用户名: 密码: 验证码:
京大戟三萜成分及生物合成途径中关键酶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
京大戟是药用植物大戟的干燥根,是一种民间常用药材,由于其对水肿和各种原因引起的腹水有独特的疗效而广为应用。目前因为环境破坏,可用作药材来源的野生大戟已经越来越少,同时大戟又是多年生的宿根植物,大戟栽培需要很多年才能形成可供药材的根。因此,如何解决京大戟药材资源日渐匮乏问题已成为科研工作者所面临的一项严峻挑战,是中药现代化领域重要课题之一,具有十分重要的意义。京大戟中的药理成分主要是三萜类化合物。植物中的萜类化合物代谢途径研究得已很透彻,利用代谢途径中的关键酶基因调控萜类化合物的生物合成也取得了一定的进展。因此解决京大戟药源短缺问题,可从不同的角度进行研究,如改变药材泡制方法提高三萜类活性成分的萃取率,分析三萜类成分进而通过生物工程技术有目的地提高活性成分的含量等。本论文针对这一问题主要进行了以下几方面的研究。
     1)为阐明京大戟中的三萜类组分及三萜类是否有活性,本文采用GC/MS对京大戟氯仿提取的弱极性成分进行了分析,结果检测出23种化合物,主要包含三萜类、甾类和酯类等物质。其中三萜类化合物含量最高。体外抗肿瘤实验结果表明,京大戟弱极性成分对人非小细胞肺癌NCI-H460有一定的抑制作用,当氯仿萃取物浓度达到20μg·mL-1时,抑制率达到为99.51%。清除DPPH自由基能力测试结果表明,京大戟弱极性成分具有一定的清除DPPH自由基的能力。在氯仿萃取物浓度在4 mg/mL时,清除率最高,达96.68%。
     2)为研究如何较大幅度地提高京大戟药材中的三萜类化合物的萃取率,本文运用响应面法优化了京大戟三萜类化合物的超声提取工艺,通过回归分析和验证实验得到的最优提取工艺条件为:乙醇浓度为95%,液料比为20 mL/g,超声提取温度为70℃,超声时间为32 min,超声波功率390 W,在此优化条件下的京大戟总三萜的萃取率达到5.46%。
     3)为研究三萜类生物合成途径中的关键酶,本文通过RACE技术从药用植物大戟中成功克隆了3-羟基-3甲基戊二酰辅酶A还原酶(HMGR; EC1.1.1.34,GenBank收录号为EF062569)基因的全长cDNA序列,序列全长为2200 bp,含有一个1752 bp大小的开放阅读框,编码583个氨基酸序列。通过在线和非在线的分子软件分析表明预测的药用植物大戟的HMGR的氨基酸序列和其他植物的HMGR同源性很高,有两个跨膜区和一个催化区。预测的3D模型是一个典型的HMGR的三维结构模型。Southern杂交分析结果显示药用植物大戟叶基因组中最多以两个拷贝形式存在,RT-PCR分析结果表明药用植物大戟HMGR基因在根、茎和叶中都有表达,在根中的表达量高于茎,茎中的表达量高于叶。功能测验实验表明药用植物大戟中的HMGR能增加大肠杆菌中胡萝卜素的积累,从而证明了该基因编码一个功能蛋白。
     4)通过RACE技术从药用植物大戟中成功克隆了三萜类生物合成途径中的关键酶法呢基焦磷酸合成酶(FPS,GenBank收录号为FJ755465)基因的全长cDNA序列,该序列全长为1431 bp,含有一个长为1029 bp的开放阅读框,编码342个氨基酸序列。通过在线和非在线的分子软件分析表明预测的药用植物大戟的FPS的氨基酸序列和其他植物的FPS同源性很高,有5个保守区序列。通过氨基酸序列构建的进化树表明药用植物大戟的FPS属于植物列群。Southern杂交分析结果表明药用植物大戟叶基因组中有一个FPS基因家族。RT-PCR分析结果表明FPS在根、茎和叶中都有表达,在根中的表达量高于茎,茎中的表达量高于叶。功能互补实验表明药用植物大戟的FPS基因能够弥补酵母CC25缺失的FPS功能,证明所克隆的基因能够编码相应的具有FPS功能的蛋白。
     5)通过甲基茉莉酸和水杨酸两个诱导子诱导药用植物大戟愈伤组织分析两个功能酶对外界环境的响应情况,结果表明两个诱导子都能诱导两个功能酶基因的表达。甲基茉莉酸处理的愈伤组织,EpHMGR基因的表达量在第12 h达到最高,随后缓慢减低。EpFPS基因的表达量在第48 h达到最高,之后缓慢减低。水杨酸处理的愈伤组织,EpHMGR基因的表达量在48 h内缓慢增加,在第72 h达到最高。EpFPS基因的表达量在24 h达到最高。推测三萜类化合物的含量可随外界环境刺激而相应增加。实验结果为通过一定的化学手段提高京大戟中的活性成分含量提供了理论基础,同时为利用生物工程技术提高京大戟中的三萜类含量提供了候选基因。
“Jing Daji”, the root of Euphorbia pekinensis Rupr, is a common medicine in the folk, and widely used for treatment of edema and ascites caused by various reasons. Wild resources of Euphorbia pekinensis has become more scarce at present because of environmental disruption. At the same time Euphorbia pekinensis is a perennial plant with persistent roots and need many years cultivation, therefore it is a major challenge for researchers and is an important issue for the field of traditional Chinese medicine modernization to solve the decreasing resources. The main medicine composition of Euphorbia pekinensis are triterpenoids. The research on the metabolic pathway of triterpenoids is more clearly and key genes in metabolic pathway regulated triterpenoids biosynthesis have made some progress. Some works can be done from different directions to solve resource shortage of medicine plant, such as changing extracting method to improve the rate of extraction of active ingredients, or analyzing the active components and using biological engineering technology to improve the content of the active ingredient. The following aspects had been done in this study:
     1) The chemical components of non-polar factions exctracted from the roots of Euphorbia pekinensis were analyzed by GC/MS. Twenty-three compounds were separated and identified. Triterpenoids, steroids and esters were the major components, and triterpenoids were the more. The chemical components of non-polar factions could inhibit the growth of cell line NCI-H460 cell with an inhibiting rate of 99.51% at 20μg/mL and the DPPH radical scavenging rate was 96.68% when the concentration was 4 mg/mL.
