用户名: 密码: 验证码:
钛合金超声振动深孔研磨机理及其表面加工质量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金材料由于具有优良的理化性能而使其在很多领域得到广泛应用,然而正是由于这些优良的性能造成了对其进行精密或超精密磨削加工的困难。超声振动加工技术是一种将超声振动用于精密或超精密加工的新技术,特别是在超硬材料、复合材料和难加工材料的加工方面显示出非常突出的优越性。因此,将超声振动加工技术应用于深孔研磨加工中,为难加工材料的深孔精加工开辟了一条新的途径。
     本课题以难加工材料钛合金为研究对象,研究钛合金超声振动深孔研磨机理及其表面加工质量。首先,本文在分析了钛合金深孔精加工的基础上,提出了超声振动深孔研磨的加工方法并研制出相应的加工装置。然后,通过普通研磨和超声振动研磨两种加工方法的比较,对钛合金超声振动深孔研磨的加工机理进行了研究,并且对其材料去除率特性进行了试验研究。最后,基于超声振动研磨表面形成机理,对钛合金超声振动研磨表面加工质量进行了研究,从表面形貌特征和表面粗糙度特性两个方面试验研究了不同加工方式和重要研磨参数对工件表面加工质量的影响规律。
     研究结果有助于揭示难加工材料钛合金超声振动深孔研磨加工机理,完善和发展钛合金材料磨削加工新技术,进一步推动难加工材料在工程实际中的应用。
Titanium alloy is widely used in various fields because of its fine physicochemical properties. However, there is a difficult problem that how to grind it effectively, especially finish grinding and the super finish grinding at present. Ultrasonic vibration machining technology is a new type technology which ultrasonic vibration is applied to finish machining and the super finish machining and has some fine superiority in machining ultra-hard material, composite material and difficult-to-cut material. Therefore, it is a new way for difficult-to-cut material to deep-hole finish machine by applying ultrasonic vibration machining technology to deep-hole lapping.
     The difficult-to-cut material titanium alloy was taken as subject of study, and systemic study have been down for ultrasonic vibration deep-hole lapping mechanism and surface processing quality. Firstly, based on the analysis of deep-hole finish machining of titanium alloy, we presented ultrasonic vibration deep-hole lapping and designed ultrasonic vibration deep-hole lapping device. Secondly, according to comparing common lapping with ultrasonic vibration lapping, we researched ultrasonic vibration deep-hole lapping mechanism of titanium alloy and material removal rate characteristic by experiments. Finally, based on the surface generating mechanism of ultrasonic vibration lapping, the surface processing quality of titanium alloy was studied, and the effects of processing methods and lapping parameter on surface processing quality was researched from two aspects:surface topography characteristics and surface roughness characteristics.
     The research results are help to reveal the ultrasonic vibration deep-hole lapping mechanism of difficult-to-cut material titanium alloy, develop the new lapping technology of titanium alloy, and further promote the applications of difficult-to-cut material.
引文
[1]朱波,张飞虎,袁哲俊.低温ELID磨削钛合金磨削力的实验研究[J].机械工艺师,2000,(12):44~45.
    [2]何利民,郭力.钛合金磨削加工研究的进展[J].精密制造与自动化,2008,(2):8-13.
    [3]任敬心,康仁科,史兴宽.难加工材料的磨削[M].北京:国防工业出版社,1999.
    [4]冯宝富.超高速磨削的单颗磨粒磨削的研究[D].沈阳:东北大学,2000.
    [5]刑绍美.TC4钛合金的平面磨削[J].航天工艺,2001,(3):51~54.
    [6]王爱玲,祝锡晶,吴秀玲.功率超声振动加工技术[M].北京:国防工业出版社,2007.
    [7]吴松平.难加工材料超声振动深孔珩磨技术研究[D].西安:西安石油大学,2008.
    [8]隈部淳一郎著.精密加工振动切削基础和应用[M].韩一昆等译.北京:机械工业出版社,1979.
    [9]Kenichi Ishikawa, Hitoshi Suwabe, Tetsuhiro Nishide. A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials [J]. Precision Engineering,1998, (22): 196-205.
    [10]Thoe T B, Aspinwall D K, Killen N. Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy [J]. Journal of Materials Processing Technology,1999, (92-93):323-328.
    [11]Rajurkar K P, Wang Z Y, Kuppattan A. Micro removal of ceramic material (Al2O3) in the precision ultrasonic machining [J]. Precision Engineering,1999, (23):73-78.
