用户名: 密码: 验证码:
聚丙烯腈纤维结构及其形成过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高质量聚丙烯腈(PAN)纤维是制备高性能碳纤维的关键。针对PAN纤维湿法纺丝过程组织结构的演变开展基础性科学研究,深入研究了PAN纤维的结构,并掌握其结构、性能及工艺之间的相关性,对改善PAN基碳纤维的结构和提高碳纤维的性能有重要意义。本文在PAN纤维的纺丝试验线上展开一系列的试验,利用X射线衍射(XRD)、小角X射线散射(SAXS)、偏光显微镜(PM)、表面积和孔径分析仪、透射电镜(TEM)、高分辨透射电镜(HRTEM)、场发射扫描电镜(FESEM)、傅里叶变换红外光谱(FTIR)等测试分析技术,对PAN纤维凝聚态结构、形态结构和亚微观结构(包括原纤、微原纤和孔隙)及其形成过程进行了系统研究,探讨了牵伸工艺对PAN纤维结构性能的影响,并建立PAN纤维的结构模型。
     在PAN纤维的凝聚态结构研究方面,主要讨论了PAN纤维的晶体结构、取向结构、孔隙和微原纤结构及纺丝过程中结构的演变规律。利用XRD获得了PAN纤维的两个赤道衍射峰2θ=16.8°和2θ=29.45°和两个子午衍射峰2θ=36.1°和2θ=39.2°,进一步证实了PAN纤维中的晶体是二维有序的准晶结构,晶胞中平行于纤维轴方向的分子链呈六方排列,并在此基础上,计算出PAN的晶胞参数。通过对纺丝过程中各阶段纤维的晶体结构研究发现,随着纺丝的进行,PAN纤维中的晶体结构逐渐规整完善,赤道方向的(110)和(200)晶面间距逐渐减小,子午方向的(211)晶面间距逐渐减小,(002)晶面间距逐渐增加;结晶度和晶粒尺寸逐渐增加。
     系统研究了纺丝过程中PAN纤维的晶区取向和整体取向的演变。随着纺丝的进行,纤维晶区的平行度逐渐增加,晶粒长大并发生取向。纤维整体取向变化复杂,在致密化之前,整体取向不断增加,致密化和热处理阶段整体取向有所下降,蒸汽牵伸阶段纤维由于牵伸倍数较大,分子链中的氰基未能及时调整取向,此时纤维的双折射率发生了正负值的转变。
     利用SAXS研究了纺丝过程中PAN纤维的亚微观结构演变。结果表明,随着纺丝的进行,纤维中孔隙逐渐减少,尺寸减小;孔隙逐渐成为狭长的结构,并沿轴向排列。孔隙轴向尺寸和径向尺寸致密化之前减小幅度较小,致密化之后迅速减小。由SAXS测得的原纤半径约20nm,随着牵伸的进行其半径逐渐减小。致密化后纤维的SAXS曲线中出现散射峰,说明PAN纤维轴向具有层状结构,其周期随着牵伸的进行逐渐增大。
     本文分别研究了温度和牵伸对PAN结晶的影响。结果表明PAN从溶液中结晶较困难;经过热处理后PAN纤维的晶粒尺寸和结晶度小幅增加,但结晶速度逐渐减缓。增加凝固浴牵伸倍数(在2.0-4.0倍范围内)对结晶度和晶粒尺寸影响较小,晶区取向程度和整体取向程度降低,对提高力学性能贡献很小;增加沸水牵伸倍数(在1.2-1.5倍范围内),纤维结晶和取向程度同时增加,力学性能提高;增加蒸汽牵伸倍数(在2.2-2.8倍范围内),纤维的结晶度和晶粒尺寸逐渐减小,非晶区取向和整体取向程度增加,当蒸汽牵伸倍数小于2.5倍时,晶区取向随牵伸的增加而提高,大于2.5倍时,晶区取向随之减小。
     本文通过比较机械研磨、皮层剥离和超声蚀刻等分离原纤方法,最终选择利用超声蚀刻的方法分离原纤,这种蚀刻方法能够得到原纤的细微结构。为了验证超声蚀刻方法对PAN纤维化学物理结构是否具有破坏性,分别对比研究了超声蚀刻处理前后纤维的结构性能变化。结果发现,超声蚀刻处理后,PAN纤维的化学结构没有发生变化;未溶解的PAN分子量基本没有变化;超声蚀刻作用对PAN纤维的结晶结构影响很小,表现为结晶度和晶粒尺寸的小幅下降;经过处理后纤维强度、断裂伸长率和初始模量均减小。
     通过研究超声介质浓度、超声时间及超声温度对超声蚀刻效果的影响,最终得到纺丝各阶段纤维的原纤分离的最佳条件。发现纺丝各阶段纤维的耐蚀刻性逐渐增加,纤维耐蚀刻程度和它们微原纤的致密化程度一致。提出了PAN纤维超声蚀刻作用机理,解释随着超声时间的延长,纤维表面发生了周期性变化的现象。
     利用FESEM和HRTEM对微原纤结构进行了研究,明确了微原纤的构成,它是由垂直于纤维轴、厚度约20-40nm的片层结构和非晶夹层交替排列组成。微原纤结构存在于各阶段纤维中;在牵伸作用下,原纤结构界面和微原纤结构界面都逐渐清晰;片晶的厚度先减小后增大,其排列由平行逐渐产生一定角度。对原纤的形成进行初步探讨,发现原纤雏形产生于喷丝孔中,原纤的形成是剪切取向和凝固牵伸共同作用的结果。
     在对实验室自制湿纺PAN纤维A、煤化所干喷湿纺PAN纤维B和日本旭化成T300用PAN纤维C三种PAN纤维进行比较研究,发现纤维A的(110)晶面间距小,晶粒尺寸大,结晶度高;纤维B次之;纤维C的结晶程度最低,(110)晶面间距大,晶粒尺寸小,结晶度低。三种纤维间同立构序列和全同立构序列之比:纤维A>纤维B>纤维C。三种PAN纤维的整体取向程度和晶区取向均为:纤维B最大,纤维A次之,纤维C最小。三种纤维的孔隙轴向半径大小和分布大致相同,纤维B的孔隙和微原纤径向半径相对大一些。三种纤维沿纤维轴向都存在层状结构,其中纤维B的长周期最大,纤维A的长周期最小。在耐蚀刻方面干喷湿纺纤维B>自制湿纺纤维A>日本湿纺纤维C,纤维的致密程度和耐蚀刻程度一致,纤维B的微原纤结构较为均匀致密;纤维A的微原纤直径最大约100-300nm,纤维C的微原纤直径最小,约75-150nm;纤维A和B片晶的厚度大于纤维C。综合以上各因素考虑,具有高结晶度、高取向度、晶粒尺寸小、微原纤结构均匀致密的PAN纤维,是制备高性能碳纤维的最佳前驱体。
     通过分析归纳建立了湿法PAN纤维和干喷湿纺PAN纤维的结构模型。PAN纤维都是由原纤、微原纤、狭长的孔隙以及非晶夹层组成。平行于纤维轴、直径约300-900nm的原纤构成PAN纤维;原纤由直径为50-200nm的微原纤构成;微原纤由垂直于纤维轴、厚度约20-40nm的片层结构和非晶夹层交替排列组成。湿法纺丝制备的PAN纤维的皮层是由带状原纤组成,而干喷湿纺纤维的皮层是由微原纤直接构成,并且其原纤直径略小。
The preparation of high quality polyacrylonitrile (PAN) precursor fibers is the key to obtain carbon fibers with excellent performance. The intensive study of the microstructures and their evolution during spinning process and correlation of structure, properties and techniquesis quite important, which has significance in improving PAN-based carbon fiber properties. In this work, a series of experiments were performed on a PAN fiber spinning line. X-ray diffraction (XRD), small angle X-ray scattering (SAXS), polarizing microscope (PM), surface area and pore size analyzer, high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR) are employed. Agglomerate state structure, morphology and submicroscopic struture (fibrils, microfibrils and pores) of PAN precursor fibers and their structural formation were researched. Effect of drawing technology PAN fiber structure was discussed. And PAN fiber structure models were established.
     The crystal structure, orientation structure, pores, microfibrils and their structural evolution during spinning process were discussed. XRD curves showed a rather strong and relatively sharp diffraction with diffraction angles 2θ=16.8°and 2θ=29.45°on the equator, and two weak reflection with angles 2θ=36.1°and 2θ=39.2°on the meridian. Furtherly, it is evidenced that PAN structure was 2D paracrystal and PAN chains arranged hexagonally in a lattice. Unit-cell parameters were obtained. Crystal structures during wet-spinning process were studied. It was found that with wet-spinning progressing d(110), d(200) and d(211) reduced gradually, but d(002) increased gradually, and crystallinity and crystal size increased.