     2) Response surface methodology was used to optimize the extraction technique for total triterpenoids from roots of Euphorbia pekinensis by supersonic wave. By regression analysis and verification experiment, the results showed that the optimum conditions of alcohol concentration, solid liquid ratio, extraction temperature, ultrasonic extraction time and ultrasonic power were 95%, 20 mL/g, 70℃, 32 min and 390 W respectively.
     3) A full-length cDNA encoding 3-hydroxy-3-methylglutoryl-Coenzyme A reductase (HMGR; EC1.1.1.34), which catalyzes the first committed step of isoprenoids biosynthesis in MVA pathway, was isolated from young leaves of Euphorbia Pekinensis Rupr. by rapid amplification of cDNA ends (RACE) for the first time. The full-length cDNA of HMGR (designated as EpHMGR, GenBank Accession NO. EF062569 ) was 2200 bp containing a 1752 bp ORF encoding 583 amino acids. Bioinformatic analyses revealed that the deduced EpHMGR had extensive homology with other plant HMGRs and contained two transmembrane domains and a catalytic domain. The predicted 3-D model of EpHMGR had a typical spatial structure of HMGRs. Southern blot analysis indicated that at most two copies of EpHMGR gene existed in Euphorbia Pekinensis genome. Tissue expression analysis revealed that EpHMGR expressed strongly in roots, weakly in stems and leaves. The functional colour complementation assay indicated that EpHMGR could accelerate the biosynthesis of carotenoids in the Escherichia coli transformant, demonstrating that EpHMGR plays an influential role in isoprenoid biosynthesis.
     4) A cDNA encoding farnesyl diphosphate synthase (FPS) from E.pekinensis was cloned and characterized. The full-length cDNA named EpFPS (Genbank Accession Number FJ755465) contained 1431 bp with an open reading frame of 1029 bp encoding a polypeptie of 342 amino acids. The deduced amino acid sequence of the EpFPS named EpFPS exhibited a high homology with other plant FPS, and contained five conserved domains. Phylogenetic analysis showed that EpFPS belonged to the plant FPS group. Southern blot analysis revealed a small FPS gene family in E.pekinensis. Tissue expression pattern analysis revealed that EpFPS expressed strongly in root, weak in leaf and stem. Functional complementation of EpFPS in an ERG20-disrupted yeast strain indicated that the cloned cDNA encoded a farnesyl diphosphate synthase.
     5) Salicylic acid (SA) and methyl jasmonate (MeJA) were used to study the response of two functional gene to two elicitors. To MeJA treated callus, the content of EpHMGR expression was the highest after 12 h, and then was slowly lower, while the content of EpFPS expression was the highest after 48 h, then slower lower. To SA treated callus, the content of EpHMGR expression was the highest after 12 h, and then was slowly lower, while the content of EpFPS expression was the highest after 48 h, then slower lower. The results provides a theoretical basis for the adoption of certain chemical means and provides candidate genes to use biological engineering technology to increase active ingredients in Euphorbia pekinensis.
引文
[1]何霖,王家葵,范春燕.大戟、京大戟的本草考证[J].中药材, 2009, 32 (5): 816-818.
    [2]姜禹.京大戟化学成分的研究[D].硕士论文,吉林大学, 2009, (5): 1.
    [3]中华人民共和国卫生部药典编辑委员会.中华人民共和国药典[M].北京:人民卫生出版社, 2005.
    [4]孟娜,周守标,蒋继宏.五种大戟属植物nrDNA的ITS序列分析及其叶的比较解剖学研究[J].广西植物, 2006, 26(1): 18.
