用户名: 密码: 验证码:
MB-OFDM超宽带系统的数据辅助同步估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步技术是基于MB-OFDM的超宽带系统关键技术之一,贯穿于系统基带工作的整个过程中,其工作周期高于其他基带技术,因此同步问题被认为是高功率消耗的技术。此外,同步效率直接影响着整个系统的性能,同步过程中的任何错误与偏差,比如定时同步过程中的捕获与估计误差、载波估计误差等,都将严重影响系统性能。总体来说,在基于MB-OFDM的超宽带系统中,同步包括物理层同步与网络层同步两部分,物理层同步技术包括时域同步与频域同步两部分。在时域同步完成的基础上,系统可以完成FFT处理,实现频域的信道估计与量化,以及频偏的进一步校正与跟踪。只有实现有效同步,才可以保证无误进行时频转换,准确接收信息并进行相应的处理。因此可以说基于MB-OFDM的超宽带物理层同步技术是接收机准确接收信息的基础。
     目前关于MB-OFDM超宽带同步系统的研究,虽然从不同方面解决了同步中的部分关键问题,然而仍然存在着诸多不完善之处,如在导频识别方面没有有效的解决方案,符号定时同步方面存在着门限受限性、定时结果不确定不唯一、低信噪比下性能不佳,频偏估计方面算法计算复杂度高等问题。本文通过对基于MB-OFDM的超宽带系统同步技术进行深入研究,针对研究中存在的问题,提出了基于能量峰值检测的导频识别方法、基于极性比对的符号定时同步方法、简化的极性比对唯一性定时同步法、非全周期相位旋转频偏估计法等同步方案,一方面为目前研究中存在的问题提供了解决方案,另一方面,也实现了能耗与同步性能的折中。本文主要创新点包括以下四个方面:
     1.首次提出基于能量峰值检测的导频模式识别方法。接收机在接收到第一个导频符号后,计算该符号能量,并以该能量的70%作为门限,继而计算与第一个接收导频符号相隔多个符号间隔的一个符号周期内的符号能量,并与门限阈值相比对,判断所采取的发送导频模式。该方法的提出避免了相关峰值检测法的弱抗噪声性,为导频识别提供了可行的研究方案,在TFC1、TFC3、TFC5的导频模式结构下,都可以有效识别当前采取的导频模式。
     2.提出了基于导频极性比对的唯一性定时同步方法,利用导频符号极性的不变特性,在门限类同步方法的基础上,通过计算接收符号与预定义导频符号的极性异或运算,判断接收符号的相对极性,当所有通过门限的采样所在符号极性都与导频序列相同时,最后一个通过门限的采样的下一个采样即为同步估计点;当所有通过门限的采样所在符号极性都与导频序列不同时,第一个通过门限的采样即为同步估计点;如果通过门限的采样所在符号极性并不都相同,则需要进行互相关峰值检测,以保证定时同步结果的唯一性,实现符号定时同步。仿真表明,本文所提的基于极性判断的符号定时同步方案与CBTS相比,不仅可以保证定时同步结果的唯一性,而且估计结果的MSE与同步概率都有明显改善,尤其是在低信噪比环境下,本文所提方法表现出了更高的稳定性。此外,本方案的提出可以适用于一般性门限类同步算法,提升其性能,保证结果唯一性,同时降低算法的门限依赖性。
     3.提出了简化的导频极性比对定时同步法,在极性比对时,不再比对通过门限的所有采样所在符号的极性,而只比较第一个通过门限的采样所在符号的极性,如果该符号极性与PS序列相同,则还需要进行互相关峰值检测;如果该符号极性与FS序列一致,则第一个通过门限的采样即为定时同步估计值。仿真与分析表明该方法在保证定时同步唯一性的同时,定时同步的MSE与同步概率性能都接近于本文所提出的基于导频极性比对的唯一性定时同步方法,优于CBTS算法。在算法复杂度方面,相对于导频极性比对法,减少了M-1次异或运算与加和运算。
     4.首次提出基于相位旋转的频偏估计算法,以非全周期估计代替全符号周期进行基于MB-OFDM的超宽带系统频偏估计,通过非全周期频偏估计结合相位旋转,充分考虑了多径信道的衰落特性,降低算法复杂度近50%,同时保持了算法的频偏估计性能;提出并验证了频偏估计的CRLB不仅与估计运算的符号长度有关,还受相位旋转角度的影响,当符号长度固定时,相位旋转角度越大,CRLB越小,算法性能越优越。将CAZAC序列应用于基于MB-OFDM的超宽带系统,以之代替系统原有的导频序列,不改变导频结构,不影响系统性能,可灵活定义单符号周期内的符号组成。
     本文通过对基于MB-OFDM的超宽带系统同步技术的研究,在导频模式判断、符号定时同步、载波频偏估计方面提出了有效的同步方案,突破了门限依赖性、定时同步不确定等局限性。研究成果将推动同步技术的发展。
Synchronization is one of key technologies, particully with base-band singals, forMB-OFDM based UWB systems. Varieties of applications based on MB-OFDM UWBtechnology, such as wireless home environment systems, are power sensitive systems,which have demanding requirement, like low power and low complexity. Synchronizationissue goes through receiving process, which has much more duration than other basebandtechniques. As a result, synchronization is of high power consumption, generally. Inaddition, synchronization effectiveness directly affects performance of the system. Anyerrors in synchronization processes, such as timing shift in the capture and carrier estimationerror would rapidly degrade system performance. Overall, the system synchronizationcovers physical layer and network layer synchronization. The physical layer basedsynchronization technologies are with time domain and frequency domain synchronization.Only if time domain synchronization is completed, does the system could implement FFTprocessing, further correction of frequency domain channel estimation and quantification, aswell as frequency offset and tracking. With effective synchronization, time frequencyconversion could be worked out, as long as receiving information and appropriate treatment.Therefore physical layer synchronization is the foundation of receiver performance forMB-OFDM based UWB systems.
