]Babu K R, Satyanarayana T. a-Amylase production by thermophilic Bacillus coagulans in solidstate fermentation [J]. Process Biochemistry,1995,30(4):305-309.
    [59]Andreas K Gombert, Annette L Pinto, Leda R Castilho, et al. Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate [J].Process Biochemistry,1999,35(1-2):85-90.
    [60]driane B P Medeirosa, Ashok Pandeya, Renato J S Freitas, et al. Optimization of the production of aromacompounds by Kluyveromycesmarxianus in solid-state fermentation using factorial design and response surface methodology [J].Biochemical Engineering Journal,2000,6(1): 33-39.
    [61]Adriane B P, Medeiros Ashok Pandey, Pierre Christen, et al. Aroma compounds produced by Kluyveromyces marxianus in solid state fermentation on a packed bed column bioreactor [J]. World Journal of Microbiology and Biotechnology,2001,17(8):767-771.
    [62]Andreas Dreuw, Jiirgen Plotner, Lisa Lorenz, et al. Molecular Mechanism of the Solid-State Fluorescence Behavior of the Organic Pigment Yellow 101 and Its Derivatives [J]. Angewandte Chemie International,2005,44(47):7783-7786.
    [63]Kishore Das, Ashis K Mukherjee. Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solidstate fermentation systems using a cheap carbon source:Some industrial [J]. Process Biochemistry,2007,42(8):1191-1199.
    [64]Ramana Murthy M V, Mohan E V S, Sadhukhan A K. Cyclosporin-A production by Tolypocladium inflatum using solid state fermentation [J]. Process Biochemistry,1999,34(3): 269-280.
    [65]Zubeyde Baysal.So State Fermentation for Production of A-amylase by a Thermotolerant Bacillus Subtilis from Hot-spring Water [J]. Process Biochemistry,2003,38:1665-1668.
    [66]魏益民,康立宁,赵多勇,等.低温豆粕的食品工业用途[c].中国农业工程学会,2005年学术年会论文集.
    [67]胡小中,温光源.低温豆粕生产工艺现状分析[J].粮油食品科技,2004,12(5):32-34.
    [68]李家民,张金江,林凤岩,等.豆粕低温脱溶技术开发与应用[J].中国油脂,1999,24(2):20-21.
    [69]祈鲲.液化石油气浸出油脂工艺[P].中国发明专利,公开号:CN 1050739A.
    [70]齐玉堂,许芙萍,祈鲲.低温制油技术[M].化学工业出版社,2005.
    [71]姜建阳,黄德仕,李藏兰.生长猪高蛋白豆粕氨基酸回肠可消化率的研究[J].中国畜牧杂志,2008,44(9):25-28.
    [72]刘超,孙永生,刘莉,等.新型豆粕氨基酸营养价值的评定[J].西北农业学报,2006, 15(2):45-48.
    [73]Omafuvbe B O, Falade OS, Osuntogun B A, et al. Chemical and biochemical changes in African locust bean (Parkia biglobosa) and melon (Citrullus vulgaris) seeds during fermentation to condiments [J]. Pakistan Journal of Nutrition,2004,3:140-145.
    [74]Njoku H O, Okemadu C P. Biochemical changes during the natural fermentation of the African oil bean (Pentaclethra macrophylla) for the production of Ugba [J]. Journal of the Science of Food and Agriculture,1989,49:457-465.
    [75]Ouoba LII, Cantor M D, Diawara B, et al. Degradation of African locust bean oil by Bacillus subtilis and Bacillus pumilus isolated from soumbala, a fermented African locust bean condiment [J]. Journal of Applied Microbiology,2003,167:273-281.
    [76]Odunfa S A. Biochemical changes in fermenting African locust bean (Parkia biglobosa) during 'iru'fermentation [J].Food Technology,1985,120:295-302.
    [77]Whitaker J R. Biochemical changes during the fermentation of high protein foods [J]. Food Technology,1978,32:175-190.