    [5]孔令义,闵知大.大戟根化学成分的研究[J].药学学报, 1996, 31(7): 524-527.
    [6] Ahn B T, Zhang B K, Les S C, et al. Phenolic compounds of aerial parts of Euphorbia pekinensis[J].Yakhak Hoechi, 1996, 40(2): 170-176.
    [7] Ahn B T, Kang S S. Phenolic compounds from aerial parts of Euphorbia pekinensis [J]. Saengyak Hakhoechi, 1996, 27 (2): 142-145.
    [8] Kong L Y, Li Y, Wu X L, et al. Cytotoxic diterpenoids from Euphorbia pekinensis[J]. Planta Medica, 2002, 68(3): 249-252.
    [9]梁侨丽,戴传超,吴启南等.京大戟的化学成分研究[J].中草药, 2008, 39 (12): 1779-1781.
    [10]姜文红,刘静,麻风华等.京大戟石油醚提取部分化学成分的研究[J].中医药信息, 2009, 26 (6): 15-16.
    [11] Liang Q L, Dai C C, Jiang J H, et al. A new cytotoxic casbane diterpene from Euphorbia pekinensis[J]. Fitoterapia, 2009, 80 (8): 514-516.
    [12] Yasukawa K, Akihisa T, Yoshida Z Y, et al. Inhibitory effect of euphol, a triterpene alcohol from the roots of Euphorbia kansui, on tumour promotion by 12-O-teradecanoylphorbol-13 -acetate in two-stage carcinogenesis in mouse skin[J]. Journal of Pharmacy and Pharmacology, 2000, 52(1): 119-124.
    [13] Fernandez-Arche A, Saenz M T, Arroyo M, et al. Topical anti-inflammatory effect of tirucallol, a triterpene isolated from Euphorbia lactea latex[J]. Phytomedicine, 2010, 17(2): 146-148.
    [14] Singh G B, Singh S, Sharma M L, et al. Hypotensive activity of 8, 24-euphadien-3β-ol (euphol) [J]. Planta Medica, 1989, 55(6): 498-500.
    [15]尚溪瀛,文成英,刘丽波.大戟注射液对L615白血病小鼠体内药物实验及DNA含量的检测[J].中医药学报, 2000, 2: 76.
    [16]文成英,项喆,王祥麒等.大戟注射液抗白血病的体外药物实验研究[J].中医药信息, 1999, 2: 59.
    [17]肖庆慈,毛小平,郭桂森等.生甘草与灸京大戟配伍后部分药理实验研究[J].云南中医学院学报, 1988, 11(4): 37-39.
    [18]南京神经精神病防治院.京大戟治疗精神病的初步研究[J].江苏医药, 1977, 10: 19-21.
    [19]周志明,徐长桂.龙虎草治疗肝硬变腹水的临床观察[J].中国医刊, 1960, 1: 49-51.
    [20]吴迎春,丛培夫,时秋菊.大戟膏敷脐加艾灸治疗顽固性便秘68例[J].中国民间疗法, 2002, 10(8): 22.
    [21]杨秀华.大戟散加味治疗耕牛前胃弛缓[J].中兽医医药杂志, 1996, 3:47.
    [22]孟庆安,徐志尧,刘秀书.大戟用药品种的探讨[J].天津药学, 2007, 19(6): 52-53.
    [23]李欣,万红贵,卢定强等.人参皂甙的抗肿瘤研究进展[J].生物加工过程, 2003, 1(2): 13-17.
    [24]高建莉,禹志领,李绍平等.灵芝三萜类成分研究进展[J].中国食用菌, 2005, 24(4): 6-11.
    [25]谢彦,徐淑永,曾和平.甘草属植物中三萜类化合物研究概述[J].广州化工, 2004, 32(1): 1-5.
    [26]沈亮亮,叶元康,潘胜利等.五环三萜类柴胡皂苷单体抗耐MRSA活性研究[J].同济大学学报, 2008, 29(3): 15-18, 46.
    [27]林娜,高静,方春钱等.积雪草酸与化疗药物联用抗肿瘤效应的初步研究[J].江苏大学学报, 2008, 18(6): 494-497.
    [28]王一平,贺琴,谭华柄.黄芪应用于糖尿病及糖尿病肾病的研究进展[J].中西医结合心脑血管病杂志, 2008,6(9): 1066-1068.
    [29]倪受东,徐先祥,高建.绞股蓝皂甙心血管系统药理作用的研究进展[J].中国中医药科技, 2002, 9(2): 127-128.
    [30]周家明,曾江,崔秀明,等.三七根茎的化学成分研究[J].中国中药杂志, 2007, 32(4): 349-350.
    [31]马新飞,陆兔林,毛春芹,等. HPLC法测定不同续断炮制品中川续断皂苷VII[J].中草药, 2007, 38(5): 707-708.
    [32]范云双,姚智,滕杰,等.绿升麻中具有抗肿瘤活性的三萜类化合物[J].中草药, 2007, 38(2): 167-170.
