用户名: 密码: 验证码:
柴达木北缘榴辉岩类的地球化学及其动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴北缘沙柳河、鱼卡河、锡铁山和胜利口的榴辉岩类样品的地球化学分析显示它们的原岩的主体是与洋壳有关的火山岩,其中包括岛弧拉斑玄武岩、洋岛火山岩和MORB型火山岩,样品经历了不同程度的地壳混染作用,也不排除可能少量存在产于大陆环境的火山岩。本文首次在榴辉岩中发现了稀土元素四重效应,显示在与柴北缘榴辉岩类相关的俯冲/变质环境中普遍存在开放体系下的含挥发份流体作用,四重效应的存在得到了样品高场强元素比值异常的支持,这些比值特征明显与洋壳稳定俯冲过程榴辉岩应当获得的高于球粒陨石的比值特征不同。锡铁山地区的部分样品中存在重稀土的异常富集,可能指示了原岩部分熔融过程的存在。
     已发表年代学数据的综合和对比显示,柴北缘地区的超高压变质事件系统晚于区域性的陆—陆碰撞过程,加之榴辉岩与其围岩之间不存在明显的成因联系,本研究提出了两种柴北缘超高压变质事件的模型:弧—陆碰撞模型与蛇绿岩俯冲模型。在弧—陆碰撞模型中,这些榴辉岩的原岩在陆壳进行洋内俯冲时被从洋内岛弧和/或洋岛刮削下来卷入了俯冲板片的陆壳基质中,与至少部分陆壳共同经历了峰期变质过程,由于弧—陆碰撞往往发生在陆陆碰撞之前,榴辉岩的峰期变质年龄会略小于陆—陆碰撞的时代。
     如果仰冲至陆壳上的蛇绿岩随典型陆壳岩石—同参加俯冲,那么部分原岩为洋壳的榴辉岩了指示了陆壳而不是洋壳的俯冲,当榴辉岩中存在显著大于峰期变质时代的原岩年龄时,这种情况才可以被明确地鉴别出来;否则的话,对于原岩为洋壳的榴辉岩,这种蛇绿岩的俯冲成为一种难以排除的可能性。上述两种模型均与陆壳俯冲和超高压变质作用有关。
     综合地质对比显示,古亚洲洋南部和相邻的秦祁昆洋区域在寒武—奥陶纪期间的演化以小洋盆,中小型陆块相间的复杂构造格局为特征,在可能与晚泛非运动有关的整体汇聚背景下普遍出现强烈的岛弧型岩浆作用和活跃的岛弧拼贴、陆壳增生过程。上述阶段和上述范围内集中形成了多条超高压变质带,这种这指示了古亚洲洋及邻区的独特构造背景与超高压变质事件之间的成因联系。
     在综合古地磁和地球物理资料的基础上,本文首次提出快速俯冲过程是一种驱动陆壳进行俯冲的因素,在超高压变质带的形成过程中,快速俯冲过程可能起到了某种程度的驱动作用。在苏鲁—大别、西喜马拉雅、可能还有Kokchtav,有证据显示在陆—陆碰撞之前存在异常快速的陆块运动过程。这说明,海洋板片的拖曳不是形成超高压变质岩石的唯一驱动力。
Geochemistry of eclogites from Shaliuhe, Yukahe, Shitieshan and Shenglikou area of North Qaidam, West China reveals that the majority of their protoliths are geochemically distinguished with mafic igneous rocks of oceanic affinity, including IAT, OIB and MORE. These rocks expirenced assimilation of continental crust to variant extents, and the occasional involvement of igneous rocks of continental affinity could not be excluded.
    This work firstly reprot tetrade effect of REE in eclogitic rocks, indicating the presence of active volatile- bearing fluid-rock interactions under open system in subductional process. Previously observed connection between tetrade effect and systemic low Nb/Ta, Zr/Hf, Y/Ho ratios also presents. However, the Nb/Ta ratios lower than chondrite value (~17) in eclogites are inconsistent with previously proposed Nb/Ta high in subducted oceanic crust to complement the mass balance of Nb and Ta in the evolution of continental crust.
    Anomalous enrichment of heavy REE are observed in some of samples from Xitieshan, which may resulted from partial melting with garnet as extraction residue during subduction.
    Comparation on published age-dating shows the ultra-high pressure maramorphism in North Qaidam occurred during 450~500Ma beyond errors and systemiclly antedated the regional continent- continent collision at 440Ma.