     Current researches have solved synchronization key issues for MB-OFDM based UWBsystems from different aspects. However, there are still many imperfections, such asineffective pilot identification schemes, threshold restriction and timing uncertain outcomein symbol timing synchronization, high computational complexity in frequency offsetestimation, and so on. In this paper, a preamble identification method based on derivative ofenergy peak detection, a symbol timing synchronization method based on preamblepolarities comparison, a simplifying timing synchronization approach guaranteeing theuniqueness of synchronization sample, and a synchronization solution of non-full-cycle phase rotation frequency offset estimation method are proposed based on deep study ofsystem requirements. The research provides a solution to get a compromise between energyconsumption and synchronization performance. The main innovations of this article are asfollows.
     1. A pattern recognition method was first proposed based on derivative of energy peakdetection. Receiver calculates energy of the first received pilot symbol.70%of the energy istaken as the threshold. Then energy of a symbol period of several symbol periods distanceaway from the first pilot symbols is computed and compared with the threshold. Matchingthe output of pilot symbols energy with different patterns, preamble modes could beestimated. The proposed method avoids weak noise resistance of peak detection, whichcould effectively distinguish preamble modes of pilots, no matter with TFC1, TFC3, orTFC5.
     2. A new approach for timing synchronization estimation with polarity comparison forMB-OFDM based UWB systems is proposed. We attempt to locate the start sample of framesequences (FS) by calculating difference of the two cross correlation functions amongreceived symbols, the successive received symbols and predefined preamble sequence. Itmakes sense to propose polarity comparison and identification ideas to the scenario, thecross correlation difference exceeding predefined threshold is not unique. If polarities ofselected symbols are not all the same, the estimator is put forward to find out a peak ofcorrelation summation to figure out the unique timing point and promote synchronizationaccuracy. Uniqueness and accuracy of timing synchronization, therefore, could beguaranteed. The performance of the proposed estimator is evaluated by MSE andsynchronization probability. The proposed estimator could carry out timing synchronizationfor MB-OFDM based UWB systems and make the uniqueness of timing index for sure. TheMSEs of the proposed estimator are evidently lower than the reference method for a greatdeal. Total synchronization probability could reach as much as99%.
     3. A simplified polarity comparing and uniqueness guarantee (PCUG) timingsynchronization estimation approach for MB-OFDM based UWB systems is proposed. Pilotpolarities comparison is carried out for the first exceeding threshold sample instead of allsamples exceeding threshold. If the polarity of the first exceeding threshold sample is thesame with PS polarity, a further step is needed; otherwise, it is a FS sequence, the currentsample is the estimated timing point. The proposed algorithm could make the uniqueness oftiming index for sure. Simulations indicate that this proposal could get a performanceapproximating with polarity comparing method. Meanwhile, a computation complexity ofM-1XOR and adding operation are reduced.