     The orientations in crystalline region and in whole fibers were studied. The orientation in crystalline region increased with wet-spinning progressing while crystal grains oriented with their growth. The whole orientation change was complex. Before collapsing, the whole orientation increased. But the whole orientation decreased after collapsing. Birefringence took place from negative to positive after drawing in vapor, because CN groups in PAN chain didn't adjust promptly with high drawing.
     The submicroscopic struture in PAN fibers was researched by SAXS. With wet-spinning progressing, the number of pores reduced, the pore size decreased, the pores became longer and narrower, and arranged directionally. Axial dimension and radial dimension of pores decreased slowly before collapsing, but they decreased rapidly after collapsing. Microfibrillar radii are about 20nm measured by SAXS, and their radii decreased with spinning progressing. The lamella structure appeared after collapsing and their size increased with spinning progressing.
     Effect of temperature and drawing on PAN crystal structure was studied. Crystallization was quite difficult from solution. The crystallinity and crystalline size increased slightly by heat treatment, and crystallization slowed down gradually. Increasing drawing multiple (2.0-4.0) in coagulation bath had a little influence on orientation in crystal region and in whole fibers and mechanics properties. Increasing drawing multiple (1.2-1.5) in boiling-water bath was effective for improving mechanical properties and was beneficial for crystallization and orientation. The crystallinity and crystalline size reduced with increasing drawing multiple (2.2-2.8) in vapor, while orientation in amorphous and in whole fiber decrease. As drawing multiple in vapor was smaller than 2.5, crystalline orientation increased with increasing of drawing multiple; as drawing multiple in vapor was bigger than 2.5, crystalline orientation decreased with increasing drawing multiple.
     Comparing the mechanism milling, the peel-back technique and the ultrasonic etching method for separating fibrils from PAN fiber, the ultrasonic etching method was selected, by which the fine structure of fibrils can be obtained by this method. In order to validate whether this method affected chemical and physical structure of PAN fibers, the difference of fiber structure and properties before and after ultrasonic etching treatment were studied. The experimental results indicated that ultrasonic etching had no effect on chemical structure of PAN fibers. Molecular weight of undissolved PAN did not change either. The crystallinity and crystal grains reduced slightly after ultrasonic etching. Breaking strength, breaking extension and initial modulus all decreased after ultrasonic etching.
     The optimum ultrasonic etching conditions of PAN fibers during wet spinning process were confirmed, which included concentration, treatment time and temperature of ultrasonic etching, It showed that resistance to ultrasonic etching of PAN fibers increased with spinning progressing, which is consistent with degree of microfibrillar compaction. Ultrasonic etching mechanism was presented, by which periodic changes of PAN fiber surface with treatment time prolonged was explained.
     Microfibrils were observed by FESEM and HRTEM, which are composed of periodic lamellae perpendicular to the fiber axis with thickness of 20-40nm. Fibrils were found in progressing fibers. The interface of fibrils and microfibrils are clear gradually as spinning progressing. Thickness of lamellae decreased and then increased with wet-spinning progressing. The lamellae arranged in parallel and then with an angle. The formation of fibrils was preliminarily discussed. It was considered that the embryo of fibrils formed in spinneret orifice, and the formation of fibrils was the result of shearing field in pipe and coagulation in coagulation bath.