    Based on above-mentioned results and interpretations, this work hereby propose 2 different models on the early paleozoic evolution in North Qaidam, arc-continent collision and ophiolite-subduction. During arc-continent collision, protoliths of eclogites were scratched off from oceanic island-arc and oceanic islands and carried downwards by subducting continental slab. They expirence HPM or UHPM together in matle depth then exhumed buoyantly, and tectonicly extruded probably with the assistance of normal faults in crust level. The ophiolite-subduction is firstly proposed by this work, which supposes part of protoliths of present eclogites form North Qaidam was formerly ophiolite obduted onto continental edge and involved into the subduction together with continental slab. It is worth noting that only if the earlier formation ages of ophiolite are positively recognized, the ophiolite-subduction scenario could be confirmed, otherwise this may lead to ambiguity for oceanic eclogites cropped out with typical crus
    tal rocks like grantic gneiss and marbles.
    The arc-continent collision and ophiolite-subduction are both related to continental suduction and probably UHP metamorphism, and neither of them has a position in
    
    
    Maruyama's (1996) classification, as suggests that the UHPM are not uniquely assocated with continent-continent collision.
    A combination of regional geology and geochemistry indicates the Cambrian and Ordovician evolution in the south of central Asian zone is charactelized by complex collages between continental blocks with island arcs under the compressional background perhaps related to the final convergence within Gondwanaland, the so-called late Pan-african movement. This may provide an explanation for the relatively mass occurance of UHPM belts within central Asian zone and adjacent Qinling-Qilian-Kunlun zones.
    With the constraints from published paleopmagnetic data on motion rates of continental blocks prior to their collision, this work firstly proposed the ultra-fast subduction rate could assist the underthrust of low-density continental crust into mantle depth to some extents. The ultra-fast motion is cofirmed before collision between North China and Yantze, Eurasia and India, and may also be appliable to that related to Kokchtav UHPM event. The significance of ultra-fast motion in UHPM formation lies in that the slab pull could not be the unique mechanism to drive continental crust to subduct.
引文
1.从柏林等,中国超高压变质研究评述,科学通报,1994,39
    2.从柏林等,大别山—苏鲁超高压变质带研究的新进展,科学通报.1999,44(11)
    3.陈道公等,大别超高压碰撞造山带岩石锆石U/Pb同位素年代学,矿物岩石地球化学通报,2001,20(4)
    4.冯益民等.祁连造山带研究概况—历史、现状及展望,地球科学进展,1997,12(4)
    5.高俊等,西天山榴辉岩的发现及其大地构造意义,科学通报,1996,41
    6.高俊,古俯冲带流体作用综述,1997,16(1)
    7.黄德志等,俯冲带流体作用的地球化学示踪,地学前缘,2001,8(3)
    8.黄宝春等,华北等中国主要地块早古生代早期古地理位置探讨,科学通报,2000,45(4)
    9.洪大卫等,兴蒙造山带花岗岩的成因与大陆地壳生长,地学前缘,2000,7(2)
    10.赖绍聪等,柴达木北缘奥陶纪火山作用与构造机制,西安地质学院院报,1996,18(3)
    11.李曙光等,中国华北、扬子陆壳碰撞时代的Sm-Nd同位素年龄证据,中国科学(B),1989,(3)
    12.李曙光等,大别山—苏鲁地体超高压变质年代学Ⅰ.Sm-Nd同位素体系,中国科学(D),1996,26(3)
    13.李曙光等,大别山—苏鲁地体超高压变质年代学Ⅱ.锆石U-Pb同位素体系,中国科学(D),1997,27(3)
    14.李曙光等,大陆俯冲化学地球动力学,地学前缘,1998,5(4)
    15.李曙光等,大别—苏鲁造山带碰撞后的岩石圈拆离,科学通报,2001,46(17)
    16.李曙光等,大别山双河超高压变质岩及北部片麻岩的U-Pb同位素组成—对超高压岩石折返机制的约束,中国科学(D),2001,31(12)
    17.李怀坤等,柴达木盆地北缘鱼卡河含柯石英榴辉岩的确定及其意义,现代地质,1999,13(1)
    18.李怀坤等,青海柴北缘新元古代超大陆裂解的地质记录—全吉群,地质调查与研究,2003,26(1)
    19.李惠民等,阿尔金山东端花岗片麻岩中3.6Ga锆石的地质意义,矿物岩石地球化学通报.2001,20(4)
    20.刘丛强等,变质作用中稀土元素再分配及其对流体作用的指示意义—庐山星子群变质岩的微量元素组成研究,中国科学(D),1999,29(6)
    21.刘良等,阿尔金山西段榴辉岩的确定及其地质意义,科学通报,1996,41
    22.刘良等,阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据,科学通报,1998.43(8)
    23.刘良,中国科学院地质研究所博士学位论文:阿尔金高压变质岩与蛇绿岩及其大地构造意义,1999
