用户名: 密码: 验证码:
姜黄素联合奥沙利铂抗结肠癌作用及其相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结肠癌是一种严重威胁人类生命和健康的恶性肿瘤,在西方发达国家,其发病率居恶性肿瘤的第2位,随着人们生活习惯和饮食结构的改变,我国结肠癌的发病率呈逐年递增趋势,发病递增速度为世界平均数的两倍,是中国发病率排第四位的恶性肿瘤性疾病。如何有效的预防和治疗结肠癌,成为医学界关注的热点之一。除了传统的手术、放疗与化疗外,寻找高效、低毒的药物和研究中西医结合治疗方案仍是目前结肠癌治疗中有待解决的问题。天然药物因其多靶点、多环节和多途径的抗肿瘤作用,日渐成为临床抗肿瘤药物研究的热点。
     姜黄素是从草本植物姜黄的根茎中提取的一种天然多酚,药理作用广泛,抗癌是其主要作用之一。奥沙利铂是继顺铂和卡铂之后的第三代新型铂类抗癌药,具有广泛的抗肿瘤谱,是目前临床治疗结肠癌的常用药物。因此,在深入研究姜黄素的抗癌活性与作用机制的基础上,进一步探讨其与奥沙利铂联合的抗结肠癌作用,可为结肠癌综合治疗的临床应用提供技术基础。本研究以结肠癌细胞LoVo为体外实验对象,以结肠癌裸鼠移植瘤模型为体内实验对象,采用流式细胞术、透射电镜(TEM)、反转录-聚合酶链式反应(RT-PCR)、western blotting、免疫组织化学和免疫荧光细胞化学染色等技术研究了姜黄素联合奥沙利铂的体内外抗结肠癌作用及相关机制。主要研究结果总结如下:
     1.姜黄素对不同组织来源的肿瘤细胞(LoVo, SW480, MCF-7, BGC-823和SMMC-7721)都有生长抑制作用,并呈剂量和时间依赖关系;其中对LoVo和MCF-7细胞的生长抑制较为明显,而对正常细胞HK-2只有超过48h、20μg/mL以上剂量时,对其生长有一定的抑制作用。提示姜黄素抑制细胞生长作用可能具有组织特异性,可能不具有明显的肿瘤细胞特异性。
     2.姜黄素能显著抑制LoVo细胞生长、增殖,呈较好的浓度和时间效应关系;在处理24、48和72h时,姜黄素对LoVo细胞的半数抑制浓度(IC50)分别为12.70±0.06,8.80±0.50和4.97±0.71μg/mL;姜黄素能使LoVo细胞发生形态学改变,表现出典型的凋亡细胞特征;能阻滞细胞周期于S期,诱导LoVo细胞凋亡。
     3.姜黄素可显著降低LoVo细胞线粒体膜电位,促使细胞色素c的释放,抑制Bcl-2、Bcl-xL、c-myc和survivin蛋白的表达,上调Bax、caspase-3和p53蛋白的表达,增加caspase-9的活性,通过线粒体途径诱导LoVo细胞凋亡。
     4.姜黄素联合奥沙利铂能协同抑制LoVo细胞增殖,能使LoVo细胞发生明显的形态学改变,能阻滞细胞周期于S期,诱导大量肿瘤细胞死亡。
     5.姜黄素协同奥沙利铂可显著降低LoVo细胞线粒体膜电位,激活caspase-3和caspase-9的表达,在mRNA水平上抑制Bcl-2和Bcl-xL表达、促进Bax表达,在蛋白水平抑制Bcl-2、c-myc和survivin蛋白的表达,促进Bax和caspase-3蛋白的表达。
     6.50mg/kg剂量的姜黄素能抑制LoVo裸鼠移植瘤的生长,且与奥沙利铂联合应用对移植瘤生长抑制产生相加效应,肿瘤抑瘤率分别为59.47%和70.56%;姜黄素及联合处理组对荷瘤裸鼠的血液系统、肝肾器官未见毒性;姜黄素与奥沙利铂联合能干扰细胞周期,使其阻滞于S期,诱导大量肿瘤细胞凋亡和坏死。对荷瘤裸鼠肿瘤组织应用RT-PCR、western blotting和免疫组化技术阐明了姜黄素与奥沙利铂联合能显著抑制Bcl-xL、Bcl-2、c-myc和survivin表达、促进Bax表达,下调HSP70蛋白表达,激活caspase-3和PARP表达。
     7.姜黄素能调节荷瘤裸鼠抗氧化体系。在体内,姜黄素单用及与奥沙利铂联合处理可显著提高移植瘤裸鼠血清T-SOD和T-AOC水平,降低血清MDA水平;可显著提高肝肾组织中T-SOD、T-AOC和GR水平;可显著提高脾脏T-AOC水平,对T-SOD无显著作用,姜黄素组的GR水平最高;姜黄素组及联合组均能降低裸鼠肿瘤组织T-AOC、T-SOD和GR水平;姜黄素组及联合组能显著降低荷瘤裸鼠血清LDH活性,姜黄素组AKP活性无显著变化,而联合组AKP表达显著提高。在体外,姜黄素对·OH、O2·-和DPPH自由基均有较强的清除能力。
     总之,姜黄素可以通过细胞毒作用、诱导凋亡作用使肿瘤细胞生长停滞并逐渐走向死亡,与奥沙利铂联用对LoVo细胞生长具有协同抑制效应。姜黄素与奥沙利铂联合应用于结肠癌的治疗,既减轻了奥沙利铂的毒性,又增加了抗癌作用,并且未出现两药毒性重叠现象,提示姜黄素与奥沙利铂联合治疗结肠癌具有可行性,值得在临床推广应用。
Colon cancer is a serious threat to human life and health of malignant tumors, and itsincidence is ranked the second malignant tumors in western developed countries. With thepeople's living habits and diet changes, the incidence of colon cancer in China showed anincreasing trend, the incidence rate of increase is twice the world average, is ranked the fourthin the incidence of malignant diseases. How effective prevention and treatment of coloncancer has become one of the focus of attention of the medical profession. In addition to thetraditional surgery, radiotherapy and chemotherapy, to find efficient, low toxicity drugs andstudy combining traditional Chinese medicine and western medicine treatment is still to beresolved in the colon cancer treatment. Natural medicine because of its multi-target,multi-link and multi-channel anti-tumor effect, becoming a hot spot of the clinical anticancerdrug research.