     Fiber A, B and C respectively made in our lab by wet spinning, Japan by dry jet wet spinning and institute of coal chemistry by wet spinning were studied. For the crystal of fiber A, B and C, the power order of regularity and order is:A>B>C. (110) interplanar spacing is small while crystalline size and crystallinity are large in fiber A, but (110) interplanar spacing is large and crystalline size and crystallinity are small in fiber C. Syndiotactic sequences and isotactic sequences ratio was characterized by diffraction peaks integral intensity ratio (I211/I002). It shows tacticity of fiber A is highest, fiber B the second, and fiber C the third. The power order of orientation in crystal region and whole fiber of three fibers is:B>A>C. The pores axial size and distribution of three fibers are similar. But the pores and microfibrils radial size of fiber B are largest in three fibers. Lamella structure exists along fiber axis in three fibers, where long periodic of fiber B is largest and long periodic of fiber C is smallest. The power order of resistance to ultrasonic etching of three fibers is:B>A>C. The diameter of microfibrils in fiber A is about 100-300nm, which is the largest, the diameter of microfibrils in fiber C is about 75-150nm, which is the smallest, and the lamellar period of fibril B is largest among three fibers.
     Models of fibers prepared by wet-spinning and dry jet wet spinning are established. The PAN fiber is composed of fibrils with diameters of 300-900nm in parallel. Fibrils consist of microfibrils with about 50-200nm diameter, and microfibrils are composed of periodic lamellae perpendicular to the fiber axis with thickness of 20-40nm and amorphous interlayers arranging alternately. The main difference between wet-spinning fiber and dry jet wet-spinning fiber is that the skins of the former comprise are made up of ribbon fibrils and the skin of the latter are directly made up of microfibrils, and the diameter of fibrils in the latter is smaller than that in the former.
引文
[1]贺福.碳纤维及其应用技术.北京:化学工业出版社.2004.
    [2]赵稼祥.2004世界碳纤维前景.高科技纤维与应用,2004,29(6):9-12.
    [3]刘国昌,徐淑琼.聚丙烯腈基碳纤维及其应用.机械制造与自动化,2004,33(4):41-43.
    [4]程罡.PAN基碳纤维的制造及应用.安徽化工,2003,29(2):25-27.
    [5]许登堡,吴叙健.聚丙烯腈基碳纤维原丝.广西化纤通讯,2000,28(2):19-25.
    [6]Jain MK, Abhiraman AS. Conversion of acrylonitrile-based precursor fibres to carbon fibres. Journal of materials science,1987,22:278-300.
    [7]颜文革.聚丙烯腈基碳纤维发展分析.科协论坛,2007,(9):50-51.
    [8]杨秀珍,李青山,卢东.聚丙烯腈基碳纤维研究进展.现代纺织技术,2007,(1):45-47.
    [9]张家杰.国内外碳纤维生产现状及发展趋势.化工技术经济,2005,23(4):12-16
    [10]赵稼祥.碳纤维的生产、需求和市场.新材料产业,2007,(10):18-23.
    [11]赵稼祥.东丽公司碳纤维及其复合材料的进展——国外碳纤维进展之一.高科技纤维与应用,2000,25(4):19-23.
    [12]顾超英.国内外高性能纤维的发展与前景分析.化工文摘,2007,(4):21-23.
    [13]贺福,杨永岗.突破原丝“瓶颈”是碳纤维产业化的必备条件.高科技纤维与应用,2001,26(6):1-5.
    [14]马向军,张裕卿.提高聚丙烯腈基碳纤维原丝质量的研究进展.合成纤维,2005,34(11):28-32.
    [15]Diefendorf RJ, Tokarsky E. High-performance carbon fibers. Polymer engineering and science,1975,15(3):150-159.
    [16]Gupta AK, Paliwal DK, Bajaj P. Acrylic precursors for carbon fibers. Journal of Macromolecular Science rev macromolecular chemistry and physics,1991, C31(1): 1-89.
    [17]Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability,2007,92(8):1421-1432.
    [18]Ji M, Wang C, Bai Y, Yu M, Wang Y. Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization. Polymer Bulletin,2007, 59(4):527-536.
    [19]Chand S. Review carbon fibers for composites. Journal of materials science,2000, 35:1303-1313.
    [20]Perret R, Ruland W. The microstructure of PAN-base carbon fibres. Journal of applied crystalline,1970,3:525-532.
    [21]王启芬.PAN原丝的组织结构与性能的表征.硕士学位论文,山东大学,2007.
    [22]王成国,赵亚奇,王启芬.连续水相沉淀聚合法合成聚丙烯腈的反应机理研究进展.现代化工,2008,(1):18-22
    [23]赵亚奇,王成国,朱波,王延相,王启芬.丙烯腈水相沉淀聚合引发机理的研究.材料工程,2008,(3):77-80.
    [24]Zhao YQ, Wang CG, Yu MJ, Cui CS, Wang QF, Zhu B. Study on monomer reactivity ratios of acrylonitrile/acid in aqueous deposited copolymerization system initiated by ammonium persulfate. Journal of polymer research,2009, 16(4):1572-8935.
    [25]Chen H, Qu RJ, Liu JS, Liang Y, Wang CG. High-molecular-weight polyacrylonitrile by atom transfer radical polymerization. Journal of applied polymer science,2006, 100:3372-3376.
    [26]Chen H, Liang Y, Wang CG. Atom transfer radical polymerization of acrylonitrile. Journal of applied polymer science,2006,99:1050-1054.
    [27]Chen H, Qu R, Liang Y, Wang CG. Reverse atom transfer radical polymerization of acrylonitrile. Journal of applied polymer science,2006,99:32-36.
    [28]Yang H, Ahmed ES, Schilling FC, Tonelli AE. Why is stereoregular PAN obtained by polymerization in urea canals isotactic. Macromolecular theory and simulations, 2007,16:797-809.