    24.刘良等,阿尔金高压变质岩带的特征及其构造意义,1999,岩石学报,15(1)
    25.刘良等,阿尔金发现超高压(>3.8GPa)石榴二辉橄榄岩,科学通报,2002,47(9)
    26.陆松年等,塔里木古大陆东缘的微大陆块体群,岩石矿物学杂志,2002,21(4)
    27.凌文黎等,大别超高压变质过程中流体作用的微量元素效应及其地球化学意义,地球化学,2000,29(6)
    28.凌文黎等,大别超高压变质过程中部分熔融作用的地球化学约束,地球科学—中国地质大学学报,2000,25(6)
    29.倪志耀等,元古宙蛇绿岩研究中有关问题的讨论,地球科学进展,1999,14(5)
    30.任纪舜等,从全球看中国大地构造—中国及邻区大地构造图简要说明,1999,地质出版社
    31.孙延贵等,柴达木盆地北缘东段托莫尔日特似蛇绿岩岩石组合特征,中国区域地质,2000,19(3)
    32.王清晨等,大别山超高压变质岩的地球动力学意义,中国科学(D),1996,26(3)
    
    
    33.王清晨等,大别山超高压变质带的大地构造框架,岩石学报,1998,14(4)
    34.王清晨,中国超高压变质岩十五年研究进展,地球学报,2001,22(1)
    35.王清晨等,大别山碰撞造山带的地球动力学,地学前缘,2002,9(4)
    36.吴才来等,柴达木山花岗岩锆石SHRIMP定年,科学通报,2001,46(20)
    37.吴才来等,祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义,岩石学报,2001,17(2)
    38.吴汉宁等,用古地磁资料探讨柴达木地块构造演化,中国科学(D),1997,27(1)
    39.宋述光,中国地质科学院博士学位论文:柴达木盆地北缘都兰超高压地体的岩石学、矿物学、变质演化及构造意义,2001
    40.许靖华等,中国大地构造相图(1∶4000000),1998,科学出版社
    41.杨建军等,柴达木北缘石榴石橄榄岩的发现及其意义,岩石矿物学杂志,1994,13(2)
    42.杨经绥等,我国西部柴北缘地区发现榴辉岩,科学通报,1998,44
    43.杨经绥等.青海都兰榴辉岩的发现:试论我国中央造山带中高压—超高压变质带的分布及构造意义,地质学报,2000,74(2)
    44.杨文采等,根据地球物理资料分析大别—苏鲁超高压变质带演化的运动学与动力学,地球物理学报,2001,44(3)
    45.袁桂邦等,柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义,前寒武纪研究进展,2002,25(1)
    46.翟明国等,苏鲁—大别山变质带岩石大地构造学,中国科学(D),1996,26(3)
    47.翟明国等,关于在大别山超高压带内发现浅变质岩片的讨论,科学通报.1999,44(14)
    48.赵振华等,花岗岩稀土元素四分组效应形成机理探讨—以千里山和巴尔哲花岗岩为例,中国科学(D),1996,26(3)
    49.张安达等,北秦岭榴辉岩的地球化学特征及形成环境,西北大学学报,2003,33(2)
    50.张立飞等,超高压变质作用研究现状及问题,地学前缘,1994,1(1~2)
    51.张建新等,阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄,科学通报,1999,44
    52.张建新等,柴北缘榴辉岩的峰期和退变质年龄:来自U-Pb和Ar-Ar同位素测定的证据,地球化学,2000,29(3)
    53.张建新等.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据,地质通报,2003,22(6)
    54.宋茂双等,俯冲带的热结构研究进展,地质地球化学,1996,2
    55.赵风清等,青海锡铁山地区滩间山群的地质特征及同位素年代学,地质通报,2003,22(1)
    56.郭进京等,中祁连东段晋宁期碰撞型花岗岩及其地质意义,地球学报,1999,20(1)
    57.夏林圻等,北祁连山海相火山岩岩石成因,地质出版社,1996
    58.于在平,俯冲带的流体地质作用,地学前缘,1995,2(1~2)
    59.臧绍先等.俯冲带的负浮力及其影响因素,地球物理学报,1994,37(2)
    60.朱日祥等,中国主要块体显生宙以来古地磁视极移曲线与块体运动,中国科学(D),1998,28(增刊)
    61.郑永飞等,大别山超高压变质作用期前和期后水-岩相互作用的氢氧同位素证据,中国科学(D),1999,2
    62.青海省地质矿产局,青海省区域地质志,地质出版社,1991
    63. Abers et al., Hydrated subducted crust at 100-250km depth, Earth and Plantetary Science Letters, 2000, 176
    
    
    64. Artemieva et al., On the relations between cratonic lithosphere thickness, plate motions, and basal drag, Tectonophysics, 2002, 358
    65. Ayers et al., Constraints on timing of peak and retrograde metamorphism in the Dahie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite, Chemical Geology, 2002, 186
    66. Bau, Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide:Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect, Geochimica et Cosmochimica Acta, 1999, 63 (1)
    67. Bebout et al., Fractionation of trace elements by subduction-zone metamorphism—effect of convergent-margin thermal evolution, Earth and Plantetary Science Letters, 1999, 171
    68. Becket et al., Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for elements fluxesin subduction zones, Chemical Geology, 2000, 163
    69. Bina et al., Implications of slab mineralogy for subduction dynamics, Physics of the Earth and Planetary Interiors, 2001, 127
    70. Bina et al., Possible presence of high-pressure ice in cold subducting slabs, NATURE, 2000, 408
    71. Bina et al.,Patterns of deep seismicity reflect buoyancy stresses due to phase transitions, Geopgysical Research Letters, 1997, 24 (24)
    72. Brueckner et al., Paleozoic diamonds within a Precambrian peridotite lens in UHP gneisses of the Norwegian Caledonides, Earth and Plantetary Science Letters, 2002, 203