    [78]Rerat A, Simoes-Nunes C, Mendy F, et al.Splanchnic fluxes of am ino acid after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the non-anaesthetized pig [J]. British Journal of Nutrition,1992,68:111-138.
    [79]Daniel H, Baumanns A. Physiological importance and characteristics of peptide transport in intestinal epithelial cells [M]. New York:EAAP Publication,1994:102.
    [80]吴晖,卓林霞,解检清,等.发酵条件对枯草芽孢杆菌发酵豆粕中的蛋白酶活力的影响[J].现代食品科技,2008,24(10):973-976.
    [81]Chantasartrasamee K, Na Ayuthaya D I, Intarareugsorn S, et al. Phytase activity from Aspergillus oryzae AK9 cultivated on solid state soybean meal medium [J]. Process Biochemistry,2005,40:2285-2289.
    [82]付弘簧.微生物固态发酵豆粕的研究[D].硕十学位论文.合肥:安徽农业大学,2008.
    [83]Hong Kee-Jong, Lee Chan-Ho, Kim Sung Woo. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals [J].Journal of Medicinal Food,2004,7(4):430-434.
    [84]Feng J, Liu X, Xu Z R, et al. Effects of Aspergillus oryzae fermented soybean meal on growth performance and plasma biochemical parameters in broilers [J]. Animal Feed Science and Technology,2007,134(3/4):235-242.
    [85]马文强,冯杰,刘欣.微生物发酵豆粕营养特性研究[J].中国粮油学报,2008,23(1):121-124.
    [86]Naim M. Soybean is of flavones, characterization, determination, and antifungal activity [J]. Journal of Agriculture Food Chemistry,1974,22 (5):806-810.
    [87]MurakamL H, Asakawa T, Terao J, et al. Antitoxin dative stability of tempe and liberation of is of flavones by fermentation [J]. Agricultural and Biological Chemistry,1984,48(9): 2971-2975.
    [88]霍红,田明,王秀海,等.大豆与其生物发酵制品淡豆豉异黄酮含量研究[J].中医药学报,2011,39(3):74-76.
    [89]姚明兰,周建新,孙明,等.发酵豆粕中异黄酮的抗氧化性研究[J].中国油脂,2003,8(5):67-68.
    [90]嵇美华.发酵豆粕中异黄酮对细菌抑制作用的研究[J].四川粮油科技,2003,(2):11-12.
    [91]俞晓辉,姚文,施学仕,等.大豆发酵蛋白替代鱼粉对断奶仔猪生产性能和肠道主要菌群的影响[J].动物营养学报,2008,20(1):46-51.
    [92]Yamaichi F, Suetsuna K. Immunological effects of dietary peptide derived from soybean protein [J]. Journal of Nutritional Biochemistry,1993,4(8):450-457.
    [93]刘海燕,秦贵信,于维,等.发酵豆粕对仔猪生长性能、血液生化和抗氧化指标的影响[J].中国饲料,2010,(17):19-21.
    [94]章世元,徐建超,张杰,等.新型发酵豆粕对断奶仔猪生长性能及胃肠道发育的影响[J].畜牧与兽医,2009,41(7):20-22.
    [95]Kilers J L, Meijer J L, Nout M J R, et al. Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglet [J]. Journal of Applied Microbiology,2003,95:545-552.
    [96]Kim S, Heugten E, Lee C, et al. Fermented soybean meal as a vegetable source for nursery pigs: I.Effects on growth performance of nursery pigs [J]. Journal of Animal Science,2010,88: 214-224.
    [97]刘欣,刘树全.微生物发酵豆粕对仔猪生长性能及免疫功能的影响[J].粮食与饲料工业,2007,(4):39-40.
    [98]冯杰,刘欣,卢亚萍,等.微生物发酵豆粕对断奶仔猪生长、血清指标及肠道形态的影响[J].动物营养学报,2007,(1):20-22.