     Curcumin (diferuloylmethane) is a natural polyphenol extracted from the rhizomes of theplant Curcuma longa Linn. It has wide range of pharmacological effects, anti-cancer is one ofthe main function. Oxaliplatin is a third generation platinum anti-cancer drugs after cisplatinand carboplatin. It has a wide range of anti-tumor spectrum, and is commonly used drugs inthe clinical treatment of colon cancer. Therefore, in-depth study of the anti-cancer activity ofcurcumin and its mechanism, and further studying anti-colon cancer effect of combination ofcurcumin and oxaliplatin could establish some foundation for colon cancer treatment inclinical application. In this research, anti-tumoral effects and mechanism of combination ofcurcumin and oxaliplatin on human colon cancer cells in vitro and in vivo were investigatedwith colon cancer cells LoVo and colon cancer-bearing nude mice models through flowcytometry, transmission electron microscopy (TEM), reverse transcription-polymerase chainreaction (RT-PCR), western blotting, immunohistochemistry and immunofluorescencemethods. The main results as follow:
     1. Curcumin could inhibit the growth of the tumor cells of different tissue origin (LoVo,SW480, MCF-7, BGC-823and SMMC-7721), has a dose-and time-dependent relationship;the growth of inhibition is more obvious in LoVo and MCF-7cells, while in normal cellsHK-2more than48h, when doses of more than20μg/mL, its growth has a certain inhibition.Suggesting that curcumin inhibition of cell growth may have tissue-specific, may not have asignificant tumor cell-specific.
     2. Curcumin could significantly inhibit the growth and proliferation in LoVo cells, has abetter concentration-and time-dependent relationship; The inhibitory concentration50% (IC50) of curcumin were12.70±0.06,8.80±0.50and4.97±0.71μg/mL in LoVo cells at24,48and72h. Curcumin could make LoVo cell morphological changes, showing the typicalcharacteristics of apoptotic cells; arrest cell cycle at S phase, and induce apoptosis of LoVocells.
     3. Curcumin can significantly reduce mitochondrial membrane potential, prompting therelease of cytochrome c, inhibition the expression of Bcl-2, Bcl-xL, c-myc and survivinprotein, up-regulation the expression of Bax, caspase-3and p53protein, increase the activityof caspase-9in LoVo cells, and induced apoptosis of LoVo cells through the mitochondrialpathway.
     4. Combination of curcumin and oxaliplatin could synergistically inhibit proliferation ofLoVo cells, make the LoVo cells obvious morphological changes, arrest cell cycle at S phase,induce a large number of tumor cells death.
     5. Combination of curcumin and oxaliplatin could synergistically reduce significantlymitochondrial membrane potential, activate the expression of caspase-3and caspase-9, inhibitthe expression of Bcl-2and Bcl-xL and promote the expression of Bax at the mRNA level,down-regulation the expression of Bcl-2, c-myc, and survivin protein, and promote theexpression of Bax and caspase-3at the protein level.
     6.50mg/kg dose of curcumin can inhibit the growth of LoVo colonic xenografts in nudemice, and combination of curcumin and oxaliplatin group treatment could emerge additiveeffect on the inhibition of tumor growth, tumor inhibition rates were59.47%and70.56%,respectively. Curcumin group and combination of curcumin and oxaliplatin group treatmentdid not influence nude mice blood system, liver and kidney organs. Combination of curcuminand oxaliplatin group treatment could interfere with cell cycle arrest at S phase, inducingtumor cells apoptosis and necrosis. Using RT-PCR, western blotting andimmunohistochemistry to clarify the combination of curcumin and oxaliplatin treatment cansignificantly inhibit the Bcl-xL, Bcl-2, c-myc and survivin expression, promote the expressionof Bax, down-regulation the expression of HSP70protein, and activated caspase-3and PARPexpression in tumor tissue of tumor-bearing nude mice.
     7. Curcumin could regulate the antioxidant system of colon cancer-bearing nude mice.Experiments in vivo showed that curcumin group and combination of curcumin andoxaliplatin group treatment could increase the levels of serum T-SOD and T-AOC, butdecrease the MDA level in tumor-bearing nude mice. They also improved the T-SOD, T-AOCand GR levels in liver and kidney of tumor-bearing nude mice, Furthermore, curcumin groupand combination of curcumin and oxaliplatin group treatment could increase the T-AOC level in spleen tissues, but not influence the T-SOD level in spleen, the GR level of spleen tissuewas the highest in curcumin group. To tumor tissues, curcumin group and combination ofcurcumin and oxaliplatin group treatment decreased T-AOC, T-SOD and GR levels. Besidesthat, the serum LDH level of tumor-bearing nude mice was suppressed by the treatment ofcurcumin group and combination of curcumin and oxaliplatin group. Curcumin grouptreatment could not influence the level of serum AKP, but combination of curcumin andoxaliplatin group treatment could increase the level of serum AKP significantly. Experimentsin vitro further showed that curcumin had strong effects on scavenging·OH radical, O2·-radical and DPPH radical.