     4. In view of the complexity and high accuracy requirement of frequency offset estimatealgorithm for MB-OFDM based UWB system,1/2and1/4times of pilot symbol cycleCAZAC sequences are defined as pilot frequency sequence. Estimation within one symbol cycle is carried out through averaging samples of two neighboring symbol cycles, afterwhich the operation expands to all the symbol cycles in one band group. Taking multipatheffect into account, the concept of phase rotation is proposed for a further step. Adjustingthe phase difference of estimated symbols by phase rotation, cross estimation could be done.Theoretical and simulation analysis indicate that CRLB does not only relate to estimationsymbol length, but also be influenced by phase difference of estimation symbols seriously.In the condition that the length of estimation is fixed, the bigger the phase rotation angle is,the smaller the CRLB is. The algorithm performs well. The complexity of proposedalgorithm is less than full cycle average estimation method for almost50%.
引文
[1] WIN M Z, SCHOLTZ R A. Impulse radio: How it works[J]. IEEE Communication Letters,1998,2(1):l0-12.
    [2] FEDERAL COMMUNICATIONS COMMISSION. Revision of Part15of the Commission’s rulesRegarding Ultra-Wideband Transmission Systems: First report and order[R]. Technical Report,FCC:02-48.
    [3] ITU INTERNET REPORTS2005: The Internet of Things[R].2005.
    [4]王雪,钱志鸿,李冰,李悦.蓝牙自适应选择分组策略与选择重传算法研究[J],通信学报,2011,32(1):151-158.
    [5]王雪,钱志鸿,胡正超,李奕男.基于二叉树的RFID防碰撞算法的研究[J].通信学报,2010,31(6):49-57.
    [6]会议新闻.超宽带(UWB)无线通信技术的标准化[C].全国超宽带无线通信技术学术会议.南京邮电大学,2005.
    [7]王金龙等.无线超宽带(UWB)通信原理与应用[M].北京:人民邮电出版社,2005.
    [8] MARIA-GABRIELLA DI RENEDETTO, et al.著,葛利嘉等译.超宽带无线电基础[M].北京:电子工业出版社,2005.
    [9] WELBORN M L. System considerations for ultrawideband wireless networks, Boston,Massachusetts, USA, August19-22,2001[C]. New York: IEEE Press,2001.
    [10] GUVENC I, ARSLAN H. On the modulation options for UWB systems, Boston, MA, October13-16,2003[C]. New York: IEEE Press,2003.
    [11] SCHOLTZ R A. Multiple access with time-hopping impulse modulation, Boston, Mass, USA,October11-14,1993[C]. New York: IEEE Press,1993.
    [12] WIN M Z, SCHOLTZ R A. Ultra-wide bandwitdth timing-hopping spread spectrum impulse radiofor wireless multiple-access communications[J]. IEEE Transactions on Communicaitons,2000,32(4):679-691.
    [13] NASSAR C R, ZHU F, WU Z. Direct sequence spreading UWB systems: frequency domainprocessing for enhanced performance and throughtput, Anchorage, Alaska, May11-15,2003[C],New York: IEEE Press,2003.
    [14] RUNKLE P, MCCORKLE J, MILLER T, WELVORN M. DS-CDMA: the modulation technologyof choice for UWB communications, Reston, Virginia, USA, November16-19,2003[C], New York:IEEE Press,2003.
    [15] BALAKRISHNAN J et al. A multi-band OFDM System for UWB communication, Reston, Virginia,November16-19,2003[C]. New York: IEEE Press,2003.
    [16] STANDARD ECMA-368. High rate Ultra wideband PHY and MAC standard[S].1st Edition2005,Dec.
    [17] IEEE P802.15Working GrouP for Wireless Personal Area Networks (WPANs). Multi-band OFDMPhysical Layer Proposal for IEEE802.15Task GrouP3a[S].14Sep,2004.
    [18] CHRIS SNOW, LUTZ LAMPE, ROBERT SCHOBER. Performance analysis of multiband OFDMfor UWB communication[J]. IEEE Proc,2005,4(5):2573-2578.