    [99]刘春雪,李绍章.不同梯度发酵豆粕对断奶仔猪生产性能的影响[J].中国饲料,2006,(10):14-16.
    [100]刘媛媛.微生物发酵豆粕营养特性研究及其对肉仔鸡生长、免疫及消化功能的影响[D].杭州:浙江大学,2006.
    [101]柯祥军,瞿明仁,易中华.发酵豆粕和菌体蛋白对肉鸡生产性能的对比试验[J].江西饲料,2007,(5):33-34.
    [102]张红芬.豆粕生物肽的生产工艺及其对肉鸡生产性能和血液生化指标的影响研究[D].保定:河北农业大学,2004.
    [103]陈萱,梁运祥,陈昌福.发酵豆粕饲料对异育银鲫非特异性免疫功能的影响[J].淡水渔业,2005,(2):7-10.
    [104]王新霞.发酵豆粕替代鱼粉在加州鲈饲料中的研究[J].饲料与畜牧,2009(1):58-61
    [105]黄雄斌,李国富.方正鲫饲料中发酵豆粕和豆粕替代鱼粉的研究[J1.湖南农业科学, 2010,(13):143-145.
    [106]赵丽梅,王喜波,张海涛,等.金鲳鱼饲料中发酵豆粕替代鱼粉的研究[J].中国饲料,2011,(11):20-22.
    [107]杨耐德,符广才.凡纳滨对虾饲料中发酵豆粕替代鱼粉的研究[J].饲料工业,2008,29(10):24-26.
    [108]陈瑗,周玫.自由基与衰老[M].北京:人民卫生出版社,2004:23-50.
    [109]汪继兵,王人卫.运动干预癌症的自由基机制研究进展[J].南京体育学院学报(自然科学版),2012,9(1):150-152.
    [110]Leikam C, Hufnagel A, Schartl M, et al. Oncogene activation inmelanocytes links reactive oxygen tomultinucleated phenotype and senescence[J]. Oncogene,2008,27(56):7070-7082.
    [111]Hansson G K. Inflammation, atherosclerosis, and coronary artery disease [J]. N EnglJ Med, 2005,352(16):1685-1695.
    [112]张惠芬.实用糖尿病学[M].第二版.北京:人民卫生出版社,2001:166.
    [113]白玉婷,周白丽.氧化应激与心血管疾病关系的研究进展[J].医学综述,2012,18(2):192-194.
    [114]方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社,2002.
    [115]Grace PA. Ischaemia-reperfusion injury[J]. British Journal of Surgery,1994,81(5):637-647.
    [116]Roginsky V, Lissi E A. Review of methods to determine chain-breaking antioxidant activity in food [J]. Food Chemistry,2005,92(7):235-254.
    [117]Smirnoff N, Cumbes Q J.Hydroxyl radical scavenging activity of compatible solutes[J]. Phytochemistry,1989,28(4):1057-1060.
    [118]Ates B, Abraham L, Ercal N. Antioxidant and free radical scavenging properties of N-acetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC) [J]. Free radical research,2008,42(4):372-377.
    [119]金鸣,蔡亚欣,李金荣,等.邻二氮菲-Fe2+氧化法检测H2O2/Fe2+产生的羟自由基[J].生物化学与生物物理进展,1996,23(6):553-555.
    [120]Hallwell B, Gutteridge J M C, Aruoma OI. The deoxyribose method:a simple "test-tube" assays for determination of rate constants for reactions of hydroxyl radicals [J]. Anal Biochem, 1987,165:215-219.
    [121]Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallal and a convenient assay for superoxide dismutase [J]. Eur J Biochem,1974,47(3): 469-474.
    [122]Sun M, Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation [J]. Anal Biochem,1978,90(1):81-89.
    [123]Winterbourn C C, Hawkins R E, Brian M, et al. The estimation of red cell superoxide dismutase activity [J]. Lab Clin Med,1975,85(2):337-341.