     In summary, curcumin could inhibit LoVo cells growth, induce LoVo cells arrest andapoptosis, Curcumin combination with oxaliplatin had a synergistic inhibitory effect on thegrowth of LoVo cells. Combination of curcumin and oxaliplatin used in the treatment of coloncancer, not only mitigated the toxicity of oxaliplatin, but also increased of anti-cancer effects,and did not find toxicity overlap of the two drugs. This suggested that the combination ofcurcumin and oxaliplatin treatment for colon cancer is feasible and worth of clinicalapplication.
引文
[1] Arber N, Levin B. Chemoprevention of colorectal neoplasia: the potential for personalizedmedicine. Gastroenterology,2008,134:1224.
    [2] Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical andclinical studies. Anticancer Res,2003,23:363-398.
    [3] Chan AT, Giovannucciel EL, Meyerhardt JA, et al. Aspirin dose and duration of use andrisk of colorectal cancer in men. Gastroenterolog,2008,134:21.
    [4] Siddiqui AA, Nazario H, Mahgoub A, et al. The long-term use of statins is associated witha decreased incidence of adenomatous colon polyps. Digestion,2009,79:17.
    [5] Ishihara J, Inoue M, Iwaski M, et al. Dietary calcium, vitamin D, and the risk of colorectalcancer. Am J Clin Nutr,2008,88:1576.
    [6] Jaszewski R, Misra S, Tobi M, et al. Folic acid supplementation inhibits recurrence ofcolorectal adenomas: a randomized chemoprevention trial. World J Gastroenterol,2008,14:4492.
    [7] Cole BF, Baron JA, Sandler RS, et al. Folic acid for the prevention of colorectal adenomas:arandomized clinical tria. JAMA,2007,297:2351.
    [8] Garcia M, Jemal A, Ward EM, et al. Global cancer facts and figures2007. Atlanta, GA:American Cancer Society,2007.
    [9] Calvert PM, Frucht H. The geneties of coloreetal cancer. Ann Intern Med,2002,137:603-612.
    [10] Potter JD. Colorectal cancer: molecules and populations. J Natl Cancer Inst,1999,91:916-932.
    [11] Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticanceragents: mechanistic, pharmacologic, and clinical issues, J Natl Cancer Inst,2002,94:252-266.
    [12] Levin B, Barthel JS, Burt RW, et al. Colorectal cancer screening clinical practiceguidelines. J Natl Compr Canc Netw,2006,4:384-420.
    [13] Brophy J, Levesques L, Zhang B. The coronary risk of cyclooxygenase-2(COX-2)inhibitors in subjects with a previous myocardial infarction. Heart,2007,93:189-194
    [14] Kiuchi F, Goto Y, Sugimoto N, et al. Nematocidal activity of turmeric: synergistic actionof curcuminoids. Chem Pharm Bull (Tokyo),1993,41:1640-1643.
    [15] Du B, Jiang L, Xia Q, et al. Synergistic inhibitory efects of curcumin and5-fluorouracilon the growth of the human colon cancer cell line HT-29. Chemotherapy,2006,52:23-28.
    [16] Lev-Ari S, Strier L, Kazanov D, et al. Celecoxib and curcumin synergistically inhibit thegrowth of colorectal cancer cells. Clin Cancer Res,2005,11:6738-6744.
    [17] Lev-Ari S, Zinger H, Kazanov D, et al. Curcumin synergistically potentiates the growthinhibitory and proapoptotic efects of celecoxib in pancreatic adenocarcinoma cells. BiomedPharmacother,2005,59:S276-S280.
    [18] Notarbartolo M, Poma P, Perri D, et al. Antitumor efects of curcumin, alone or incombination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of theirpossible relationship to changes in NF-jB activation levels and in IAP gene expression.Cancer Lett,2005,224:53-65.
    [19] Koo JY, Kim HJ, Jung KO, et al. Curcumin inhibits the growth of AGS human gastriccarcinoma cells in vitro and shows synergism with5-fluorouracil. J Med Food,2004,7:117-121.
    [20] Chan MM, Fong D, Soprano KJ, et al. Inhibition of growth and sensitization tocisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. JCell Physiol,2003,194:63-70.
    [21] Hour TC, Chen J, Huang CY, et al. Curcumin enhances cytotoxicity of chemotherapeuticagents in prostate cancer cells by inducing p21,(WAF1/CIP1) and C/EBPbeta expressionsand suppressing NF-kappaB activation. Prostate,2002,51:211-218.
    [22] Liu Y, Chang RL, Cui XX, et al. Synergistic efects of curcumin on all-trans retinoicacid-and1alpha,25-dihydroxyvitamin D3-induced difer-entiation in human promyelocyticleukemia HL-60cells. Oncol Res,1997,9:19-29.
    [23] Leu TH, Maa MC. The molecular mechanisms for the antitumorigenic efect of curcumin.Curr Med Chem Anticancer Agents,2002,2:357-370.