    [33]董梅娟,倪艳.连翘药理活性及其物质基础的研究概况[J].山西中医, 2009, 25(4): 56-57.
    [34]罗建光,张洁,孔令义.丝石竹三萜成分的研究[J].中国中药杂志, 2006, 31(19): 1640-1641.
    [35]李帆,梁敬钰.王不留行的研究进展[J].海峡药学, 2007, 19(3): 1-5.
    [36]高慧敏,王智民.白木通化学成分研究(II)[J].中国药学杂志, 2006, 41(6): 418-420.
    [37]蒙丽丽,黄初升,刘红星.具有生物活性的天然三萜化合物的研究进展[J].广西植物, 2008, 28(6): 856-860.
    [38] Yoshikawa M, Sugimoto S, Nakamura S, et al. Medicinal flowers. XVI. new dammarane-type triterpene tetraglycosides and gastroprotective principles from flower buds of Panax ginseng[J], Chemical & Pharmaceutical Bulletin, 2007, 55: 1034-1038.
    [39] Zhou L, Zhang Y, Gapter L A, et al. Cytotoxic and Anti-oxidant Activities of Lanostane -Type Triterpenes Isolated from Poria cocos[J]. Chemical & Pharmaceutical Bulletin, 2008, 56: 1459-1462.
    [40] Banskota A H, Tezuka Y, Tran K Q, et al. Thirteen novel cycloartane-type triterpenes from Combretum quadrangulare[J]. Journal of Natural Products, 2000, 63(1): 57-64.
    [41] Ramalhete C, Mansoor T A, Mulhovo S, et al. Cucurbitane-type triterpenoids from the african plant Momordica balsamina[J]. Journal of Natural Products, 2009,72(11): 2009-2013.
    [42] Chavez I O, Apan T R, Martinez-Vazquez M. Cytotoxic activity and effect on nitric oxide production of tirucallane-type triterpenes[J]. Journal of Pharmacy and Pharmacology, 2005, 57(9): 1087-1092.
    [43] Su B N, Chang L C, Park E J, et al. Bioactive constituents of the seeds of Brucea javanica[J]. Planta Medica, 2002, 68: 730-733.
    [44] Fukuda Y, Sakai K, Matsunaga S, et al. Cancer chemopreventive activity of lupane-and oleanane-type triterpenoids from the cones of Liquidamber styraciflua[J]. Chemistry& Biodiversity, 2005, 2(3): 421-428.
    [45] Thuong P T, Min B S, Jin W Y, et al. Anti-complementary Activity of Ursane-Type Triterpenoids from Weigela subsessilis[J]. Biological & Pharmaceutical Bulletin, 2006, 29: 830-833.
    [46] Gauthier C, Legault J, Lebrun M. Glycosidation of lupane-type triterpenoids as potent in vitro cytotoxic agents[J]. Bioorganic & Medicinal Chemistry, 2006, 14(19): 6713-6725.
    [47] Li L Y, Huang X S, Sattler I, et al. Structure elucidation of a new friedelane triterpene from the mangrove plant Hibiscus tiliaceus[J]. Magnetic resonance in chemistry, 2006, 44(6): 624-628.
    [48] Biswas T, Gupta M, Achari B, et al. Hopane-type saponins from Glinus lotoides Linn[J]. Phytochemistry, 2005, 66(6): 621-626.
    [49] Murakami C, Ishijima K, Hirota M, et al. Novel anti-inflammatory compounds from Rubus sieboldii, triterpenoids, are inhibitors of mammalian DNA polymerases[J]. Biochimica et Biophysica Acta(BBA)-Protein Structure and Molecular Enzymology, 2002, 1596(2): 193-200.
    [50] Siqueira J M, Peters R R, Gazola A C, et al. Anti-inflammatory effects of a triterpenoid isolated from Wilbrandia ebracteata Cogn[J]. Life Sciences, 2007, 80(15): 1382-1387.
    [51] Angeh J E, Huang X, Sattler I, et al. Antimicrobial and anti-inflammatory activity of four known and one new triterpenoid from Combretumimberbe(Combretaceae)[J]. Journal of Ethnopharmacology, 2007, 110 (1): 56-60.
    [52]莫云雁,李安,黄祖良.五色梅根三萜类物质镇痛和抗炎的实验研究[J].时珍国医国药, 2004, 15(8): 477-478.
    [53]汪电雷,陈卫东,徐先祥.茯苓总三萜的抗炎作用研究[J].安徽医药, 2009, 13(9): 1021-1023.
    [54]罗艳,王寒,原忠.地榆中三萜皂苷类成分及其抗炎活性研究[J].中国药物化学杂志, 2008, 18(2): 138-141.
    [55] Machocho A K, Kiprono P C, Grinberg S, et al. Pentacyclic triterpenoids from Embelia schimperi[J]. Phytochemistry, 2003, 62(4): 573-577.
    [56] Katerere D R, Gray A I, Nash R J, et al. Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae[J]. Phytochemistry, 2003, 63(1): 81-88.