    [124]Bagchi D, Garg A, Krohn R L, et al. Protection effects of grape seed proanthocyanidins and selected antioxidant against TPA-Induced hepatic and brain lipid peroxidation and DNA fragmentation,and peritoneal macrophage activation in mice [J]. Gen Pharmacol,1998,30(5): 771-776.
    [125]Yoshiki Y, Kahara T, Okubo K, et al. Superoxide and 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activities of soyasaponin β related to gallic acid [J]. Biosci Biotedmol Biochem.,2001,65(10):2162-2165.
    [126]Parejo I, Codina C, Petrakis C, et al. Evaluation of scavenging activity assessed by Co (II)/EDTA-induced luminol chemiluminescence and DPPH (2,2-diphenyl-l-picrylhydrazyl) free radical assay [J]. J Pharmacol Toxicol Methods,2000,44(3):507-512.
    [127]Mbaebie B O, Edeoga H O, Afolayan A J.Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq [J]. Asian Pacific Journal of Tropical Biomedicine,2012,2(2):118-124.
    [128]Samia Oueslati, Najla Trabelsi, Mondher Boulaaba, et al. Evaluation of antioxidant activities of the edible and medicinal Suaeda species and related phenolic compounds [J].Industrial Crops and Products,2012,36(1):513-518.
    [129]Rivero-Perez M D, Perez-Magarino S, Gonzalez-San M L. Role of melanoidins in sweet wines [J]. Anal Chim Acta.,2002,458(1):169-175.
    [130]郭长江,韦京豫.一种测定样品清除氧自由基能力的方法.自由基生命科学进展,第六集(方允中等主编).北京:原子能出版社,1998.
    [131]金鸣,蔡亚欣,李金荣,等.邻二氮菲-Fe2+氧化法检测H202/Fe2+产生的羟自由基[J]生物化学与生物物理进展,1996,23(6):552.
    [132]Wayner D D M, Burton G W, Ingold K U, et al. Quantitative measurement of thetotal,peroxyl radical trapping antioxidant capacity of human blood plasma by controlled peroxidation [J]. FEBSLett,1985,187(1):33-37.
    [133]王春波,贺孟泉,秦守哲,等.海洋肽的抗氧化作用[J].中国海洋药物,1998,67(3):15-17.
    [134]Chapman R A, Mackay K. The estimation of peroxides in fats and oils by the ferric thiocyanate method [J]. Journal of the American Oil Chemists'Society,1949,26(7):360-362.
    [135]索江华,连艳鲜,吴玉臣.肌肽对亚油酸氧化的抑制作用[J].广东农业科学,2009,(1):109-110.
    [136]游育红,林志彬.灵芝多糖肽的抗氧化作用[J].药学学报,2003,38(2):85-88.
    [137]Davalos A, Miguel M, Bartolome B, et al. Antioxidant acitivity of peptides deirved from egg white proteins by enzymatic hydrolysis [J]. J Food Prot,2004,67(9):1939-1944.
    [138]Zhu Kexue, Zhou Huiming, Qian Haifeng. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase [J]. Process Biochem, 2006,41(6):1296-1302.
    [139]Kong Baohua, Xiong Youling L. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action [J].JAgric Food Chem,2006,54(16):6059-6068.
    [140]Oyaizu M. Studies of products browning reaction:Antioxidative activity of products of browning reaction prepared from glucosamine [J]. Japanese Journal Nutrion,1986,44: 307-315.
    [141]Vibeke Breinholt, Sφren T Lauridsen, Bahram Daneshvar, et al. Dose-response effects of lycopene on selected drug-metabolizing and antioxidantenzymes in the rat [J]. Cancer Letters, 2000,154(2):201-210.
    [142]Prior R L, Wu Xianli, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements [J]. Agric Food Chem,2005,53(10): 4290-4302.
    [143]王会,郭立,谢文磊.抗氧化剂活性的测定方法(一)[J].食品与发酵工业,2006,32:92-98.