    [29]张旺玺,孙春峰,王成国.用DSC研究选择聚丙烯腈原丝的共聚单体.高科技纤维与应用,2003,28(2):44-47.
    [30]陈厚,张旺玺,蔡华苏.两种碳纤维前驱体的对比.山东工业大学学报,2000,30(4):359-366.
    [31]Chen H, Liu J, Liang Y, Wang CG. Copolymerization of acrylonitrile with methyl vinyl ketone. Journal of applied polymer science,2006,99:1940-1944.
    [32]Liu JJ, Ge HY, Wang CG. Modification of polyacrylonitrile precursors for carbon fiber via copolymerization of acrylonitrile with ammonium itaconate. Journal of applied polymer science,2006,102:2175-2179.
    [33]崔传生.丙烯腈/衣康酸铵共聚物的制备及其溶液性质的研究.博士学位论文,山东大学,2006.
    [34]王茂章.聚丙烯腈基炭纤维.新型炭材料,1998,13(4):79.
    [35]王延相,王成国,董雪梅,何东新.PAN原丝微观特征对碳纤维结构与性能的影响.金山油化纤,2002,21(4):5-12.
    [36]Ji BH, Wang JH, Wang CG, Wang YX. Study on the formation process of PAN as-spun fiber. Journal of applied polymer science,2008,108:328-333.
    [37]Wang CG, Dong XG, Wang QF. Effect of coagulation on the structure and property of PAN nascent fibers during dry jet wet-spinning. Journal of polymer research, 2009,16:719-724.
    [38]于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构演变.博士学位论文,山东大学,2007.
    [39]Yu MJ, Wang CG, Bai YJ. Evolution of tension during the thermal stabilization of polyacrylonitrile fibers under different parameters. Journal of Applied Polymer Science,2006,102:5500-5506.
    [40]王平华,刘杰,李仍元.聚丙烯腈原丝连续预氧化过程中纤维张力的变化.合成纤维工业,1991,14(5):32-35.
    [41]井敏.PAN基预氧丝在碳化过程中的工艺及物化行为研究.博士学位论文,山东大学,2008.
    [42]Henrici-Olive G, Olive S. Molecular interactions and macroscopic properties of polyacrylonitrile and model substances. Advances in Polymer Science,1979,32: 123-152.
    [43]Murano M, Yamadera R. The stereoregularity of PAN and its dependence on polymerization temperature. Polymer letters,1967,5:333-338.
    [44]Colvin BG, Storr P. The crystal structure of polyacrylonitrile. European polymer journal,1974,10:337-340.
    [45]Liu XD, Ruland W. X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules,1993,26:3030-3038.
    [46]Bashir Z. Thermoreversible gelation and plasticization of polyacrylonitrile. Polymer,1992,33(20):4304-4313.
    [47]Minagawa M, Takasu T, Shinozaki S, Yoshii F, Morishita N.13C n. m. r. and g. p. c.-low-angle laser light scattering measurements on polyacrylonitrile prepared by urea clathrate polymerization in the solid state for the optimization of tacticity. Polymer,1995,12:2343-2346.
    [48]Grobelny J, Sokol M, Turska E. A study of conformation, configuration and phase structure of polyacrylonitrile and their mutual dependence by means of WAXS and 1H BL-n.m.r.. Polymer,1984,25:1415-1418.
    [49]Hobson RJ, Windle AH. Crystalline structure of atactic poly(acrylonitrile). Macromolecules,1993,26:6903-6907.
    [50]王茂章,贺福.碳纤维的制造、性质及应用.北京:科学出版社,1984:23-33.
    [51]贾文杰,王成国,孙春峰.丙烯腈/丙烯酸甲酯/衣康酸三元共聚物序列结构的Monte Carlo模拟.合成纤维工业,2004,27(6):11-13.
    [52]Bohn CR, Schaefgen JR, Statton WO. Laterally ordered polymers:polyacrylonitrile and poly (vinyl trifluoroacetate). Journal of polymer science,1961,55:531-549.
    [53]Hinrichsen G. On the origin of order-disorder in drawn polyacrylonitrile. Journal of applied polymer science,1973,17:3305-3321.
    [54]Hu XP. The molecular structure of PAN fibers. Journal of applied polymer science, 1996,62:1925-1932.
    [55]Lindenmeyer PH, Hosemann R. Application of the theory of paracrystals to the crystal structure analysis of PAN. Journal of applied physics,1963,34(1):42-45.
    [56]Imai Y, Minami S, Yoshihara T, Joh Y, Sato H. Preparation and characterization of amorphous polyacrylonitrile. Journal of polymer science part B:Polymer letters, 1970,8:281-288.
    [57]Hinrichsen G, Orth H. Direct evidence of colloidal structure on drawn PAN. Journal of polymer science part B:Polymer letters,1971,9:529-531.
    [58]Warner SB, Uhlmann DR. Oxidative stabilization of acrylic fibers:part 3 morphology of polyacrylonitrile. Journal of materials science,1979,14: 1893-1900.
    [59]Gupta AK, Chand N. Effect of copolymerization on the crystalline structure of polyacrylonitrile. European polymer journal,1979,15:899-902.
    [60]Gupta AK, Singhal RP. Effect of copolymerization and heat treatment on the structure and X-ray diffraction of polyacrylonitrile. Journal of polymer science: polymer physics edition,1983,21:2243-2262.
    [61]Hu XP, Hsieh YL. Structure of acrylic fibres prior to cyclization. Polymer,1997, 38(6):1491-1493.
    [62]Andrews RD, Miyachi K, Doshi RS. Iodine swelling of polyacrylonitrile I. Journal of macromolecular science, part B,1974,9(2):281-299.
    [63]韩曙鹏,徐樑华,曹维宇,姚红.X射线衍射法研究聚丙烯腈原丝的晶态结构.北京化工大学学报,2005,32(2):63-67.