    [57]王晓玲,刘高强,周国英.紫芝发酵菌体中三萜类化合物的抑菌活性研究[J].时珍国医国药, 2008, 19(11): 2636-2637.
    [58]刘高强,章春莲,彭广生.赤芝菌体中三萜抑菌作用研究[J].时珍国医国药, 2008, 19(11): 2578-2579.
    [59] Phuwapraisirisan P, Surapinit S, Siripong P, et al. Feroniellides A and B, apotirucallane triterpenes with novel cyclic acetals from Feroniella lucida[J]. Tetrahedron Letters, 2007, 48(4): 527-530.
    [60] Mitsui K, Maejima M, Saito H, et al. Triterpenoids from Cedrela sinensis[J]. Tetrahedron, 2005, 61(44): 10569-10582.
    [61]王锦菊,王瑞国,王宝奎,等.积雪草甙抗肿瘤作用的初步实验研究[J].福建中医药, 2001, 32(4): 39-40.
    [62]范云双,姚智,滕杰,等.绿升麻中具有抗肿瘤活性的三萜类化合物[J].中草药, 2007, 38(2): 167-170.
    [63]马葵芬,张相宜,齐罗扬,等.三萜类化合物对化学损伤原代培养大鼠肝细胞的保护作用[J].浙江大学学报:医学版, 2007, 36(3): 247-254.
    [64]李敏,仇雯倩,黄金华.灵芝三萜对小鼠肝损伤的预防和保护作用研究[J].现代中西医结合杂志, 2009, 18(32): 3933-3934.
    [65]刘涛,马龙,赵军.琐琐葡萄三萜类成分在体外对大鼠免疫性肝损伤的保护作用[J].新疆医科大学学报, 2007, 30(11): 1222-1225.
    [66]葛金芳,李俊,胡成穆.枇杷叶三萜酸的免疫调节作用研究[J].中国药理学通报, 2006,22(10): 1194-1198.
    [67]周小玲,李永伟.三七总皂甙对大鼠免疫功能影响的实验研究[J].广西医科大学学报, 2001, 18(3): 360-361.
    [68]王春刚,贾晓晶,董丽华.西洋参叶三醇组皂苷对乳腺癌放疗患者外周血免疫球蛋白、补体水平及淋巴细胞CD4、CD8和CD25表达的影响[J].吉林大学学报:医学版, 2005, 31(2): 287-289.
    [69]潘峰,刘迪,黄翠霞.绞股蓝皂甙的药理与临床研究[J].现代中西医结合杂志, 2006, 15(5): 674-676.
    [70]徐先祥,彭代银,刘青云.黄芪皂甙类成分对心血管系统的作用[J].北京中医药大学学报, 2000, 23: 128-130.
    [71]黄烨,白汝芬,王宗仁.人参对心血管系统作用的实验药理学研究新进展[J], 2006, 26(16): 1533-1535.
    [72]刘国辉,姚丹丹,卢佳怡,等.绞股蓝对D-半乳糖所致亚急性衰老大鼠下丘脑的抗衰老作用及其机制研究[J].医学理论与实践, 2006, 19(5): 497.
    [73]顾晓苏,顾永健,姜正林.刺五加皂甙对自由基作用和无血清培养条件下两种神经元衰老模型细胞的保护作用[J].中国临床康复, 2005, 9(25): 123-125.
    [74]史艳秋,陈畅,顾黎.人参茎叶皂苷对衰老模型小鼠脑组织相关酶活性的影响[J].上海中医药杂志, 2005, 39(11): 50-52.
    [75]温得中,曲极冰,石卓,等.三七皂甙Rg1对D-半乳糖衰老鼠脑星形胶质细胞保护作用的研究[J].神经解剖学杂志, 2005, 21(6): 667-670.
    [76]纵伟,张勇,夏文水.大叶紫薇总三萜对糖尿病大鼠的降糖效果研究[J].郑州轻工业学院学报:自然科学版, 2006, 21(2):50-52.
    [77]王大元,俞红,胡盛珊,等.黄毛楤木皂甙的降血糖作用[J].中国药学杂志, 1995, 30(7): 407-410.
    [78]谢海龙,都晓伟,王立娟.中药皂苷类成分防治糖尿病的药理研究进展[J].中医药学报, 2006, 34(6): 45-48.
    [79]陆晖,陆艳玲,吴云虎,等.酸枣仁皂甙A对脑缺血再灌注损伤大鼠神经保护作用的研究[J].陕西中医, 2009, 5: 621-623.
    [80]郭志松,邵换璋.三七总皂甙对脑出血的神经保护作用[J].中国实用神经疾病杂志,2009,12(11):42-44.
    [81]冯毅翀,潘华山,赵自明,等.运动性疲劳大鼠中枢神经递质改变及人参皂甙Rb1和Re抗疲劳的实验研究[J].湖北中医杂志, 2009, 31(3): 5-7.
    [82]崔荣太,蒲传强,刘洁晓,等.人参皂甙Rg1对大鼠局灶性脑缺血后侧脑室下区神经干细胞增殖分化的影响[J].中华老年心脑血管病杂志, 2007, 9(10): 707-709.