    [19]李长青. UWB-OFDM系统中若干关键技术的研究[D].北京:北京邮电大学,2007.
    [20] ELSON J E, GIROD L, ESTRIN D. Fine-grained network time synchronization using referencebroadcasts, Massachusetts, USA. December9–11,2002[C]. Berkeley: USENIX,2002.
    [21] GANERIWAL S, KUMAR R, SRIVASTAVA M B. Timing-sync protocol for sensor netwoks, LosAngeles, CA, USA, November5-7,2003[C]. New York: ACM,2003.
    [22] SICHITIU M L, VEERARITTIPHAN C. Simple accurate time synchronization for wireless sensornetworks, New Orleans, Louisiana, March16-20,2003[C]. New York: IEEE,2003.
    [23] MAROTI M, KUSY G, SIMON G. The flooding time synchronization protocol, Baltimore, MD,USA, November3-5,2004[C]. New York: ACM,2004.
    [24] PING S. Delay measurement time sychronization for wireless sensor networks[R]. Intel ResearchBerkeley Lab, IRB-TR-03-013,2003.
    [25] VAN GREUMEN J, RABAEY J. Light weight time synchronization for sensor networks, LosAngeles, California, USA, November5-7,2003[C]. New York: ACM,2003.
    [26] HIONG Y W, SCAGLIONE A. time synchronization and reach-back communications withpulse-coupled cscillators for UWB wireless Ad Hoc networks, Reston, Virginia, USA, November16-19,2003[C]. New York: IEEE,2003.
    [27] KARIM A M, OTHMAN M, ZAHEDI E. Packet synchronization structure with peak detectionalgorithm for MB-OFDM UWB, Kuala Lumpur, Malaysia, October29-December1,2006[C].NewYork: IEEE,2007.
    [28] MINN H, ZENG M, BHARGAVA V K.. On timing offset estimation for OFDM systems[J]. IEEECommunications Letter,2000,4(6):242-244.
    [29] PARK B, CHEON H, KANG C, HONG D. A novel timing estimation method for OFDMsystems[J]. IEEE Communications Letter,2003,7(5):239-241.
    [30] SEUNG DUK CHOI, JUNG MIN CHOI, JAE HONG LEE. An initial timing offset estimationmethod for OFDM systems in Rayleigh fading channel, Quebec, Canada, September25-28,2006[C]. New York: IEEE,2006.
    [31] FAN W, CHOY C S, LEUNG K N. Robust and low complexity packet detector design forMB-OFDM UWB, Taipei, Taiwan, May24-29,2009[C]. New York: IEEE,2006.
    [32] CHIN WEE YAK, ZHONGDING LEI, CHATTONG S, THIANG T T. Timing synchronization forultra-wideband (UWB) multi-band OFDM systems, Texas, USA, September25-28,2005[C].NewYork: IEEE,2006.
    [33] DEBARATI SEN, CHAKRABARTI S, RAJA KUMAR R V. Symbol timing synchronization forultra-wideband (UWB) multi-band OFDM (MB-OFDM) systems, Bangalore, January6-10,2008[C]. New York: IEEE,2008.
    [34] DEBARATI SEN, CHAKRABARTI S, RAJA KUMAR R V. A multi-band timing synchronizationscheme for ultra-wideband communication, New Orleans, November30-December4,2008[C].New York: IEEE,2008.
    [35] LU ZHANG, AU E K S, LAU V K N. A three-stage cross correlation-based timing synchronizationalgorithm for MB-OFDM UWB systems, Singapore, November19-21,2008[C]. New York: IEEE,2008.
    [36] BERGER C R, ZHOU S, TIAN Z, WILLET P. Precise timing for multiband OFDM in a UWBsystem, Waltham MA, September24-27,2006[C]. New York: IEEE,2007.
    [37]李长青,刘丹谱,乐光新. UWB-OFDM系统的符号盲同步方法[J].电子与信息学报,2007,29(08):1895-1899.
    [38] CHANGQING LI, DANPU LIU, GUANGXIN YUE. A robust blind symbol-timingsynchronization for UWB-OFDM systems, Wuhan, China, September22-24,2006[C]. New York:IEEE,2006.
    [39] CHIN WEE YAK, ZHONGDING LEI, CHATTONG S, THIANG T T. Timing synchronization andfrequency offset estimation for Ultra-Wideband (UWB) Multi-Band OFDM systems, Berlin,Germanyi, September11-14,2005[C].New York: IEEE,2006.