    [64]Natta G, Mazzanti G, Corradini P. Polimerizzazione sterospecifica dell acetilene. Rendiconti dell'academia nazionale dei lincei, classe di scienze fisiche, matematiche naturali,1958,25:3-12.
    [65]Bashir Z, Atureliya SK, Church SP. Production of oriented polyacrylonitrile films by flow-induced chain extension and crystallization from solution. Journal of materials science,1993,28:2721-2732.
    [66]Allen RA, Ward IM, Bashir Z. An investigation into the possibility of measuring an 'X-ray modulus'and new evidence for hexagonal packing in polyacrylonitrile. Polymer,1994,35:2063-2071.
    [67]Bashir Z, Tipping AR, Church SP. Orientation studies in polyacrylonitrile films uniaxially drawn in the solid state. Polymer,1994,33:9-17.
    [68]Rizzo P, Auriemma F, Guerra G, Petraccone V, Corradini P. Conformational disorder in the pseudohexagonal form of atactic polyacrylonitrile. Macromolecules, 1996,29:8852-8861.
    [69]Minagawa M, Taira T, Yabuta Y, Nozaki K, Yoshii F. An anomalous tacticity-crystallinity relationship:A WAXD study of stereoregular isotactic (83-25%) poly(acrylonitrile) powder prepared by urea clathrate polymerization. Macromolecules,2001,34(11):3679-3683.
    [70]Holland VF, Mitchell SB, Hunter WL, Lindenmeyer PH. Crystal structure and morphology of PAN in dilute solution. Journal of polymer science,1962,62: 145-151.
    [71]Klement JJ, Geil PH. Growth and drawing of PAN crystals grown from solution. Journal of polymer science, Part A-2,1968,6:1381-1399.
    [72]Hinrichsen VG, Orth H. Zur struktur verstreckter folien und faden sowie aus verdunnten losungen hergestellter einkristalle aus polyacrylnitril. Kolloid-Z. u. Z. Polymere,1971,247:844-850.
    [73]Kumamaru F, Kajiyama T, Takayanagi M. Formation of single crystals of polyacrylonitrile during the process of solution polymerization. Journal of crystal growth,1980,48:202-209.
    [74]Yamazaki H, Kajita S, Kamide K. Solution-grown single crystal of polyacrylonitrile polymerized by γ-ray irradiation on urea-acrylonitrile canal complex:preparation and preliminary structure analysis. Polymer journal,1987,19(8):995-998.
    [75]Rachel JH, Alan HW. Crystalline structure of atactic poly(acrylonitrile). Macromolecules,1993,26:6903-6907.
    [76]Sawai D, Yamane A, Takahashi H, Kanamoto T, Ito Masayoshi, Porter RS. Development of high ductility and tensile properties by a two-stage draw of polyacrylonitrile. Journal of polymer science:part B,1998,36:629-640.
    [77]Minagawa M, Yoshida W, Kurita S, Takada S, Yoshii F. Solvent casting effect on the infrared characteristic absorption bands (1230-1250cm-1) of stereoregular isotactic PAN film. Macromolecules,1997,30(6):1782-1786.
    [78]Gupta AK, Chand N. Effect of copolymerization on the crystalline structure of polyacrylonitrile. European Polymer Journal,1979,15:899-902.
    [79]徐樑华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究.新型碳材料,1997,12(3):31-33.
    [80]Jain MK, Abhiraman AS. Conversion of acrylonitrile-base precursor fibres to carbon fibres. Journal of Materials Science,1987,22:278-300.
    [81]Dobretsov SL, Lomonosova NV, Stelmakh VP, Frenkel SY. The orientation behaviour of high-molecular polyacrylonitrile. Polymer Science,1972,14(5): 1278-1285.
    [82]唐春红,张旺玺,曹维宇,刘杰,吴刚.不同牵伸倍数的PAN原丝结构性能的研究.塑料工业,2004,23(3):54-57.
    [83]Craig JP, Knudsen JP, Holland VF. Characterization of acrylic fiber structure. Textile research journal,1962,32(6):435-448.
    [84]Tucker P, George W. Micofibers within fibers:a review. Polymer engineering and science,1972,12(5):364-377.
    [85]Bunsell AR, Hearle JWS, Konopasek L, Lomas B. A preliminary study of the fracture morphology of acrylic fibers. Journal of applied polymer science,1974, 18:2229-2242.
    [86]王占武,纪箴.聚丙烯腈原丝性能研究.炭素技术,1999,(3):14-18.
    [87]胡杨,陈惠芳.细旦粘胶基碳纤维及原丝结构的研究.宇航材料工艺,2004,34(2):41-44.
    [88]李常清,徐梁华,王晓玲,刘淑金,曹维宇,陈宏卓.残余溶剂DMSO对PAN纤维结构及热性能的影响.高分子材料科学与工程,2003,19(4):98-91.
    [89]王延相,王成国,朱波,季保华,何东新,王强.网状和皮芯结构对生产高性能碳纤维组织演变的影响.材料科学与工程学报,2005,23(5):325-240.
    [90]贺福,杨永岗.用SEM研究PAN原丝的表面缺陷.高科技纤维与应用,2002,27(5):28-32.
    [91]Chen J, Ge HY, Dong XG, Wang CG. The formation of polyacrylonitrile nascent fibers in wet-spinning process. Journal of applied polymer science,2007,106: 692-696.
    [92]徐樑华,吴红枚.PAN/DM SO干湿法纺丝凝固工艺的研究.高分子材料科学与工程,2000,16(6):163-166.
    [93]秦志全,周霞.二甲基亚砜法聚丙烯腈原丝干湿纺与湿纺成形工艺的比较.高科技纤维与应用,2006,31(3):15-18.
    [94]张旺玺,彭洪修.聚丙烯腈原丝结构与性能的研究.合成技术及应用,2000,15(3):5-8.
    [95]陈厚.两种聚丙烯腈原丝结构与性能的对比研究.金山油化纤,2000,19(2):1-6.
    [96]王延相,何东新.聚丙烯腈纤维结构缺陷的形成和控制.金山油化纤,2004,(4):11-17.