    [83]陆曙,张寄南,杨笛,等.黄芪总皂甙对病毒性心肌炎小鼠心肌损伤及肌浆网钙泵的影响[J].中国中西医结合杂志, 1999, 19(11): 672-674.
    [84]王峰,张晓辉,权彦龙.土贝母皂甙对家兔单纯疱症病毒性角膜炎的作用[J].西安交通大学学报, 2005, 26(4): 330-332.
    [85] Akihisa T, Kithsiri Wijeratne E M, Tokuda H, et al. Eupha-7,9(11),24-trien-3β-ol (“Antiquol C”) and Other Triterpenes from Euphorbia antiquorum Latex and Their Inhibitory Effects on Epstein?Barr Virus Activation[J]. Journal of Natural Products, 2002, 65(2), 158–162.
    [86]张玥,黄能慧,张小毅,等.灵芝三萜类化合物对衰老模型小鼠学习记忆的作用[J].上海交通大学学报, 2007, 27(8): 969-971.
    [87]李栋,侯海峰.人参皂甙改善老龄小鼠学习记忆的研究[J].营养学报, 2009, 31(6): 596-599, 603.
    [88] Bick J A, Lange B M. Metabolic crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelone membrane[J]. Archieves of Biochemistry and Biophysics, 2003, 415: 146-154.
    [89] Gual J C, Gonzalez-Bosch C, Dopazo J, et al. Phylogenetic analysis of the thiolase family implications for the evolutionary origin of peroxisomes[J]. Journal of Molecular Evolution, 1992, 35: 147-155.
    [90] Luskey K L, Stevens B. Human 3-hydroxy-3-methylglutaryl coenzyme A reductase, conserved domains responsible for catalytic activity and sterol-regulated degradation[J]. The Journal of Biological Chemistry, 1985, 260: 10271-10277.
    [91] Basson M E, Thorsness M, Finer-Moore J, et al. Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of sterol biosynthesis[J]. Molecular and Cellular Biology, 1988, 8: 3797-3808.
    [92] Lluch M A, Masferrer A, Arro M, et al. Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana[J]. Plant Molecular Biolosy, 2000, 42: 365-376.
    [93] Tsay Y H, Robinson G W. Cloning and characterization of ERG8, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase[J]. Molecular and Cellular Biology, 1991, 11: 620-631.
    [94] Dhe-Paganon S, Magrath J, Abeles R H. Mechanism of mevalonate pyrophosphate decarboxylase: evidence for a carbocationic transition state[J]. Biochemistry, 1994, 33: 133551-133562.
    [95] Wouters J, Oudjama Y, Ghosh S, et al. Structure and mechanism of action ofisopentenylpyrophosphate-dimethylallylpyrophosphate isomerase[J], Journal of The American Chemical Society, 2003, 125: 3198-3199.
    [96] Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate[J]. Biochemical Journal, 1993, 295: 517-524.
    [97] Schwarz M K. Terpen-Biosynthese in Ginkgo biloba: eineüberraschende Geschichte[D]. 1994, Nr 10951, ETH Zürich, Switzerland.
    [98] Sprenger G A, Schorken U, Wiegert T, et al. Identification of a thiamin-dependent synthase in Escherichia coli requered for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol[J]. The Proceedings of the National Academy of Sciences of the United States of American, 1997, 94: 12857-12862.
    [99] Takahashi S, Kuzuyama T, Watanabe H, et al. 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis[J]. The Proceedings of the National Academy of Sciences of the United States of American, 1998, 95: 9879-9884.
    [100] Rohdich F, Wungsintaweekul J, Luttgen H, et al. Biosynthesis of isoprenoids: 4-Diphosphocytidyl-2-Cmethyl-D-erythritol kinase from tomato[J]. The Proceedings of the National Academy of Sciences of the United States of American, 2000, 97: 8251-8256.
    [101] Steinbacher S, Kaiser J, Eisenreich W, et al. Structural basis of fosmidomycin action revealed by the complex with 2-C-methyl-D-erythritol 4-phosphate synthase (IspC). Implication for the catalytic mechanism and anti-malaria drug development[J]. The Journal of Biological Chemistry, 2003, 278: 18401-18407.
    [102] Herz S, Wungsintaweekul J, Schuhr C A, et al. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate[J]. The Proceedings of the National Academy of Sciences of the United States of American, 2000, 97: 2486-2490.
    [103] Baker J, Franklin D B, Parker J. Sequence and characterization of the gcpE gene of Escherichia coli[J]. FEMS Microbiology Letters, 1992, 73: 175-180.
    [104] Cunningham Jr F X and Gantt E. Identification of multi-gene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli[J]. Plant Cell and Physiology, 2000, 41(1): 119-123.
    [105] Learned R M, Fink F G. 3-Hydroxy-3-methylglutaryl-Coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes[J]. Proceedings of the National Academy of Sciences, 1989, 86(8):2779-2783.