    73. Buchan et al.,Timing of accretion and collisional deformation in the CentralAsian Orogenic Belt: implications of granite geochronology in theBayankhongor Ophiolite Zone, Chemical Geology, 2002, 192
    74. Chavagnac et al., Coesite-bearing eclogites from Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications, Chemical Geology, 1996, 133
    75. Chemenda et al., Evolutionary model of the Himalaya-Tibet system: geopoem based on new modelling, geological and geophysical data, Earth and Plantetary Science Letters, 2000, 174
    76. Chemenda et al., Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: new modelling and field data from Oman, Earth and Piantetary Science Letters, 1996, 143
    77. Chemenda et al., New result from physical modelling ofzrc-continent collision in Taiwan: evolutionary model, Tectonophysics, 2001, 333
    78. Chen and Brudzinski, Evidence for a Large-scale Remnant of Subducted Lithosphere Beneath Fiji, SCIENCE, 2001, 292
    79. Christensen, The influence of trench migration on slab pentration into the lower mantle, Earth and Plantetary Science Letters, 1996, 140
    80. Collier et al., Seismic discontinuities and subduction zones, Physics of the Earth and Planetary Interiors, 2001, 127
    81. Conrad and Lithgow-Bertelloni, How Mantle Slabs Drive Plate Tectonics, SCIENCE, 2002, 289
    82. Deparis et al., Mass anomalies due to subducted slabs and simulations of plate motion scince 200My, Physics of the Earth and Planetary Interiors, 1995, 89
    83. Ernst and Liou, Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts, Geology, 1995, 24 (4)
    
    
    84. Ernst, Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices—implications forarcs and continental growth, Physics of the Earth and Planetary Interiors, 2001, 127
    85. Gao J et al., Formation of HP-LT rocks and their tectonic implicationsin the western Tianshan Orogen, NW China: geochemical and age constraints. Lithos, 2003, 66
    86. Gebauer et al., 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps, Lithos, 1997, 41
    87. Green, A Graveyard for Buoyant Slabs? SCIENCE, 2001, 292
    88. Gurnis et al., Rapid drift of large continents during the late Precambrian and Paleozoic: paleomagnetic constrains and dynamic models, Geology, 1994, 22
    89. Gutscher et al., Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin, Tectonics, 2000, 19 (5)
    90. Hacker et al., Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing, Journal of Geophysical Research, 105 (B6)
    91. Hacker et al., U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China, Earth and Plantetary Science Letters, 1998, 161
    92. Hacker et al., What brought them up? Exhumation of the Dabie Shan ultrahigh-pressure rocks, Geology, 1995, 23 (8)
    93. Haker et al. vs Green et al., Determining the Origin of Ultrahigh-Pressure Lherzolites, Comments and response, SCIENCE, 1997, 278
    94. van der Hilst and Karason Compositional Heterogeneity in the Bottom 1000 Kilometers of Earth's Mantle: Toward a Hybrid Convection Model, SCIENCE, 1999, 283
    95. John et al., Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China, Lithos, 2001, 59
    96. John et al., Sm-Nd isotope tracer study of UHP mteamorphic rocks: Implications for Continental subduction and collisional Tectonics, International Geogical Review, 1999, 41
    97. John et al., The oldest UHP eclogites of the World: age of UHP metamorphism, nature of protoliths and tectonic implications, Chemical Geology, 2001, 178
    98. John, Geochemical and isotopic characteristics of UHP eclogites and ultra mafic rocks of the Dabie orogen: collisional tectonics, in Hacker and Liou (eds.), When Continents collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks, Kluwer, 1998