    [24] Collett GP, Campbell FC. Curcumin induces c-jun N terminal kinase-dependentapoptosis in HCT116human colon cancer cells, Carcinogenesis25,2004,2183–2189.
    [25] Scott DW, Loo G. Curcumin-induced GADD153gene up-regulation in human coloncancer cells. Carcinogenesis,2004,25:2155-2164.
    [26] Kim DG, You KR, Liu MJ, et al. GADD153-mediated anticancer efects ofN-(4-hydroxyphenyl) retinamide on human hepatoma cells. Biol Chem,2002,277:38930-38938.
    [27] Lengwehasatit I, Dickson AJ, Analysis of the role of GADD153in the control ofapoptosis in NS0myeloma cells. Biotechnol Bioeng,2002,80:719-730.
    [28] Maytin EV, Ubeda M, Lin JC, et al. Stress-inducible transcription factor CHOP/gadd153induces apoptosis in mammalian cells via p38kinase-dependent and-independentmechanisms. Exp Cell Res,2001,267:193-204.
    [29] Moussavi M, Assi K, Gomez-Munoz A, et al. Curcumin mediates ceramide generationvia the de novo pathway in colon cancer cells. Carcinogenesis,2006,27:1636-1644.
    [30] Rashmi R, Santhosh Kumar TR, Karunagaran D. Human colon cancer cells difer in theirsensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting therelease of apoptosis-inducing factor and caspases. FEBS Lett,2003,538:19-24.
    [31] Jaiswal AS, Marlow BP, Gupta N, et al. Beta-catenin-mediated transactivation andcell-cell adhesion pathways are important in curcumin (diferuylmethane) induced growtharrest and apoptosis in colon cancer cells. Oncogene,2002,21:8414-8427.
    [32] Moragoda L, Jaszewski R, Majumdar AP. Curcumin induced modulation of cell cycleand apoptosis in gastric and colon cancer cells. Anticancer Res,2001,21:873-878.
    [33] Chen H, Zhang ZS, Zhang YL, et al. Curcumin inhibits cell proliferation by interferingwith the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res,1999,19:3675-3680.
    [34] Fujii-Kuriyama Y, Mimura J. Molecular mechanisms of AhR functions in the regulationof cytochrome P450Genes. Biochem Biophys Res Commun,2005,338:311-317.
    [35] Rinaldi AL, Morse MA, Fields HW, et al. Curicumin activates the aryl hydrocarbonreceptor yet significantly inhibits (a)-benzo(a)pyrene-7R-trans-7,8-dihydrodiol bioactivationin oral squamous cell carcinoma cells and oral mucosa. Cancer Res,2002,62:5451-5456.
    [36] Giuliani L, Ciotti M, Stoppacciaro A, et al. UDP-glucuronosyltransferases1A expressionin human urinary bladder and colon cancer by immunohistochemistry. Oncol Rep,2005,13:185-191.
    [37] Basu NK, Ciotti M, Hwang MS, et al. Diferential and special properties of the majorhuman UGT1-encoded gastrointestinal UDP-glucuronosyltransferases enhance potential tocontrol chemical uptake. Biol Chem,2004,279:1429-1441.
    [38] Basu NK, Kovarova M, Garza A, et al. Phosphorylation of a UDP-glucuronosyltransferase regulates substrate specificity. Proc Natl Acad Sci, USA,2005,102:6285-6290.
    [39] Lin JK. Suppression of protein kinase C and nuclear oncogene expression as possibleaction mechanisms of cancer chemoprevention by curcumin. Arch Pharm Res,2004,27:683-692.
    [40] Gopalakrishna R, Gundimeda U. Antioxidant regulation of protein kinase C in cancerprevention. Nutr,2002,132:3819S-3823S.
    [41] Maxhimer JB, Reddy RM, Zuo J, et al. Induction of apoptosis of lung and esophagealcancer cells treated with the combination of histone deacetylase inhibitor,(Trichostatin A) andprotein kinase C inhibitor (calphostin C). Thorac Cardiovasc Surg,2005,129:53-63.
    [42] Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatorytherapy from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta,2005,1754:253-262.
    [43] De Smaele E, Zazzeroni F, Papa S, et al. Induction of gadd45beta by NF-kappaBdownregulates pro-apoptotic JNK signalling. Nature,2001,414:308-313.
    [44] Tang G, Minemoto Y, Dibling B, et al. Inhibition of JNK activation through NF-kappaBtarget genes. Nature,2001,414:313-317.
    [45] Jeong WS, Kim IW, Hu R, et al. Modulation of AP-1by natural chemopreventivecompounds in human colon HT-29cancer cell line. Pharm Res,2004,21:649-660.
    [46] Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the nf-kappab pathwayin the treatment of inflammation and cancer. Clin Invest,2001,107:135-142.
    [47] Sharma C, Kaur J, Shishodia S, et al. Curcumin down regulates smokelesstobacco-induced NF-kappaB activation and COX-2expression inhuman oral premalignantand cancer cells. Toxicology,2006,228:1-15.
    [48] Jeong WS, Kim IW, Hu R, et al. Modulatory properties of various naturalchemopreventive agents on the activation of NF-kappaB signaling pathway. Pharm Res,2004,21:661-670.
    [49] Plummer SM, Holloway KA, Manson MM, et al. Inhibition of cyclo-oxygenase2expression in colon cells by the chemopreventive agent curcumin involves inhibition ofNF-kappaB activation via the NIK/IKK signalling complex. Oncogene,1999,18:6013–6020.