    [97]王延相,王成国,朱波,季保华,王强.聚丙烯腈基纤维的结构设计及其演变 性研究.高科技纤维与应用,2005,30(10):10-13.
    [98]季敏霞.PAN原丝在预氧化和碳化过程中微观结构的演变.博士论文,山东大学,2008.
    [99]贺福.高性能碳纤维原丝与干喷湿纺.高科技纤维与应用,2004,29(4):6-12.
    [100]Yadav AK, Kasturiya N, Raj H. Manufacturing process of acrylic fibre by wet spinning. Man-made textiles,2000,25:421-426.
    [101]Bahrami SH, Bajaj P, Sen K. Effect of Coagulation Conditions on Properties of Poly(acrylonitrile-carboxylic acid) Fibers. Journal of applied polymer science, 2003,89:1825-1837.
    [102]吕永根,杨常玲,翟磊,李永红,吕春祥,贺福,凌立成.用称重法研究聚丙烯腈树脂的凝固过程.新型炭材料,2004,19(1):16-20.
    [103]Wang YX, Wang CG, Yu MJ. Effects of different coagulation conditions on PAN fibers wet spun in a system of dimethylsulphoxide and water. Journal of applied polymer science,2007,104:3723-3729.
    [104]Bajaj P, Sreekumar TV, Sen K. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of applied polymer science,2002,86:773-787.
    [105]Takahashi M, Nukushina Y, Kosugi S. Effect of fiber-forming conditions on microstructure of acrylic fiber. Textile Research Journal,1964,34:87-97.
    [106]Wang Q, Wang YX, Zhu B, Bai YJ. The effect of coagulation and stretch on the structure and properties of PAN precursor by wet Spinning. Synthetic fiber in China,2005,34(5):24-28.
    [107]Dong XG, Wang CG, Bai YJ, Cao WW. Effect of DMSO/H2O coagulation bath on the structure and property of PAN fibers during wet-spinning. Journal of applied polymer science,2007,105:1221-1227.
    [108]董兴广.聚丙烯腈纤维纺丝成形机理及工艺相关性研究,博士论文,山东大学,2009.
    [109]王琴,吕春祥,梁晓怿,贺福,张睿,凌立成.聚丙烯腈纤维在水浴牵伸过程中应力-应变曲线的研究.新型炭材料,2004,19(1):38-44.
    [110]高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4): 35-39.
    [111]唐春红,张旺玺,曹雄宇,刘杰,吴刚.不同牵伸倍数的PAN原丝结构性能的研究.塑料工业,2004,32(3):54-57.
    [112]汪晓峰,倪如青.高性能聚丙烯腈基原丝的制备.合成纤维,2000,29(4):23-27.
    [113]陈方泉.二次拉伸对干湿法PAN原丝结构性能的影响.合成纤维工业,2003,26(6):4-7.
    [114]徐强,吴丝竹,徐梁华,曹维宇,吴刚.聚丙烯腈原丝取向结构和力学性能研究.合成纤维,2004,27(5):4-6.
    [115]韩曙鹏,徐梁华,曹维宇,姚红.PAN致密化过程对纤维晶态结构的影响.合成纤维工业,2004,27(6):17-19.
    [1]李历生.电子显微镜在聚合物形态结构中的应用//郑飞勇,朱新邨.高分子实验与专论.北京:北京大学出版社,1990.
    [2]Warner SB, Uhlmann DR, Peebles LH. Oxidative stabilization of acrylic fibres. Journal of materials science,1979,14:1893-1900.
    [3]Hinrichsen G. Structural changes of drawn polyacrylonitrile during annealing. Journal of Polymer Science, Part C, Polymer Symposia,1972,38:303-314.
    [4]莫志深,张宏放.晶态聚合物结构和X射线衍射.北京:科学出版社,2003.
    [5]殷敬华,莫志深.现代高分子物理学.北京:科学出版社,2001.
    [6]朱育平.小角X射线散射.北京:化学工业出版社,2008.
    [7]张旺玺.碳纤维对聚丙烯腈原丝质量的要求.山东化纤,1999,5:22-24.
    [1]Natta G, Mazzanti G, Corradini P. Polimerizzazione sterospecifica dell acetilene. Rendiconti dell'academia nazionale dei lincei, classe di scienze fisiche, matematiche naturali,1958,25:3-12.
    [2]Bohn CR, Schaefgen JR, Statton WO. Laterally ordered polymers:polyacrylonitrile and poly (vinyl trifluoroacetate). Journal of polymer science,1961,55:531-549.
    [3]Bashir Z. Thermoreversible gelation and plasticization of polyacrylonitrile. Polymer, 1992,33(20):4304-4313
    [4]Liu XD, Ruland W. X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules,1993,26:3030-3038.
    [5]Bashir Z, Atureliya SK, Church SP. Production of oriented polyacrylonitrile films by flow-induced chain extension and crystallization from solution. Journal of materials science,1993,28:2721-2732.
    [6]Allen RA, Ward IM, Bashir Z. An investigation into the possibility of measuring an 'X-ray modulus'and new evidence for hexagonal packing in polyacrylonitrile. Polymer,1994,35:2063-2071.
    [7]Bashir Z, Tipping AR, Church SP. Orientation studies in polyacrylonitrile films uniaxially drawn in the solid state. Polymer,1994,33:9-17.
    [8]Rizzo P, Auriemma F, Guerra G, Petraccone V, Corradini P. Conformational disorder in the pseudohexagonal form of atactic polyacrylonitrile. Macromolecules,1996,29: 8852-8861.
    [9]Hu XP, Hsieh YL. Structure of acrylic fibres prior to cyclization. Polymer,1997, 38(6):1491-1493.
    [10]Minagawa M, Taira T, Yabuta Y, Nozaki K, Yoshii F. An Anomalous Tacticity-Crystallinity Relationship:A WAXD Study of Stereoregular Isotactic (83-25%) Poly(Acrylonitrile) Powder Prepared by Urea Clathrate Polymerization. Macromolecules,2001,34(11):3679-3683.