    [106] Narita J O, Gruiasem W. Tomato hydroxy methylglutaryl-CoA reductase is required early in fruit development but not during riping[J]. Plant Cell, 1989, 1(2): 181-190.
    [107] Choi D, Ward B L, Bostock R M. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor are chidonic acid[J]. Plant Cell, 1992, 4: 1333-1344.
    [108] Chye M L, Tan C T, Chua N H. Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg2 and hmg3 are differentially expressed[J]. Plant Molecular Biology, 1992, 19(3): 473-484.
    [109] Istvan E S, Deisenhofer J. The structure of the catalytic portion of human HMG-CoA reductase[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2000, 1529(1-3): 9-18.
    [110] Schaller H, Grausem B, Benveniste P, et al. Expression of the Hevea brasiliensis (H. B. K.) Mull. arg. 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 1 in tobacco results in sterol overproduction[J]. Plant Physiology, 1995, 109(3): 761-770.
    [111] Lange B M, Rujan T, Martin W, et al. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes[J]. Proceedings of the National Academy of Sciences, 2000, 97(24): 13172-13177.
    [112] Clarke C F, Tanaka R D, Svenson K, et al. Molecular cloning and sequence of a cholesterol repressible enzyme related to prenyl transferase in the isoprene biosynthetic pathway[J]. Molecular and Cellular Biology., 1987, 7: 3138-3146.
    [113] Ashby M N,Edwards P A. Elucidation of the deficiency in two yeast coenzyme Q mutants. Charaeterization of the structural gene encoding hexaprenyl pyrophosphate synthetase[J]. The Journal of Biological Chemistry, 1990, 265: 13157--13164.
    [114] Cunillera N, Arro M, Delourme D, et al. Arabidopsis thaliana contains two differntially expressed farnesyl-diphosphate synthase genes[J]. The Journal of Biological Chemistry, 1996, 271 (13): 7774-7780.
    [115] Li C P, Larkins B A. Identification of a maize endosperm-specific cDNA encoding farnesyl pyrophosphate synthetase. Gene, 1996, 171, 2: 193-196.
    [116] Hemmerlin A, Rivera S B, Erickson H K, et al. Enzymes encoded by the farnesyl diphosphate synthase gene family in the big sagebrush Artemisia tridentate ssp spiciformis[J]. The Journal of Biological Chemistry, 2003, 278: 32132?32140.
    [117] Wang P, Liao Z H, Guo L, et al. Cloning and Functional Analysis of a cDNA Encoding Ginkgo biloba Farnesyl Diphosphate Synthase[J]. Moleculars and Cells, 2004, 18(2): 150-156.
    [118] Homann V, Mende K, Allltz C, et al. The isoprenoid Pathway: cloning and characterization of fungal FPPS genes[J]. Current Genetics, 1996, 30: 232--239.
    [119] Chen D, Ye H, Li G. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation[J]. Plant Science, 2000, 155(2): 179-185.
    [120] Chen D H, Liu C J, Ye H C, et al. Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production[J]. Plant Cell, Tissue and Organ Culture, 1999, 57(3): 157-162.
    [121] Box G E P, Hunter W G. Statistics for experiments: an introduction to design, data analysis and model building[M]. New York: John Wiley & Sons, Inc., 1978.
    [122]戴传超,余伯阳,薛菲.药用植物大戟悬浮细胞的培养[J].南京林业大学学报, 2005, 29(2): 57-60.
    [123] Gallagher C E, Cervantes-Cervantes M, Wurtzel E T. Surrogate biochemistry: use of Escherichia colito identify plant cDNAs that impact metabolic engineering of carotenoid accumulation[J]. Appllied Microbiology and Biotechnology, 2003, 60: 713-719.
    [124] Cunningham F X Jr, Pogson B, Sun Z, et al. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation[J]. Plant Cell, 1996, 8(9): 1613-1626.
    [125] Sun Z, Cunningham F X Jr, Gantt E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte[J]. Proceedings of the National Academy of Sciences, 1998, 95(19): 11482-11488.
    [126] Cunningham F X Jr, Gantt E. Identification of multi-gene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli[J]. Plant and Cell Physiology, 2000, 41(1): 119-123.
    [127] Wang Y, Guo B, Zhang F, et al. Molecular cloning and functional analysis of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Hazel (Corylus avellana L. Gasaway)[J]. Journal Biochemistry and Molecular Biology, 2007, 40: 861–869.
    [128] Blanchard L, Karst F. Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae[J]. Gene, 1993, 125: 185-189.
    [129] Madureira A M, Gyemant N, Ascenso J R, et al. Euphoportlandols A and B, tetracylic diterpene polyesters from Euphorbia portlandica and their anti-MDR effects in cancer cells[J]. Journal of Natural Products, 2006, 69(6): 950-953.
    [130] Hegazy M F, Mohamed A E H, Aoki N, et al. Bioactive jatrophane diterpenes from Euphorbia guyoniana[J]. Phytochemistry, 2010, 71(2-3): 249-253.