    [50] Su CC, Chen GW, Lin JG, et al. Curcumin inhibits cell migration of human colon cancercolo205cells through the inhibition of nuclear factor kappa B/p65and down-regulatescyclooxygenase-2and matrix metalloproteinase-2expressions. Anticancer Res,2006,26:1281-1288.
    [51] Aggarwal BB, Shishodia S, Takada Y, et al. Curcumin suppresses the paclitaxel-inducednuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of humanbreast cancer in nude mice. Clin Cancer Res,2005,11:7490-7498.
    [52] Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth bysuppressing gene expression of epidermal growth factor receptor through reducing the activityof the transcription factor Egr-1. Oncogene,2006,25:278-287.
    [53] Huang MT, Lou YR, Ma W, et al. Inhibitory efects of dietary curcumin on forestomach,duodenal, and colon carcinogenesis in mice. Cancer Res,1994,54:5841-5847.
    [54] Rao CV, Rivenson A, Simi B, et al. Chemoprevention of colon carcinogenesis by dietarycurcumin, a naturally occurring plant phenolic compound. Cancer Res,1995,55:259-266.
    [55] Lev-Ari S, Strier L, Kazanov D, et al. Celecoxib and curcumin synergistically inhibit thegrowth of colorectal cancer cells. Clin Cancer Res,2005,11:6738-6744.
    [56] Soliva R, Almansa C, Kalko SG, et al. Theoretical studies on the inhibition mechanism ofcyclooxygenase-2. Is there a unique recognition site? Med Chem,2003,46:1372-1382.
    [57] Smith WL, DeWitt DL, Garavito RM, Cyclooxygenases: structural, cellular, andmolecular biology, Annu. Rev. Biochem.69,2000,145-182.
    [58] Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression.Laneet Oncol,2001,2:149-156.
    [59] Rao CV, Kawamori T, Hamid R, et al. Chemoprevention of colonic aberrant crypt foci byan inducible nitric oxide synthase-selective inhibitor. Carcinogenesis,1999,20:641-644.
    [60] Zheng M, Ekmekcioglu S, Walch ET. Inhibition of nuclear factor-kappaB and nitricoxide by curcumin induces G2/M cell cycle arrest and apoptosis in human melanomacells.Melanoma-Res.2004,14:165-171.
    [61] Saltz LB, Meropol NJ, Loehrer PJ S, et al. Phase II trial of cetuximab in patients withrefractory colorectal cancer that expresses the epidermal growth factor receptor. Clin Oncol,2004,22:1201-1208.
    [62] Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth bysuppressing gene expression of epidermal growth factor receptor through reducing the activityof the transcription factor Egr-1. Oncogene,2006,25:278-287.
    [63] Chen A, Xu J. Activation of PPAR{Gamma} by curcumin inhibits moser cell growth andmediates suppression of gene expression of cyclin D1and EGFR. Am Physiol GastrointestLiver Physiol,2005,288:G447-G456.
    [64] Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer.Cancer Metastasis Rev,2004,23:101-117.
    [65] Rao BG. Recent developments in the design of specific matrix metalloproteinaseinhibitors aided by structural and computational studies. Curr Pharm Des,2005,11:295-322.
    [66] Hong JH, Ahn KS, Bae E, et al. The efects of curcumin on the invasiveness of prostatecancer in vitro and in vivo. Prostate Cancer Prostatic Dis,2006,9:147-152.
    [67] Lee KW, Kim JH, Lee HJ, et al. Curcumin inhibits phorbol ester-induced up-regulationof cyclooxygenase-2and matrix metalloproteinase-9by blocking ERK1/2phosphorylationand NF-kappaB transcriptional activity in MCF10A human breast epithelial cells. Antioxid.Redox Signal,2005,7:1612-1620.
    [68] Thaloord, Singhak, Sidhugs, et al. Inhibition of angiogenic differentiation of humanumbilical vein endothelial cells by curcumin. J Cell Growlh Differ,1998,9:305-312.
    [69] Chen HW, Lee JY, Huang JY, et al. Curcumin inhibits lung cancer cell invasion andmetastasis through the tumor suppressor HLJI. Caneer Res,2008,68:7428-7438.
    [70] Aggarwal S, Ichikawa H, Takada Y, et al. Curcumin (Diferuloylmethane) downregulates expression of cell proliferation and antiapoptotic and metastatic gene productsthrough suppression of IκBα kinase and Akt activation. Mol Pharmacol,2006,69:195-206.
    [71] Atal CK, Dubey RK, Singh J. Biochemical basis of enhanced drug bioavailability bypiperine: evidence that piperine is a potent inhibitor of drug metabolism. Pharmacol Exp Ther,1985,232:258-262.
    [72] Shoba G, Joy D, Joseph T, et al. Influence of piperine on the pharmacokinetics ofcurcumin in animals and human volunteers. Planta Med,1998,64:353-356.
    [73] Li L, Braiteh FS, Kurzrock R. Liposome-encapsulated curcumin: in vitroand in vivoefects on proliferation, apoptosis, signaling, and angiogenesis. Cancer,2005,104:1322-1331.
    [74] Kumar V, Lewis SA, Mutalik S, et al. Biodegradable microspheres of curcumin fortreatment of inflammation. Indian J Physiol Pharmacol,2002,46:209-217.