    [144]王会,郭立,谢文磊.抗氧化剂活性的测定方法(二)[J].食品与发酵工业,2006,32:98-102.
    [145]郭兴华.益生菌的基础与应用[M].北京:中国科学技术出版社,2002.
    [146]Benno Y, Endo K, Shiragami N, et al. Effect of raffinose human fecal microflora [J]. Bifidobacteria Microflora,1987, (6):59-63.
    [147]秦艳青,任大勇,李诗语,等.益生菌安全性及风险评估研究进展[J].中国兽药杂志,2012,46(4):51-54.
    [148]Fuller Roy. History and development of probiotics [J].Probiotics,1992,1-8.
    [149]Goldin B R, Gorbach S L. Probiotics for humans [J].Probiotics,1992,355-376.
    [150]Gabriela Perdigon, Susana Alvarez. Probiotics and the immune state [J]. Probiotics,1992, 145-180.
    [151]尚伟,姜军坡,王世英,等.兔源益生菌Tu-115菌株鉴定及其产纤维素酶固体发酵条件优化[J].饲料工业,2012,33(2):55-60.
    [152]叶明,叶崇军,胡十明,等.蛋白酶益生菌的诱变选育及产酶条件研究[J].食品科技,2009,34(8):7-9.
    [153]张芳芹,徐桂芳,邹晓平.益生菌和肠易激综合征[J].国际消化病杂志,2012,32(1):21-23.
    [154]刘冠军,董海洲,刘文.大豆低聚糖及其在食品中的应用[J].中国食物与营养,2006,3:34-36.
    [155]涂银萍.益生菌(素)和益生元类药物研究荟苹[J].中国药物信息,2005,20(4):4.
    [156]吴莲福.低聚糖可抑制鸡沙门氏菌[J].国外畜牧科技,1998,3:49-51.
    [157]黄小红,林藩萍.甘露聚糖—寡糖对断奶仔猪腹泻的防治[J].中国预防兽医学报,2000,22(9):163-165.
    [158]杨建策.益生元及寡糖饲料添加剂的开发和应用[J].畜禽业,2000,123(7):30-32.
    [159]李晓红.日本的纳豆生产工艺[J].大豆通报,1996,3:27.
    [160]Pellett P L, Yong V R. Nutritional evaluation of protein food [M]. Tokyo:The United National University Publishing Company,1980:26-29.
    [161]FAO (1970). Amino acid content of foods and biological data on proteins, nutritional studies. No.24:5-6. Food and Agriculture Organization of the United Nations, Rome.
    [162]国家技术监督局.GB/T 5009.153-2003植物性食品中植酸的测定[S].北京:中国标准出版社,2003.
    [163]李青仁,蒋君辉,高阳,等.镁对人体健康的影响[J].世界元素医学,2007,14(1-2):37-40.
    [164]张继剀,毛淑贤.人体必需微量元素与人类健康[J].甘肃科技,2005,21(3):183-184.
    [165]陈秀宇.几种人体必需微量元素与人体健康[J].福建师范大学福清分校学报,2006,73(2):94-96.
    [166]胡安新.微量元素的生理功能及元素间的相互作用[c].第三届泰山微量元素高级论坛汇编:177-179.
    [167]关志强,郑贤德,洪鹏志,等.冻结对文蛤肉营养成分及质构的影响[J].制冷,2003,22(1):1-4.
    [168]章超桦,洪鹏志,郑尚贵,等.翡翠贻贝肉的食品化学特性及其在海鲜调味料的应用[J].水产学报,2000,24(3):267-270.
    [169]章超桦,吴红棉,洪鹏志,等.马氏珠母贝肉的营养成分及其游离氨基酸组成[J].水产学报,2000,24(2):180-184.
    [170]姜丹,丁洪浩,张晶,等.发酵对豆粕中营养物质和抗营养因子的影响[J].中国兽医学报,2011,31(4):579-582.