    [12]毛善锋,汤铭权,万迪慧.超声振动切削时硬质合金刀具磨损机理研究[J].东南大学学报,1995,(3):50~54.
    [13]史兴宽,康仁科,卢海鹏.内圆超声振动磨削装置的设计[J].磨床与磨削,1997,(1):52~54.
    [14]钱军,高长水.工件激振式复合电火花微细孔加工[J].航空精密制造技术术,1997,33(5):18~20.
    [15]吴雁,赵波朱训生等.超声振动磨削陶瓷材料高效去除机理研究[J].制造技术与机床,2006,(4):59-62.
    [16]任升峰,张建华,白文峰.Nd-Fe-B烧结永磁材料超声辅助磨削试验研究[J].电加工与模具,2005,(5):34~38.
    [17]梁晶晶,刘永姜,吴雁.超声加工技术及其在陶瓷加工中的应用[J].机械管理开发,2008,23(4):63~64.
    [18]许庆顺,黄云,王福明.超声振动精密砂带磨削0Crl7Ni4Cu4Nb不锈钢的试验研究[J].工具技术,2007,41(10):26~29.
    [19]鲁聪达,王笑,文东辉等.超精密研磨技术及其发展的研究[J].现代制造工程,2007,(4):125~128.
    [20]Ichida Y, Sato R, Morimoto Y, et al. Material removal mechanisms in non-contact ultrasonic abrasive machining [J]. Wear,2005,258:107-114.
    [21]潘洪平,梁迎春.陶瓷球的超声振动研磨[J].哈尔滨理工大学学报,1999,4(3):29~33.
    [22]周忆,米林,廖强等.基于超声研磨的超精密加工[J].航空精密制造技术,2003.,39(L):1~4.
    [23]王娜君,季远,朱波等.PCD复合片超声振动研磨去除率的研究[J].机械工艺师,2001,(4):13~14.
    [24]张昌娟,刘传绍,赵波.超声研磨声学系统振动特性与试验研究[J].工具技术,2004,28(12):25~28.
    [25]宋艳丽,魏冰阳,邓效忠.超声研齿振动子系统的研究与变幅杆设计[J].工具技术,2007,41(5):61~64.
    [26]翁雷,郑子文,李圣怡.超声研磨工具的有限元优化设计[J].航空精密制造技术,2008,44(3):10~14.
    [27]魏冰阳,杨建军,邓效忠等.超声研齿的材料去除模型与试验[J].机械传动,2010,34(1):1-4.
    [28]王宇,尹韶辉,陈越等.振动研磨材料去除机理研究[J].中国机械工程,2009,20(5):533~537.
    [29]薛进学,赵波,焦锋.超声高速研磨陶瓷表面残余应力特性研究[J].金刚石与磨料磨具工程,2009,(4):57~61.
    [30]陈桂生.超声换能器设计[M].北京:海洋出版社,1984.
    [31]曹凤国.超声加工技术[M].北京:化学工业出版社,2005.
    [32]祝锡晶,王爱玲,辛志杰等.功率超声珩磨缸套加工中谐振系统的试验研究[J].中国机械工程,2005,(5):727~730.
    [33]张云电.超声加工及其应用[M].北京:国防工业出版社,1995.
    [34]林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社,1987.
    [35]朱林,李继云,赵洪兵等.弯曲振动圆盘振动特性试验研究[J].机械设计与制造,2010,(3):110~112.
    [36]Lin Zhu, Xin Chen and Jiyun Li. Design of an Ultrasonic Vibration Deep-hole Honing Device [J]. Advanced Materials Research,2010,97-101:1971-1974.
    [37]贺西平,胡时岳.复合超声纵振型变幅杆的简化设计[J].兰州大学学报(自然科学版),2002,(5):24~27.
    [38]郭钟宁,李大超.应用传递矩阵方法设计超声抛光工具[J].电加工,1996,(2):8-12.
    [39]Lin Zhu and Jiyun Li. Experimental Research on the Vibration Characteristics of Flexural Vibration Disk [J]. Advanced Materials Research,2010,97-101:2558-2561.
    [40]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2004.
    [41]陈日耀.金属切削原理[M].北京:机械工业出版社,2005.
    [42]王世清,朱林,刘战锋.机械制造工程学[M].西安:陕西科学技术出版社,1998.
    [43]杨建东,田春林.高速研磨技术[M].北京:国防工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700