    [75] Han G, Xu J, Li W, et al. Study on preparation of the inclusion compound of curcuminwith beta-cyclodextrin. Zhong Yao Cai,2004,27:946-948.
    [76] Basu NK, Kole L, Kubota S, et al. Human UDP-glucuronosyltransferases show atypicalmetabolism of mycophenolic acid and inhibition by curcumin. Drug Metab Dispos,2004,32:768-773.
    [77] Sugiyama Y, Kawakishi S, Osawa T. Involvement of the beta-diketone moiety in theantioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol,1996,52:519-525.
    [78] Sharma RA, McLelland HR, Hill KA, et al. Pharmacodynamic and pharmacokineticstudy of oral curcuma extract in patients with colorectal cancer. Clin Cancer Res,2001,7:1894-1900.
    [79] Ireson CR, Jones DJ, Orr S, et al. Metabolism of the cancer chemopreventive agentcurcumin in human and rat intestine, Cancer Epidemiol. Biomarkers Prev,2002,11:105-111.
    [80] Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventiveagent, in patients with high-risk or pre-malignant lesions, Anticancer Res,2001,21:2895-2900.
    [81] Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin:biomarkers of systemic activity and compliance. Clin Cancer Res,2004,10:6847-6854.
    [82] Innocenti F, Liu W, Chen P, et al. Haplotypes of variants in the UDP-glucuronosyl-transferase1A9and1A1genes. Pharmacol Genet Genomics,2005,15:295-301.
    [83] Garcea G, Berry DP, Jones DJ, et al. Consumption of the putative chemopreventive agentcurcumin by cancer patients: assessment of curcumin levels in the colorectum and theirpharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev,2005,14:120-125.
    [84] Govindarajan VS. Turmeric-ehemistry, teehnology, andquality. Cril Rev Food Sci Nutr,1980,12:199-301.
    [85] Ammon HP, Wahl MA. Pharmacology of Cureuma longa. Planta Med,1991,57:l-7.
    [86] Araujo BB, Leon LL. Biological activities of Curcuma longa L. Mem Insz Oswaldo Cruz,2001,96:723-728.
    [87] Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer,2005,41:1955-1968.
    [88] Shishodia S, Chaturvedi MM, Aggarwal BB. Role of curcumin in cancer therapy. CurrProbl Cancer,2007,31:243-305.
    [89] Gao X, Kuo J, Jiang H, et al. Immunomodulatory activity of curcumin: suppression oflymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine productionin vitro. Biochem Pharmacol,2004,68:51-61.
    [90] Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth bysuppressing gene expression of epidermal growth factor receptor through reducing the activityof the transcription factor Egr-1. Oncogene,2006,25:278-287.
    [91] Aggarwal S, Ichikawa H, Takada Y, et al. Curcumin (diferuloylmethane) down-regulatesexpression of cell proliferation and antiapoptotic and metastatic gene products throughsuppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol,2006,69:195-206.
    [92]中华人民共和国药典委员会编.中华人民共和国药典.一部.北京,化学工业出版社,2000,218.
    [93]赵俊霞,闫永鑫,赵娟等.刺五加多糖诱导人小细胞肺癌H446细胞凋亡.细胞生物学杂志,2008,30:239-242.
    [94] Zhao JX, Guo FL, Bai DC, Wang XX. Effects of Fuzheng Yiliu Granules on apoptoticrate and mitochondrial membrane potential of hepatocellular carcinoma cell line H22frommice. Zhong Xi Yi Jie He Xue Bao,2006,4:271-274.
    [95] Desagher S, Martinou JC. Mitochondria as the central control Point of apoptosis. TrendsCell Biol,2000,10:369-377.
    [96] Kuttan R, Bhanumathy P, Nirmala K, et al. Potential anticancer activity of turmeric(Curcuma longa). Caneer Letters.1985,29(2),197-202.
    [97] Li L, Aggarwal BB, Shishodia S, et al. Nuclear factor-kappaB and IkappaB kinase areconstitutively active in human pancreatic cells, and their down-regulation by curcumin(diferuloylmethane) is associated with the suppression of proliferation and the induction ofapoptosis. Cancer,2004,101:2351-2362.
    [98] Odot J, Albert P, Carlier A, et al. In vitro and in vivo anti-tumoral effect of curcuminagainst melanoma cells. Int J Cancer,2004,111:381-387.
    [99] Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen toclinic. Biochem Pharmacol,2008,75:787-809.
    [100] Cory S, Adams JM. The Bcl-2family: regulators of the cellular life-or-death switch. NatRev Cancer,2002,2:647-656.
    [101] Gautam SC, Xu YX, Pindolia KR, et al. Nonselective inhibition of proliferation oftransformed and nontransformed cells by the anticancer agent curcumin (diferuloylmethane).Biochem Pharmacol,1998,55:1333-1337.
    [102] Blasiak J, Trzeciak A, Kowalik J. Curcumin damages DNA in human gastric mucosacells and lymphocytes. J Environ Pathol Toxicol Oncol,1999,18:271-276.
    [103] Kelly MR, Xu J, Alexander KE, Loo G. Disparate effects of similar phenolicphytochemicals as inhibitors of oxidative damage to cellular DNA. Mutat Res,2001,485:310-318.
    [104] Blasiak J, Trzeciak A, Maleeka Panas E, et al. DNA damage and repair in humanlymphocytes and gastric mucosa cells exposed to chromium and curcumin. Teratog CareinogMutagen,1999,19:19-31.