    99. Kamber et al., Role of 'hidden' deeply sbducted slabs in mantle depletion, Chemical Geology, 2000, 166
    100. Katayama et al., Ion micro-probe U-Pb zircon geochronology of peak andretrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan, Earth and Plantetary Science Letters, 2001, 188
    101. Kern et al., Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China: implications for the composition and delamination of the lower crust, Tectonophysics, 1999, 301
    102. Khain et al.,The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications, Earth and Plantetary Science Letters, 2002, 1999
    
    
    103. Khain et al.,The Palaeo-Asian ocean in the Neoproterozoic and earlyPalaeozoic: new geochronologic data and palaeotectonicreconstructions, 2003, Precambrian Research, 2003, 122
    104. Kirschvink et al., Evidences for a large-scale recorganization of Early Cambrian continental landmass by inertial interchange true polar wander, SCIENCE, 1997, 277
    105. Kogiso et al., Trace element transport during dehydration processes in thesubducted oceanic crust: 1. Experiments and implications for theorigin of ocean island basalts, Earth and Plantetary Science Letters, 1997, 148
    106. Leech and Ernst, Graphite pseudomorphs after diamond? A carbon isotope and spectroscopic study of graphite cuboids from the Maksyutov Complex, south Ural Mountains, Russia, Geochimica et Cosmochimica Acta, 1998, 62 (12)
    107. Leech et al., Petrotectonic evolution of the high-to ultrahigh-pressure Maksyutov Complex, Karayanova area, south Ural Mountains: structural and oxygen isotope constraints, Lithos, 2000, 52
    108. Leech, Arrested orogenic development: eclogitization, delamination,and tectonic collapse, Earth and Plantetary Science Letters, 2001, 185
    109. Li S G et al., Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains,Central China, Geochimica et Cosmochimica Acta, 2000, 64 (6)
    110. Li Z X, Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault, Geology, 1994, 22
    111. Lin S F vs Li Z X, Collision between the North and South China blocks: A crustal-detachment model for suturing inthe region east of the Tanlu fault-Comment and Reply, Geology, 1995
    112. Liou et al., Into the Forbidden Zone, SCIENCE, 2000, 287
    113. Liou et al., Seeing a Mountain in a Grain of Garnet, SCIENCE, 1998, 276
    114. Lithgow-Berteiloni et al., Cenozoic plate driving forces, Geopgysical Research Letters, 1995, 22
    115. Lithgow-Bertelloni et al., The dynamics of Cenozoic and Mesozoic plate motions, Reviews of Geophysics, 1998, 36,
    116. Liu J et al., Stability of hydros phases in subdcting oceanic crust, Earth and Plantetary Science Letters, 1996, 143
    117. Marton et al., Effects of slab mineralogy on subduction rates, Geophysical Research Letters, 1999, 26 (1)
    118. Maruyama and Seno, Orogeny and relative plate motions: exmple of the Japanese Islands, Tectonophysics, 1986, 127
    119. Maruyama et al., Blueshists and eclogites of the world and their exhumation, International Geogical Review, 1996, 38
    120. Niu Y L et al., Trace element evidence from seamounts for recycled oceaniccrust in the Eastern Pacific mantle, Earth and Plantetary Science Letters, 1997, 148
    121. O'Brien et al., Coesite in Himalayan eclogite and implications for models of India-Asia collision, Geology, 2001,29(5)
    122. O'Brien et al., Subduction followed by collision: Alpine and Himalayan examples, Physics of the Earth and Planetary Interiors, 2001, 127
    123. Okay and Sengor, Evidence for continental thrustrelated exhumation of the ultra-high-pressure rocks in China, Geology, 1992, 20