    [171]黄耀武,周建平.发酵法降解油菜籽废水中植酸的工艺研究[J].现代食品科技,2012,23(1):66-68.
    [172]Slaga T J, Klein-Szanto A J, Triplett L L, et al. Skin tumor-promoting activity of benzoyl peroxide, a widely used free radical-generating compound [J]. Science,1981,213(4511): 1023-1025.
    [173]Petrone W F, English D K, Wong K, et al. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma [J]. National Acad Sciences,1980,77(2):1159-1162.
    [174]Conner E M, Grisham M B. Inflammation, freeradicals, and antioxidants [J]. Nutrition,1996, 12(4):274-277.
    [175]Flamm E S, Demopoulos H B, Seligman M L, et al. Free radicals in cerebral ischemia [J]. Stroke,1978,9:445-447.
    [176]David S Warner, Huaxin Sheng and Ines Batinic-Haberle. Oxidants, antioxidants and the ischemic brain [J].J ExpBiol,2004,207:3221-3231.
    [177]Halliwell B. Free radicals, reactive oxygen species and human disease:a critical evaluation with special reference to atherosclerosis [J]. British journal of experimental pathology,1989, 70(6):737-757.
    [178]Bankson D D, Kestin M, Rifai N. Role of free radicals in cancer and atherosclerosis [J]. Clinics in Laboratory Medicine,1993,13(2):463-480.
    [179]Wolff S P. Diabetes mellitus and free radicals Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications [J]. Br Med Bull,1993,49 (3): 642-652.
    [180]Ido Y, Kilo C, Williamson J R. Cytosolic NADH/NAD+, free radicals, and vascular dysfunction in early diabetes mellitus [J]. Diabetologia,1997,40:s115-s117.
    [181]Hadjigogos K. The role of free radicals in the pathogenesis of rheumatoid arthritis [J]. Panminerva medica,2003,45(1):7-12.
    [182]Christel Quettier-Deleu, Bernard Gressier, Jacques Vasseur, et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour [J]. Journal of Ethnopharmacology,2000,72(1-2):35-42.
    [183]Oyaizu M. Studies on products of browning reaction:Antioxidative activities of browning reaction products prepared from glucosamine [J]. Japanese Journal of Nutrition,1986,44 (6): 307-315.
    [184]Su Xiao-Yu, Wang Zhen-Yu, Liu Jia-Ren. In vitro and in vivo antioxidant activity of Pinus koraiensis seed extract containing phenolic compounds [J]. Food Chemistry,2009,117(4): 681-686.
    [185]Blois M S. Antioxidant determinations by the use of a stable free radical [J]. Nature,2002,26: 1199-1200.
    [186]Oyaizu M. Studies on products of browning reaction:Antioxidative activities of browning reaction products prepared from glucosamine [J]. Japanese Journal of Nutrition,1986,44 (6): 307-315.
    [187]Raimondas Raudonis, Lina Raudone, Valdas Jakstas, et al. Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries [J]. Journal of Chromatography A,2012,1233(13): 8-15.
    [188]Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay [J]. Analytical Biochemistry,2011,416(2):202-205.
    [189]Yen G C, Hsieh C L. Antioxidant activity of extracts from Du-zhong (Eucommia urmoides) towards various peroxidation models in vitro [J]. Journal of Agricultural and Food Chemistry, 1998,46(10):3952-3957.
    [190]Buege J A, Aust S T. Microsomal lipid peroxidation [J]. Methods in Enzymology,1978,52: 302-310.
    [191]王立峰,何荣,袁建,等.薏米中酚类提取物测定及抗氧化能力指数分析[J].食品科学,2012,33(1):72-76.
    [192]蒋雯雯,马淼,郭艳,等.刺山柑多酚类物质含量及其抗氧化活性研究[J].西北植物学报,2012,32(3):555-558.
    [193]Cai Yizhong, Luo Qiong, Sun Mei, et al. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer [J]. Life sciences,2004,74(17): 2157-2184.