    [40] J J VAN DE BEEK, SANDELL M. ML estimation of timing and frequency offset in multicarriersystems[R]. Div. of Signal Processing: Lulea University of Technology, Sweden,1996.I
    [41] DEBARATI SEN, CHAKRABARTI S, RAJA KUMAR R V. Some interesting results oncompatible BER analysis issues related to multi-band timing and frequency synchronizersapplicable for MB-OFDM based UWB communications [J]. Digital Signal Rrocessing,2011,21(2),332-340.
    [42] DEBARATI SEN, CHAKRABARTI S, RAJA KUMAR R V. An adaptive timing synchronizationscheme for multi-band orthogonal frequency division multiplexing based Ultra-Widebandcommunication systems[J], Wireless Personal Communication,2010,53(2),281-298.
    [43] PAUL H MOOSE. A Technique for orthogonal frequency division multiplexing frequency offsetcorrection[J]. IEEE Transaction on Communications,1994,42(10):2908-2914.
    [44] TURELI U, LIU H, ZOLTOWSKI M D. OFDM blind carrier offset estimation:ESPRIT[J]. IEEETransaction on Communicaitons,1998,48(9):1459-1461.
    [45] FERDINAND CLASSEN, HEINRICH MEYR. Frequency synchronization algorithms for OFDMsystems suitable for communication over frequency selective fading channels, Stockholm, Sweden,June1994[C]. New York: IEEE1994.
    [46] TIMOTHY M SCHMIDL, DONALD C COX. Robust frequency and timing synchronization forOFDM[J]. IEEE Transactions on Communications,1997,45(12):1613-1621.
    [47] YUU HEE KIM, IICKHO SONG, SEOKHO YOON, SO RYOUNG PARK. An efficient frequencyoffset estimator for OFDM systems and its performance characteristics[J]. IEEE Transactions onVehicular Technology,2001,50(5):1307-1312.
    [48] CHIN WEE YAK, ZHONGDING LEI, CHATTONG S, THIANG T T. Maximum likelihoodfrequency offset estimation&Cramer Rao Bound for Ultra-Wideband (UWB) multi-band OFDMsystems, Melbourne, Vic, May7-10,2006[C]. NEW YORK:IEEE,2006.
    [49] COULSON A J. Maximum likelihood synchronization for OFDM using a pilot symbolalgorithms[J]. IEEE Journal on Selected Areas in Communications,2001,19(12):2486-2494.
    [50] YOU YOUNG HWAN, JEONG KWANG SOO, YI JAE HOON. Pilot-less sampling Frequencysynchronization scheme for UWB-OFDM[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2009, E92A(6):1520-1522.
    [51] GUVENE I, SAHINOGLU Z. Threshold-based TOA estimation for impulse radio UWB systems,Zurich, Switzerland, September5-7,2005[C]. New York: IEEE2005.
    [52] GUVENE I, SAHINOGLU Z. Threshold selection for UWB TOA estimation based on kurtosisanalysis[J]. IEEE Communications Letters,2005,9(12):1025-1027.
    [53]吴绍华,张乃通.基于UWB的无线传感器网络中的两步TOA估计法[J].软件学报,2007,18(5):1164-1172.
    [54]吴绍华,张钦宇,张乃通. UWB无线传感器网络中基于匹配滤波检测的TOA估计研究[J].软件学报,2009,20(11):3010-3022.
    [55]吴绍华,张钦宇,张乃通.新颖的基于门限比较的脉冲超宽带TOA估计算法[J].通信学报,2008,29(7):7-13.
    [56] LIU YING, QIAN ZHIHONG, LIU DAN, ZHONG HUI. A DV-Hop positioning algorithm forwireless sensor network based on detection probability, Seoul, August25-27,2009[C]. New York:IEEE2009.
    [57] DING RUI, QIAN ZHIHONG, WANG XUE. Joint TOA and DOA estimation of IR-UWB systembased on matrix pencil, Chengdu, China, May15-17,2009[C]. New York: IEEE2009.
    [58] DING RUI, QIAN ZHIHONG, JIANG HONG. TOA dstimation for IR-UWB system using matrixpencil, Wilshire Grand Los Angeles, USA, March31-April2,2009[C]. New York: IEEE2009.