    [105] Cao J, Jia L, Zhou HM, et al. Mitochondrial and nuclear DNA damage induced bycurcumin in human hepatoma G2cells. Toxicol Sci,2006,91:476-483.
    [106] Kuo ML, Huang TS, Lin JK. Curcumin, an antioxidant and antitumor promoter, inducesapoptosis in human leukemia cells. Bioehim Biophys Acta,1996,1317:95-100.
    [107] Green DR, Reed JC. Mitochondria and apoptosis. Science,1998,281:1309-1312.
    [108] Sheikh MS, Huang Y. Death receptors as targets of cancer therapeutics. Current CancerDrug Targets,2004,4:97-104.
    [109] Wang X. The expanding role of mitochondria in apoptosis. Genes Dev,2001,15:2922-2933.
    [110] Kluck RM, Bossy-wetzel E, Green DR, et al. The release of cytochrome c frommitochondria: a primary site for Bcl-2regulation of apoptosis. Science,1997,275:1132-1136.
    [111] Reed JC. Bcl-2family proteins. Oneogene,1998,17:3225-3236.
    [112] Sun L, Xie P, Wada J, et al. Rap1b GTPase ameliorates glucose-induced mitochondrialdysfunction. J Am Soc Nephrol,2008,10:1681-1688.
    [113] Li J, Sun GZ, Lin HS, et al. The herb medicine formula “Yang Wei Kang Liu” improvesthe survival of late stage gastric cancer patients and induces the apoptosis of human gastriccancer line through Fas/Fas ligand and Bax/Bcl-2pathways. Int Immuno pharmacol,2008,8:1196-1206.
    [114] Nieholson DW, Thornberry NA. Caspases: killer proteases. Trends Bioehem Sci,1997,22:299-306.
    [115] Rotonda J, Nicholson DW, Fazil KM, et al. The three-dimensional structure ofapopain/CPP32, a key mediator of apoptosis. Nat Struct Biol,1996,3:619-625.
    [116] Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptoticcell death. Cell Death Differ,1999,6:1028-1042.
    [117] Muzio M, Stockwell BR, Stennicke HR, et al. An induced proximity model forcaspase-8activation. J Biol. Chem.1998,273:2926-2930.
    [118] Yang J, Chang HY, Baltimore D. Essential role of CED-4oligomerization in CED-3activation and apoptosis. Science,1998,281:1355-1357.
    [119] Li F, Brattainm G. Role of the survivin gene in Pathophysiology. Am J Pathol,2006,169:l-10.
    [120] Khor TO, Gul YA, Ithnin H, et al. A comparative study of the expression of Wnt-1,WISP-1, survivin and cyclin-D1in colorectal carcinoma. Int J Coloreclal Dis,2006,4:291-300.
    [121] Watson AJM. An over view of apoptosis and the prevention of colorectal caneer. CritRev Oncol Hematol,2006,57:107-121.
    [122] Amaral JD, Castro RE, Solá S, et al. p53, is a key molecular target of ursodeoxycholicacid in regulating apoptosis. J Bio Chem,2007,282:34250-34259.
    [123] Levine AJ. p53, the cellular gatekeeper for growth and division. Cell,1997,88:323-331.
    [124] Haupt S, Haupt Y. Manipulation of the tumor suppressor p53for potentiating cancertherapy. Semin Cancer Biol,2004,14:244-252.
    [125] Lev-Ari S, Strier L, Kazanov D, et al. Celecoxib and curcumin synergistically inhibitthe growth of colorectal cancer cells. Clin Cancer Res,2005,11:6738-6744.
    [126] Patel BB, Sengupta R, Qazi S, et al. Curcumin enhances the effects of5-fluorouraciland oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR andIGF-1R. Int J Cancer,2008,122:267-273.
    [127] Nautiyal J, Banerjee S, Kanwar SS, et al. Curcumin enhances dasatinib-inducedinhibition of growth and transformation of colon cancer cells. Int J Cancer,2011,128:951-961.
    [128] Chou TC, Talalay P. Quantitative analysis of dose effect relationships: the combinedeffects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul,1984,22:27-55.
    [129] Chou TC, Motzer RJ, Tong Y, et al. Computerized quantitation of synergism andantagonism of taxol, topotecan and cisplatin against human teratocarcinoma cell growth; arational approach to clinical protocol design. J Natl Cancer Inst,1994,86:1517-1524.
    [130]杨甫文,黄金中.姜黄素抗肿瘤机制研究进展.福州总医院学报,2006,13(4):248.
    [131] Devasena T, Rajasekaran KN, Gunasekaran G, et a1. Anticartcinogenic effect of bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione a curcumin analog on DMH-indueed coloncancer model. Pharnmeol Res,2003,47:133.
    [132]杜伯雨,姜丽平,仲来福.姜黄素与5-氟尿嘧啶联用对人结肠癌HT-29细胞增殖的影响.中国药理学与毒理学杂志,2005,19:49.
    [133] Long L, Li QW. The effect of Alkaloid from oxytropis ochrocephala on growthinhibition and expression of PCNA and p53in mice bearing H22hepatocellular carcinoma.Yakugaku Zasshi,2005,125:665-670.
    [134] Kuebler JP, Wieand HS, O'Connell MJ, et al. Oxaliplatin combined with weekly bolusfluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III coloncancer: Results From NSABP C-07. J Clin Oncol,2007,25:2198-2204.