    [194]Middleton E Jr, Kandaswami C. Effects of flavonoids on immune and inflammatory cell functions [J]. Biochemical pharmacology,1992,43(6):1167-1179.
    [195]Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells:implications for inflammation, heart disease, and cancer [J]. Pharmacological reviews, 2000,52(4):673-751.
    [196]Rice-Evans C A, Miller N J, Paganga G, et al. Structure-antioxidant activity relationships of flavonoids and phenolic acids [J]. Free radical biology and medicine,1996,20(7):933-956.
    [197]Pietta PG. Flavonoids as Antioxidants [J]. J Nat Prod,2000,63 (7):1035-1042.
    [198]Conner E M, Grisham M B. Inflammation, freeradicals, and antioxidants [J]. Nutrition,1996, 12(4):274-277.
    [199]Denham Harman. Free radical theory of aging [J]. Mutation Research/DNAging,1992, 275(3-6):257-266.
    [200]Valko M, Rhodes C J, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico-Biological Interactions,2006,160:1-40.
    [201]Thaipong K, Boonprakob U, Crosby K. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts [J]. Journal of Food Composition and Analysis,2006,19(6-7):669-675.
    [202]Gil M I, Tomas-Barberan F A, Hess-Pierce B, et al. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California [J]. Journal of Agricultural and Food Chemistry,2002,50(17):4976-4982.
    [203]Niki E, Yoshida Y, Saito Y, et al. Lipidperoxidation:Mechanisms, inhibition, and biological effects [J]. Biochemical and biophysical,2005,338(1):668-676.
    [204]Senevirathne M, Kim S H, Siriwardhana N, et al. Antioxidant Potential of Ecklonia cavaon Reactive Oxygen Species Scavenging, Metal Chelating, Reducing Power and Lipid Peroxidation Inhibition [J]. Food Science and Technology International February,2006,12(1): 27-38.
    [205]Nuutila A M, Puupponen-Pimia R, Aarni M, et al. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity [J]. Food Chemistry,2003,81(4):485-492.
    [206]Su Xiao-Yu, Wang Zhen-Yu, Liu Jia-Ren. In vitro and in vivo antioxidant activity of Pinus koraiensis seed extract containing phenolic compounds [J]. Food Chemistry,2009,117(4): 681-686.
    [207]Zhang Dan, Liu Geng-tao, Shi Jian-gong, et al. Effect of coeloglossum viride var.bracteatum extract on merory deficits and pathological changes in senescent mice [J].Pharmacolory &Toxicology,2006,98(1):55-60.
    [208]Holmes D J. Naturally Long-Lived Animal models for the study of slow aging and longevity [J].New York Academy of sciences,2004,1019(1):483-485.
    [209]徐叔云,卞如濂,陈修.药理实验方法学[M].第三版.北京:人民卫生出版社,2006:1465-1466.
    [210]孙存普,张建中.自由基生物学导论[M].北京:中国科学技术出版社,1999.
    [211]贾雪梅,齐易祥.单胺氧化酶与衰老[J].国外医学(老年医学分册),1988,4:145-147.
    [212]McCann S M, Licinio J, Wong M L, et al. The nitric oxide hypothesis of aging [J]. Exp Gerontol,1998,33(7-8):813-826.
    [213j张均田.老化、老年性痴呆症与钙代谢失衡及其治疗新途径[J].药学学报,1993,28(9):614-615.
    [214]陈良怡,邹寿彬,康华光.线粒体和细胞内钙自稳平衡[J].生物化学与生物物理进展,2000,27(5):483-487.
    [215]冯征,张均田.中枢神经系统钙稳失调和老龄脑功能[J].生理科学进展,2000,31(2):102-108.
    [216]李笑萍,喻培先,赵冬.D-半乳糖衰老模型观察的新指标[J].中国现代应用药学杂志2004,21(6):422-444.