    [11]Holland VF, Mitchell SB, Hunter WL, Lindenmeyer PH. Crystal structure and morphology of PAN in dilute solution. Journal of polymer science,1962,62: 145-151.
    [12]Klement JJ, Geil PH. Growth and drawing of PAN crystals grown from solution. Journal of polymer science, Part A-2,1968,6:1381-1399.
    [13]Hinrichsen VG, Orth H. Zur struktur verstreckter folien und faden sowie aus verdunnten losungen hergestellter einkristalle aus polyacrylnitril. Kolloid-Z. u. Z. Polymere,1971,247:844-850.
    [14]Colvin BG, Storr P. The crystal structure of polyacrylonitrile. European polymer journal,1974,10:337-340.
    [15]Kumamaru F, Kajiyama T, Takayanagi M. Formation of single crystals of polyacrylonitrile during the process of solution polymerization. Journal of crystal growth,1980,48:202-209.
    [16]Yamazaki H, Kajita S, Kamide K. Solution-grown single crystal of polyacrylonitrile polymerized by y-ray irradiation on urea-acrylonitrile canal complex:preparation and preliminary structure analysis. Polymer journal,1987, 19(8):995-998.
    [17]Rachel JH, Alan HW. Crystalline structure of atactic poly(acrylonitrile). Macromolecules,1993,26:6903-6907.
    [18]Sawai D, Yamane A, Takahashi H, Kanamoto T, Ito Masayoshi, Porter RS. Development of high ductility and tensile properties by a two-stage draw of polyacrylonitrile. Journal of polymer science:part B,1998,36:629-640.
    [19]Gupta AK, Chand N. Effect of copolymerization on the crystalline structure of polyacrylonitrile. European Polymer Journal,1979,15:899-902.
    [20]Hinrichsen G, Orth H. Direct evidence of colloidal structure on drawn PAN. Journal of polymer science:polymer letters,1971,9,529-531.
    [21]Gupta AK, Singhal RP. Effect of copolymerization and heat treatment on the structure and X-ray diffraction of polyacrylonitrile. Journal of polymer science, polymer physics edition,1983,21,2243-2262.
    [22]Rizzo P, Guerra G, Auriemma F. Thermal transitions of polyacrylonitrile fibers. Macromolecules,1996,29:1830-1832.
    [23]Imai Y, Minami S, Yoshihara T, Joh Y, Sato H. Preparation and characterization of amorphous polyacrylonitrile. Journal of polymer science part B:Polymer letters, 1970,8:281-288.
    [24]Hu XP. The molecular structure of polyacrylonitrile fibers. Journal of applied polymer science,1996,62:1925-1932.
    [25]Hinrichsen G, Orth H. Direct evidence of colloidal structure on drawn PAN. Journal of polymer science part B:Polymer letters,1971,9:529-531.
    [26]殷敬华,莫志深.现代高分子物理学.北京:科学出版社,2001.
    [27]胡恒亮,穆祥祺.X射线衍射技术.北京:纺织工业出版社,1990.
    [1]上海纺织工学院.腈纶生产工艺及其原理.上海:上海人民出版社,1976.
    [2]Dong XG, Wang CG, Chen J. Crystallinity development in polyacrylonitrile nascent
    fibers during coagulation. Journal of polymer research,2008,25:125-130.
    [3]董兴广,王成国,曹伟伟,赵亚奇,陈娟.凝固浴拉伸对碳纤维前驱体PAN初生纤维结构及性能的影响.高分子材料科学与工程,2008,24(6):117-120.
    [4]王琴,吕春祥,梁晓怿,贺福,张睿,凌立成.聚丙烯腈纤维在水浴牵伸过程中应力-应变曲线的研究.新型炭材料,2004,19(1):38-44.
    [5]王延相,王成国,蔡华苏,马勇,董雪梅.拉伸对PAN原丝结构和性能的影响.合成纤维,2002,31(5):6-8.
    [6]高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001.
    [7]Masson JC.腈纶生产工艺及应用.北京:中国纺织出版社,2004.
    [8]杨茂伟.PAN原丝纺丝工艺与性能相关性研究, 山东大学硕士学位论文.济南:山东大学,2007.
    [9]Holland VF. Crystalline morphology of polyacrylonitrile. Journal of polymer science,1960,(142):143-145
    [10]刘建军,王成国,陈娟,尹玉勇.高效液相色谱法测定聚丙烯腈基碳纤维原丝中的二甲基亚砜残留.色谱,2007,25(2):284-285.
    [11]董兴广.聚丙烯腈纤维纺丝成形机理及工艺相关性研究.博士论文,山东大学,2009.
    [1]王茂章,贺福.碳纤维的制造、性质及应用.北京:科学出版社.1984.
    [2]Wang YX, Wang CG, Yu MJ. Effects of different coagulation conditions on polyacrylonitrile fibers wet spun in a system of dimethylsulphoxide and water. Journal of applied polymer science,2007,104:3723-3729.
    [3]Dong XG, Wang CG, Bai YJ, Cao WW. Effect of DMSO2 H2O coagulation bath on the structure and property of PAN fibers during wet-spinning. Journal of applied polymer science,2007,105:1221-1227.
    [4]张旺玺,彭洪修.聚丙烯腈原丝结构与性能的研究.合成技术及应用,2000,15(3):5-8.
    [5]Bunsell AR, Hearle JWS, Konopasek L, Lomas B. A preliminary study of the fracture morphology of acrylic fibers. Journal of applied polymer science,1974,18: 2229-2242.
    [6]陈厚.两种聚丙烯腈原丝结构与性能的对比研究.金山油化纤,2000,19(2):1-6.
    [7]季敏霞.PAN原丝在预氧化和碳化过程中微观结构的演变.博士论文,山东大学,2008.
    [8]Tucker P, George W. Microfibers within fibers:a review. Polymer engineering and science,1972,12(5):364-377.