    [59]丁锐,钱志鸿,王雪.基于TOA和DOA联合估计的UWB定位方法.电子与信息学报,2010,32(2):318-322.
    [60]刘影,钱志鸿,王雪,李奕男.基于到达时间差的无线传感器网络质心定位算法[J].吉林大学学报(工学版),2010,40(1):245-249.
    [61]佟学俭,罗涛. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003
    [62] YE Z Z, DUAN C J et al. A synchronization design for UWB-based Wireless Multimediasystems[J]. IEEE Transactions on Broadcasting,2010,56(2):211-225.
    [63] SPETH M, FECHTEL S A, FOCK G, MEYR, H. Optimum receiver design for OFDM-basedbroadband transmission–Part II: A case study[J]. IEEE Transaction on Communications,2001,49(4):571-578.
    [64] KRSTIC M, TROYA,A, MAHARATNA K, GRASS E. Optimized low-power synchronizer designfor the IEEE802.11a standard, Hong Kong, China, April6-10,2003[C]. New York: IEEE,2003.
    [65] SHI K, ZHOU Y, KELLECI B, FISCHER T W, SERPEDIN E. Serpedin, A. Lker Karsilayan.Impacts of narrowband interference on OFDM-UWB receivers: Analysis and mitigation[J]. IEEETransaction on Signal Processing,2007,55(3):1118-1128.
    [66] LIU H, LEE C. Lee. A low complexity synchronizaer for OFDM-based UWB system[J]. IEEETransaction on Circuits and System–Part II.2006,53(11):1269-1273.
    [67] LEE H, et al. Efficient structures of packet/frame synchronization in MB-OFDM UWB, Seoul,Korea, November18-19,2004[C]. New York: IEEE2004.
    [68] LI Y, JACOBS T, MINN H. Minn. Frequency offset estimation for MB-OFDM-based UWBsystems, Istanbul, Turkey, June11-15,2006[C]. New York: IEEE2006.
    [69] YOON S, CHONG J. Packet detection and symbol timing synchronization algorithm for multi-bandOFDM UWB[J]. IEICE Transaction on Communications.2006, E89-B (4):1433-1435.
    [70] JACOBS T, LI Y, MINN H. Synchronization in MB-OFDM based UWB systems, Glasgow,Scotland, June24-28,2007[C]. New York: IEEE2007.
    [71] DEBARATI SEN, CHAKRABARTI S, RAJA KUMAR R V. An efficient frequency offsetestimation scheme for Multi-band OFDM ultra-wideband systems, Marina Bay, Singapore, May11-14,2008[C]. New York: IEEE,2008.
    [72] YAO Y, DONG X, TIN N. A new joint timing and channel estimation method for blocktransmission UWB systems, Dresden, Germany, June14-18,2009[C]. New York: IEEE,2009.
    [73] MORELLI M, MORELLI M, MENGALI U. An improved frequency offset estimator for OFDMapplications[J]. IEEE Communication Letter,1999,3(3):75-77.
    [74] LI YINGHUI, MINN HLAING, JACOBS T, WIN M. Frequency offset estimation forMB-OFDM-based UWB systems[J]. IEEE Transaction on Communication,2008,56(6):968-979.
    [75] MINN H, TARASAK P, BHARGAVA V K. OFDM frequency offset estimation based on BLUEprinciple, Vancouver, Canada, September24-28,2002[C]. New York: IEEE,2002.
    [76] MINN H, TARASAK P, BHARGAVA V K. Some issues of complexity and training symbol designfor OFDM frequency offset estimation methods based on BLUE principle, Jcju, Korea, April22-24,2003[C]. New York: IEEE,2003.
    [77] MINN H, TARASAK P. Improved maximum likelihood frequency offset estimation based onlikelihood metric design[J]. IEEE Transaction on Signal Processing,2006,54(6):2076-2086.
    [78] YANG H, JEONG K S, YI J H, et al. Integer frequency offset estimator by frequency domainspreading for UWB multiband-OFDM[J]. IEICE Transactions on Fundamentals of ElectronicsCommunications and Computer Sciences,2010, E93A(3):648-650.
    [79] YOUNG HWAN YOU, JEE HYUN KIM, HYOUNG KYU SONG. A blind fine CFOsynchronization for UWB-OFDM[J]. IEEE Signal Processing Letters,2008.15:529-532.