    [217]Hsieh Huei-Min, Wu Wen-Mein, Hu Miao-Lin. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose. [J]. Food Chem Toxicol,2009,47(3):625-632.
    [218]Zhong Weixiong, Yan Tao, Lim Ramon, et al. Expression of superoxide dismutases, catalase, and glutathione peroxidase in glioma cells [J]. Free Radical Biol Med,1999,27(11-12): 1334-1345.
    [219]Bursal E, Koksal E. Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.) [J]. Food Research International,2011, 44(7):2217-2221.
    [220]Jeff Wu C F, Michael Hamada.试验设计与分析及参数优化[M].张润楚,郑海涛,兰燕,等译.北京:中国统计出版社,2002.
    [221]Yang Jian-Feng, Li Peng-Fei, Liu Min-Qian, et al.2(n1+n2) (K1+K2) Fractional factorial split-plot designs containing clear effects [J]. Journal of Statistical Planning and Inference,2006, 136(12):4450-4458.
    [222]Box G E P, Behnken D W. Some new three level design for the study of quantitative variables [J]. Technometrics,1960,2(4):455-475.
    [223]马卡姆K R.黄酮类化合物结构鉴定技术(张宝琛,唐崇实译)[M].北京:科学出版社,1990:44.
    [224]徐任生.天然产物化学[M].北京:科学出版社,1997:592.
    [225]王景华,王亚琳,楼凤昌.槐树种子的化学成分研究[J].中国药科大学学报,2001,32(6):471.
    [226]黄胜阳,屠鹏飞.红车轴草异黄酮化合物的分离鉴定[J].北京大学学报(自然科学版),2004,40(4):544.
    [227]常有,张苏闽.益生菌制剂在溃疡性结肠炎中的应用及其可能机制[J].安徽医科大学学报,2012,47(2):194-196.
    [228]胡会萍.益生菌及其在功能食品中的应用[J].食品研究与开发,2007,128(2):173-175.
    [229]Parvez S, Malik K A, Kang S A, Kim H Y. Probiotics and their fermented food products are beneficial for health [J]. Journal of Applied Microbiology,2006,100(6):1171-1185.
    [230]Kotzampassi K, Giamarellos-Bourboulis E J. Probiotics for infectious diseases:more drugs, less dietary supplementation [J]. International Journal of Antimicrobial Agents,2012,40(4): 288-296.
    [231]Seale J V, Millar M. Probiotics:a new frontier for infection control [J]. Journal of Hospital Infection,2013, In Press.
    [232]Benno Y, Endo K, Shiragami N, et al. Effect of raffinose intake on human fecal microflora [J]. Bifidobacteria Microflora,1987,6:59-62.
    [233]尚婧晔,余倩.肠道菌群代谢作用与人体健康关系的研究进展[J].中国微生态学杂志,2012,24(1):87-90.
    [234]Hisanaga S, Mase M, Mizuno A, et al. Germination of Bacillus natto spores in the canine intestine (author's transl) [J]. Nippon Saikingaku Zasshi,1978,33(5):689-696.
    [235]Yoshimoto T, Fukumoto J, Tsuru D.Studies on bacterial proteases. Some enzymatic and physiochemical properties of the alkaline protease from Bacillus natto [J]. Int J Protein Res, 1971,3(5):285-95.
    [236]Matsuzaki H, Yamane K, Yamaguchi K, et al. Hybrid α-amylases produced by transformants of Bacillus subtilis. I. Purification and characterization of extracellular α-amylases produced by the parental strains and transformants [J]. Biochimica & Biophysica Acta (BBA)-Protein Structure,1974,65(1):235-247.
    [237]陈兵,朱凤香,陈巧云等.纳豆芽孢杆菌分离纯化及对大白鼠肠道微生态系统的影响[J].浙江农业学报,2003,15:223-227.
    [238]祁红兵,陈钧.纳豆芽孢杆菌发酵米糠上清液的整肠作用研究[J].食品科学,2010,31(3):253-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700