    [9]董擎之,顾利霞,王逸君,苏惠香,毛培良.AN-g-Casein纤维的结构与性能的研究中国纺织大学学报,2000,26(5):12-15.
    [10]何中琴.DMSO处理后的天蚕丝原纤化.国外丝绸,2002,(5):11-14.
    [11]Warner SB, Uhlmann DR. Oxidative stabilization of acrylic fibers:part 3 morphology of polyacrylonitrile. Journal of materials science,1979,14: 1893-1900.
    [12]Sawyer LC, Chen RT, Jamieson MG, Musselman IH, Russell PE. The fibrillar hierarchy in liquid crystalline polymers. Journal of materials science,1993,28: 225-238.
    [13]Basedow AM, Ebert KH. Ultrasonic degradation of polymers in solution. Advances in polymer science,1977,22,83-148.
    [14]严志云,刘安华,贾德民.超声波处理对芳纶帘线表面形态及与胶料粘合性能的影响.橡胶工业,2004,51(6):325-329.
    [15]汪澜,姜志新,严峻.超声波处理对棉纤维结构与性能的影响.纺织学报,2006,27(10):77-79.
    [16]Lee Y, Lee C, Yoon J. Kinetics and mechanisms of DMSO degradation by UV/H2O2 process. Water Research,2004,38,2579-2588
    [17]李晖.超声波强化液-固传质的机理研究.沈阳化工学院学报,1994,8(3):175-182
    [18]Gronroos A, Pirkonen P, Ruppert O. Ultrasonic depolymerization of aqueous carboxymethylcellulose. Ultrasonics Sonochemistry,2004,11:9-12
    [19]张进,陈克强.超声波幅照下聚合物的降解[J].成都科技大学学报,1989,(3):131-137
    [20]Du W, Chen H, Xu H, Pan D. Homogeneity of the PAN/DMSO/H2O spinning solutions. Fibers and polymers.2009,10(3):290-294.
    [21]Bowen DE, Prlesand MA, Eastman MP. Ultrasound propagation in binary mixtures of dimethyl sulfoxide and water. The journal of physical chemistry,1974,78(25): 2611-2615
    [22]王启芬,王成国,于美杰,王延相,朱波.XRD研究沸水热处理对PAN原丝结构与性能的影响.功能材料,2008,39(9):1458-1461.
    [1]Tucker P, George W. Microfibers within fibers. Polymer engineering and science, 1972,12(5):364-377.
    [2]高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001.
    [3]Sawyer LC, Chen RT, Jamieson MG, Musselman IH, Russell PE. The fibrillar hierarchy in liquid crystalline polymers. Journal of materials science,1993,28: 225-238.
    [4]Craig JP, Knudsen JP, Holland VF. Characterization of acrylic fiber structure. Textile research journal,1962,32(6):435-448.
    [5]Warner SD, Uhlmann DR. Oxidative stabilization of acrylic. Journal of materials science,1979,14:1893-1900.
    [6]Somani RH, Hsiao BS, Nogales A, Srinivas S, Tson AH. Structure development during shear flow-induced crystallization of i-PP. Macromolecules.2000,33, 9385-9394.
    [7]Kumar S. Electron beam damage in high temperature polymers. Polymer 1990,31(1): 15-19.
    [8]Egerton RF, Li P, Malac M. Radiation damage in the TEM and SEM. Micron,2004, 35:399-409.
    [9]Clark DJM, Truss RW. High resolution transmission electron microscopy (HRTEM) and image analysis of uPVC thin films. Micron 1994,25(6):547-550.
    [10]Clark DJM, Truss RW. Verification of the microdomain model of crystallinity in polyvinyl chloride by electron microscopy. Journal of polymer science:part B: polymer physics,1996,34:103-111.
    [11]Michler GH. Electron microscopy of polymers. Springer:Berlin,2008:175-183.
    [12]董炎明.高分子分析手册.北京:中国石化出版社.2004.
    [1]Bohn CR, Schaefgen JR., Statton WO. Laterally ordered polymers:polyacrylonitrile and poly (vinyl trifluoroacetate). Journal of polymer science,1961,55:531-549.
    [2]Craig JP, Knudsen JP, Holland VF. Characterization of acrylic fiber structure. Textile research journal,1962,32(6):435-448.
    [3]Warner SB, Uhlmann DR. Oxidative stabilization of acrylic fibers:part 3 morphology of polyacrylonitrile. Journal of materials science,1979,14: 1893-1900.
    [4]王启芬.PAN原丝的组织结构与性能的表征.硕士论文,山东大学,2007.
    [5]王占武,纪箴.聚丙烯腈原丝性能研究.炭素技术,1999,(3):14-18.
    [6]徐樑华,吴红枚.PAN/DM SO干湿法纺丝凝固工艺的研究.高分子材料科学与工程,2000,16(6):163-166.
    [7]秦志全,周霞.二甲基亚砜法聚丙烯腈原丝干湿纺与湿纺成形工艺的比较.高科技纤维与应用,2006,31(3):15-18.
    [8]张旺玺,彭洪修.聚丙烯腈原丝结构与性能的研究.合成技术及应用,2000,15(3):5-8.
    [9]陈厚.两种聚丙烯腈原丝结构与性能的对比研究.金山油化纤,2000,19(2):1-6.
    [10]王延相,何东新.聚丙烯腈纤维结构缺陷的形成和控制.金山油化纤,2004,(4):11-17.
    [11]葛曷一,王成国,陈娟,刘建军.湿法纺聚丙烯腈纤维的截面形貌与皮芯结构的研究.材料导报,2007,21(3):150-152.
    [12]王延相,季保华,刘焕章.湿法纺聚丙烯腈原丝凝固过程的研究.功能材料, 2005,36(9):1438-1441.
    [13]Hinrichsen G, Orth H. Direct evidence of colloidal structure on drawn PAN. Journal of polymer science part B:Polymer letters,1971,9:529-531.
    [14]Hinrichsen G. On the origin of order-disorder in drawn polyacrylonitrile. Journal of applied polymer science,1973,17:3305-3321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700