    [135] Fischel JL, Rostagno P, Formento P, et al. Ternary combination of irinotecan,fluorouracil-folinic acid and oxaliplatin: results on human colon cancer cell lines. Br J Cancer,2001,84:579-585.
    [136] Xu JM, Azzariti A, Colucci G, et al. The effect of gefitinib (Iressa, ZD1839) incombination with oxaliplatin is schedule-dependent in colon cancer cell lines. CancerChemother Pharmacol,2003,52:442-448.
    [137] Nautiyal J, Banerjee S, Kanwar SS, et al. Curcumin enhances dasatinib-inducedinhibition of growth and transformation of colon cancer cells. Int J Cancer,2011,128:951-961.
    [138] Li L, Aggarwal BB, Shishodia S, et al. Nuclear factor-kappaB and IkappaB kinase areconstitutively active in human pancreatic cells, and their down-regulation by curcumin(diferuloylmethane) is associated with the suppression of proliferation and the induction ofapoptosis. Cancer,2004,101:2351-2362.
    [139] Odot J, Albert P, Carlier A, et al. In vitro and in vivo anti-tumoral effect of curcuminagainst melanoma cells. Int J Cancer,2004,111:381-387.
    [140] Lev-Ari S, Strier L, Kazanov D, et al. Celecoxib and curcumin synergistically inhibitthe growth of colorectal cancer cells. Clin Cancer Res,2005,11:6738-6744.
    [141] Patel BB, Sengupta R, Qazi S, et al. Curcumin enhances the effects of5-fluorouraciland oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR andIGF-1R. Int J Cancer,2008,122:267-273.
    [142] Khor TO, Keum YS, Lin W, et al. Combined inhibitory effects of curcumin andphenethyl isothiocyanate on the growth of human PC-3prostate xenografts inimmunodeficient mice. Cancer Res,2006,66:613-621.
    [143] Kunnumakkara AB, Guha S, Krishnan S, et al. Curcumin potentiates antitumor activityof gemcitabine in an orthotopic model of pancreatic cancer through suppression ofproliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products.Cancer Res,2007,67:3853-3861.
    [144]方敏,薛绍白.程序化细胞死亡与肿瘤.基础与研究,1994,3:5-6.
    [145] Erba E, Bassano L, Liberti GD, et al. Cell cycle phase perturbations and apoptosis intumor cells induced by aplidine. Br J Cancer,2002,86:1510-1517.
    [146] Decker RH, Dai Y, Grant S. The cyclin-dependent kinase inhibitor flavopiridol inducesapoptosis in human leukemia cells (U937) through the mitochondrial rather than thereceptor-mediated pathway. Cell Death Differ,2001,8:715-724.
    [147] Bacco AD, Keeshan K, Mckenna SL, et al. Molecular abnormalities in chronic myeloidleukemia: deregulation of cell growth and apoptosis. Oncologist,2000,5:405-415.
    [148] Giri B, Gomes A, Sengupta R, et al. Curcumin synergizes the growth inhibitoryproperties of Indian toad (Bufo melanostictus Schneider) skin-derived factor (BM-ANF1) inHCT-116colon cancer cells. Anticancer Res,2009,29:395-401.
    [149] Kuo ML, Huang TS, Lin JK. Curcumin, an antioxidant and antitumor Promoter, inducesapoptosis in human leukemia cells. Biochimica et Biophysica Acta,1996,1317(2):95-100.
    [150] Kim MS, Kang HJ, Moon A. Inhibition of invasion and induction of apoptosis bycurcumin in H-ras-transformed MCF10A human breast epithelial cells. Arch Pharm Res,2001,24:349-354.
    [151] Bhaumik S, Anjum R, Rangaraj N, et al. Curcumin mediated apoptosis in AK-5tumorcells involves the production of reactive oxygen intermediates. FEBS Lerrers,1999,456:311-314.
    [152]秦涛余,陈志伟.机体内活性氧生理功能研究进展.生命科学仪器,2008,6:12-16.
    [153] Halliwe LL, Gutteride JMC, Arumoa OI. The deoxyribose method: a simple “TestTube” assay for determination of rate constants for reactions of hydroxyl radicals. AnalBiochem,1987,165:215-219.
    [154]许伸鸿,杭瑚,李运平.超氧化物歧化酶邻苯三酚测活法的研究与改进.化学通报,2001,64:516-519.
    [155]刘晓丽,赵谋明.余甘子果汁活性成分与抗氧化活性研究.食品与发酵工业,2006,32:151-154.
    [156] Feron VJ, Til HP, Vrjer F De, et al. Aldehydes: occurrence, carcinogenic potentialmechanism of action and risk assessment. Mutat Res,1991,259:363-385.
    [157] Gupta D, Lammersfeld CA, Vashi PG, et al. Prognostic significance of subjective globalassessment (SGA) in advanced colorectal cancer. Eur J Clin Nutr,2005,59:35-40.
    [158] Keshaviah A, Dellapasqua S, Rotmensz N, et al. CA15-3and alkaline phosphatase aspredictors for breast cancer recurrence: a combined analysis of seven international breastcancer study group trials. Ann Oncol,2007,18:701-708.
    [159] Zhang QH, Wu CF, Duan L, Yang JY. Protective effects of total saponins from stem andleaf of panax ginseng against cyclophosphamide—induced genotoxicity and apoptosis inmouse bone marrow cells and pheripheral lymphocyte cells. Food Chem Toxicol,2008,46:293-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700