    [80] KARIM A M, OTHMAN M. Improved fine CFO synchronization for MB-OFDM UWB [J]. IEEECommunications Letters,2010,14(4):351-353.
    [81] SUNKYUNG SHIN, KYUNGSUP KWAK. Low complexity frequency offset estimation forMB-OFDM system, Santorini, May7-9,2008[C]. New York: IEEE,2008.
    [82] FOERSTER J. Channel Modeling Sub-committee Report Final[R]. IEEE P802.15-SG3a-02/490r1.IEEE P802.15Working Group for Wireless Personal Area Networks(WPANS),Feb,2003.
    [83] SALEH A, VALENZUELA R. A statistical model for indoor multipath propagation[J]. IEEEJournal on Selected Areas in Communications,1987,5(2):128-137.
    [84] IEEE P802.15-05-397r0. MB-OFDM Proposal Updata[R]. July,2005.
    [85] GHASSEMZADEH, JANA S S, RICE R, TURIN C W, TAROKH V. Measurement and modelingof an Ultra-Wide bandwidth indoor channel[J]. IEEE Transaction on Communications,2004,52(10):1786-1796.
    [86] FOERSTER J R, MOLISCH A F, PENDERGRASS M. Channel models for UltrawidebandPersonal Area Networks[J]. IEEE Wireless Communications.2003,10(12):14-21.
    [87] AL-DHAHIR N, CIOFFI J. Optimum finite-length equalization for multicarrier transceivers[J].IEEE Transactions on Communications,1996,44(1):56-64.
    [88] BERTRAND MUQUET. Cyclic prefixing or zero padding for wireless multicarrier transmission[J].IEEE Transactions on Communications,50(12):2136-2148.
    [89] IEEE P802.15Wireless Personal Area Networks(WPANs) Group3a. Multi-band OFDM PhysicalLayer Proposal for IEEE802.15Task Group3a[S]. Mar2004
    [90]李长青. UWB-OFDM系统中若干关键技术的研究[D].北京:北京邮电大学,2007.
    [91] A F Molisch. Ultrawideband propagation channels-theory, measurement and modeling[J]. IEEETransactions on Vehicular Technology,2005,54(9):1528-1545.
    [92]王静. OFDM系统定时频偏联合同步估计算法研究[D].吉林:吉林大学,2007.
    [93]王雪. OFDM-UWB系统定时同步与频偏估计算法的研究[D].吉林:吉林大学,2009.
    [94] ERDAL PANAYIRCI, COSTAS N G. Carrier Phase Synchronization of OFDM systems overfrequency-selective channels via the EM algorithm, Houston, May16-20,1999[C].New York: IEEE,1999.
    [95] HUIMIN GRACE GUO, QI CHENG, RANJITH LIYANA PATHIRANA. Blind symbolsynchronization in cyclic prefixed OFDM system, Perth WA, October5,2005[C].New York: IEEE,2005.
    [96] POLLET T, VAN BLADEL M VAN. BER sensitivity of OFDM systems to carrier frequency offsetand Wiener phase noise[J]. IEEE Transactions on Communications, February/March/April1995,43(2/3/4):191-193.
    [97] ARMSTRONG J, GRANT P M, POVEY G. Polynomial cancellation coding of OFDM to reduceintercarrier interference due to Doppler spread, Sydney NSW, November8-12,1998[C]. New York:IEEE,2002.
    [98] WANG XUE, QIAN ZHIHONG, ZHONGHUI, ZHANG XU, et al. A two step timingsynchronization scheme for MB-OFDM based UWB systems, Changchun, China, June17-19,2011[C]. Berlin: Springer,2012.
    [99] WANG XUE, LIU DAN, LIU YING, WANG MOLIN, QIAN ZHIHONG. A low complexityfrequency offset estimation for MB-OFDM based UWB systems, Venice, Italy, October28-30,2009[C]. Venice: Waset,2009.
    [100] BOMER L, ANTWEILER M. Perfect H-phase sequences and arrays[J]. IEEE Journal onSelected Areas in Communications,1992,10(4):782-789.
    [101] HARRY L, VAN TREES. Detection, Estimationand modulation theory[M]. New York, JohnWiley&Sons,1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700