    [131] Pusztai R, Ferreira M U, Duarte N, et al. Macrocyclic lathyrane diterpenes as antitumor promoters[J]. Anticancer Research, 2007, 27(1): 201-205.
    [132] Heller S R, Mioline G W. An EPA/ NIH Mass Spectral.Data Base [M]. Washington. US Govemment Printing office, 1976.
    [133] Mclaferty F W, Stauffer D B. The Wiley/ NBS Registry of Spectral Data Base[M]. New York: John Wiley & Sons lnc, 1989.
    [134]邹建国,徐小龙,刘燕燕,等.响应面法优化超声辅助提取马钱子中生物碱的工艺研究[J].食品科学, 2009, 30(16): 111-114.
    [135]陈卫东,刘晓东.抗肿瘤药紫杉醇脂质体的研究进展[J].中国药物与临床, 2005, 5(10): 776-778.
    [136] Shi H M, Williams I D, Sung H H, et al. Cytotoxic diterpenoids from the roots of Euphorbia ebracteolata[J]. Planta Medica, 2005, 71(4): 349-354.
    [137]舒贝,马行一.青蒿素及其衍生物的免疫调节作用[J].中国中西医结合肾病杂志, 2005, 6(3): 176-178.
    [138]段秀梅,单俊杰,王喆星.皂苷治疗糖尿病及并发症的研究进展[J].中药材, 2007, 30(6): 748-752.
    [139]柳爱华,李毕贤,施明,等.萜类物质YK-1和YK-2体外抗菌作用的研究[J].中国病原生物学杂志, 2008, 3(3): 176-177.
    [140]郑维发.甘遂醇提物中4种二萜类化合物的体内抗病毒活性研究[J] .中草药,2004,35(1) :65 -68.
    [141]朱海云,李广泽,廉应江.砂地柏果实中2种二萜类杀虫活性成分的分离[J].西北农林科技大学学报, 2005, 33(2): 79-82.
    [142]张继,姚健,丁兰.甘草的利用研究进展[J].草原与草坪[J]. 2000, 2(89): 12-17.
    [143]廖清贵.齐墩果酸天然药物的开发[J].四川林业科技, 1999, 20(4): 68-69.
    [144] Korth K L, Stermer B A, Bhattacharyya M K, et al. HMG-CoA reductase gene families that differentially accumulate transcripts in potato tubers are developmentally expressed in floral tissues [J]. Plant Molecular Biology, 1997, 33: 545-551.
    [145] Rodriguez-Concepcion M, Gruissem W. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation [J]. Plant Physiology, 1999, 119: 41-48.
    [146] Denbow C J, Lang S, Cramer C L. The N-terminal Domain of Tomato 3-Hydroxy-3- methylglutaryl-CoA Reductases [J]. Biological Chemistry, 1996, 271(16): 9710-9715.
    [147] Rupasinghea H P V, Almquistb K C. Cloning of hmg1 and hmg2 cDNAs encoding3-hydroxy-3-methylglutaryl coenzyme A reductase and their expression and activity in relation toα-farnesene synthesis in apple[J]. Plant Physiology and Biochemistry, 2001, 39: 933-947.
    [148] Burnett R J, Maldonado-Mendoza I E. Expression of a 3-hydroxy-3-methylglutaryl Coenzyme A reductase gene from Camptotheca acuminata is differentially regulated by wounding and methyl jasmonate [J]. Plant Physiology, 1993, 103: 41-48.
    [149] Jiang J, Kai G, Cao X, et al. Molecular cloning of a HMG-CoA reductase gene from Eucommia ulmoides Oliver [J]. Bioscience Report, 2006, 26(2): 171-181.
    [150] Geourjon C, Deleage G. SOPMA. Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Cabios, 1995, 11: 681-684.
    [151] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling[J]. Bioinformatics, 2006, 22: 195-201.
    [152] Baebler S, Camloh M, Kovac M, et al. Jasmonic acid stimulates taxane production in cell suspension culture of yew(Taxus×media)[J]. Planta Medica, 2002, 68(5): 475-476.
    [153] Ketchum R E, Gibson D M, Croteau RB, et al. The Kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methy1 jasmonate[J]. Biotechnology and Bioengineering, 1999, 62(1): 97-105.
    [154] Spear D H, Kutsunai S Y, Correll C C, et al. Molecular cloning and promoter analysis of the rat liver famesyl diphosphate synthase gene[J]. The Journal of Biological Chemistry, 1992, 267: 14462--14469.
    [155] Reed B C, Rilling H C. Crystallization and partial charaeterization of prenyltransferase from avian liver[J]. Bioehemstry, 1975, 14: 50-54.
    [156]周明兵,肖月华,朱冬雪,等.杜仲胶合成相关基因EuFPs的克隆及序列分析[J].分子植物育种, 2003, 1(1): 66-71.
    [157]刘长军,孟玉玲,侯篙生,等.棉花法呢基焦磷酸合酶cDNA克隆、序列分析及其在种子发育过程中的表达特征[J].植物学报, 1998, 40(8):703-710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700