    124. Patriat & Achache, India-Eurasia collision chronnlogy has implications for crustal shorttening hns driving mechanism of plates, NATURE, 1984, 311
    
    
    125. Peacock and Wang, Seismic Consequences of Warm Versus Cool Subduction Metamorphism: Examples from Southwest and Northeast Japan, SCIENCE, 1999, 286
    126. Rosenbaum et al., Relative motions of Africa, Iberia and Europe during Alpine orogeny, Tectonophysics, 2002, 359
    127. Rowley et al., Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb Zircon geochronology, Earth and Plantetary Science Letters, 1997, 151
    128. Rubatto and Hermann, Exhumation as fast as subduction? Geology, 2001, 29 (1)
    129. Sassi et al., Trace element distribution in Central Dabie eclogites, Contrib Mineral Petrol, 2000, 139
    130. Schmeling et al., The influence of olivine metastability on the dynamicsof subduction, Earth and Plantetary Science Letters, 1999, 165
    131. Shatsky et al., Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan), Contrib Mineral Petrol, 1999, 137
    132. Shields et al., Diagenetic constraints on the use of cerium anomalies aspalaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites, Chemical Geology, 2001, 175
    133. Sobouti et al., Thermo-mechanical modeling of subduction of continental lithosphere, Physics of the Earth and Planetary Interiors, 2002, 131
    134. Sun W D et al., Mid-paleozoic collision in the north Qinling: Sm-Nd, Rb-Sr, and ~(40)Ar/~(39)Ar ages and their tectonic implications, Journal of Asian Earth Science, 2002, 21
    135. Tetzlaff et al., The influence of olivine metastability on deep subdoction ofoceanic lithosphere, Physics of the Earth and Planetary Interiors, 2000, 120
    136. Tribuzio et al., Rare earth element redisreibution during high-pressure-low-temperature metamorphism in ophiolitic Fe-gabbros: Implications for light REE mobility in subduction zones, Geology, 1996,24 (8)
    137. van der Voo, Tethyan subducted slabs under India, Earth and Plantetary Science Letters, 1999, 171
    138. van Hunen et al., A thermo-mechanical model of horizontal subduction below an overriding plate, Earth and Plantetary Science Letters, 2000, 182
    139. van Hunen et al., Latent heat effects of the major mantle phase transitions on low-angle subduction, Earth and Plantetary Science Letters, 2001, 190
    140. Yang J J and Deng J F, Garnet peridotites and eclogites in the north Qaidam mountains, Tibet plateau: A first record, 1st Workshop on UHPM and Tectonics, 1994, Stanford University
    141. Yang J S et al., Discovery of coesite in the North Qaidam Early Palaeozoic ultrahigh pressure (UHP) metamorphic belt, NW China, Earth and Planetary Sciences, 2001, 333
    142. Yang J S et al., Tectonic significance of early Paleozoic high-pressure rocks in Altun-Qaidam-Qilian Mountain, Northwest China, Geological Society of America Memoir, 2001, 194
    143. Yin and Nie, An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia, Tectonics, 1993, 12
    144. Zhang H F et al., Pb isotopes of granitoids suggest Devonian accretion of Yangtze to North China craton, Geology, 1997, 25
    
    
    145. Zhang J X et al., Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China, Lithos, 2001, 56
    146. Zhao X X and Coe, Palaeomagnetic constraints on the collisionand rotation of North and South China, NATURE, 1987, 327
    147. Zhao X X, et al. Paleomagnetic constrains on the paleogeography of China: implications for Gondwanaland, Australia J Earth Sci, 1996, 43.
    148. Zheng Y F, et al., Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Inplications for geodynamics and fluid regime, Earth Science Review, 2003, 62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700