用户名: 密码: 验证码:
无舵面变体翼飞行器机构设计与气动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着飞机设计技术的进步,传统的飞机布局和设计方法已经不能满足对飞机性能多样化的需求。于是飞机设计师们提出了变体技术,来改善飞机的飞行性能或增加飞机的飞行包线。从第二次世界大战变后掠技术被提出以来,研究人员以不同的目的提出了多种多样的变体方式,并提出多种变体机构实现形式。
     现在普遍使用的飞机舵面气动效率较低,为了提高控制飞行姿态的效率对现有的变体飞机技术总结并提出了以变体翼技术代替传统的飞机舵面。并对这种方案的优势、可行性、及变形机构进行探索研究。
     采用伯恩斯坦多项式描述翼型形状,XFOIL软件计算翼型的气动特性,以遗传算法为优化算法,使用多学科优化软件Isight将以上工具集成起来,进行数据传输并进行优化迭代计算。针对NACA0012翼型,在雷诺数300000,马赫数为0.045时,以不同升力系数下阻力系数最小为目标对翼型形状进行优化。获得了一组在不同升力系数下阻力系数最小的翼型形状。将舵面的操纵效率简化为舵面产生相同的升力或侧向力时产生的附加阻力的大小,并对采用变体翼和传统舵面控制飞机姿态的效率(即产生相同的操纵效果时所产生的附加阻力的大小)进行对比,产生相同的升力系数时,变体翼产生的附加阻力系数较传统舵面小。
     针对变体翼变形规律设计了一个采用多个位置控制器与弹性变形机构联合控制的变体机构。这种变体机构可以实现最优翼型变形使飞机以最小的阻力代价控制飞行姿态,且能够实现襟翼变形改善飞机的起飞特性。用CATIA对这个机构进行三维建模并制造了变体翼单个翼肋截面的模型,进行变形试验,证明这种变体机构可以满足变形要求。并采用超声电机驱动器和弹性蒙皮机构设计了一种只能完成变体襟翼功能的变体机构方案,这种变体机构驱动器少、结构简单、变形控制量少易于实现。并用CATIA对其进行三维建模。
     设计了采用变体翼技术控制飞行姿态的微小型飞机。并分析飞机在不同的迎角、侧滑角下的升阻力特性、俯仰力矩、滚转力矩、偏航力矩等。并对不同飞行速度下飞机平飞时的状态进行配平计算。证明了采用变体翼技术可以用于正常飞行。
     在微小型飞行器上采用传统的襟翼、缝翼具有结构复杂、效率低的缺点。又由于微小型飞行器飞行速度低,尺寸小,对变体驱动器功率要求较小,变体机构较易实现,因此提出在微小型飞行器上用变体翼技术代替传统的襟翼、缝翼。优化出可以获得较大升力的翼型形状,并通过对变体翼和传统机翼采用不同起飞方式起飞时的飞行轨迹进行对比,发现变体翼可以很好的改善飞机的起飞性能。
     在对传统舵面形式和变体翼的气动特性进行对比时发现:变体翼除了在相同升力系数下产生的阻力系数较小外,其气动中心较传统舵面靠后,而这种特性可以有效改善飞翼式飞机面临的静稳定性问题。将采用变体翼和传统舵面的飞翼式飞机的纵向静稳定性等参数进行对比,变体翼的优势较明显。
Aircraft layout and design methods can’t meet the diverse needs of the performance of theaircraft followed with the advances in aircraft design. To improve the flight performance and increasethe flight’s envelope the aircraft designers have proposed morphing technology. Multiple variantsproject is proposed by researchers since the Second World War, and different mechanism wasproposed.
     The traditional control surface has low efficientl. Inorder to increase the controlling efficient ofairplane a morphing wing technology used to take the place of traditional flaps is developed accordingto the summarize of the morphing technology. The profit and feasibility is proved by analysis, themechanism can deform as respect is explored.
     Bernstein polynomial is used to describe the airfoil shape, XFOIL software is used to calculatethe aerodynamic characteristics of different airfoils, the genetic algorithm is the optimizationalgorithm, multidisciplinary optimization software Isight is used to transmit data between thesemodules. The shape of airfoil NACA0012is optimized based on minimum drag coefficient atdifferent lift coefficient when the Re is300000and Mach number is0.045. A set of airfoil shape,which have minimum drag coefficient at different lift coefficient, is obtained. Control efficiency of therudder is simplified as the size of the additional resistance of the rudder surface when producing thesame lift or side force. The efficient of morphing wing and the traditional flaps is compared, it isproved the drag force of morphing wing is much smaller than the traditional flaps when provide thesame lift.
     A variant mechanism used joint location controller and elastic deformation skin is designed. Thismechanism can control the flight attitude with a minimum drag force, and take the place of wing flapto improve the take off performance. CATIA is used to do three-dimensional modeling of thisinstitution and a variant wing single rib section of the model is created and tested; the deformation testproved that this morphing institution can meet the deformation requirements. The ultrasonic motordrive and the elastic skin are used to design a simple mechanism, which can only meet therequirement of the wing flap only. This mechanism is simple, has less actuator, structure and easy toimplement. CATIA is used to do three-dimensional modeling of this institution
     An MAV use the morphing wing to control the flight attitude is progressed. the lift and dragcharacteristics, pitching moment, rolling moment and the yaw moment of aircraft at different angle of attack, sideslip angle is analyzed. The flight is trim calculated at different speed when the aircraft inlevel flight. It is proved that the morphing wing aircraft can used taking place of rudder to controlflight attitude.
     The traditional flaps and slats of MAV have a complex structure and low efficiency. The MAVhave a low flight speed, small size, so the drive power requirements of morphing mechanism is smalland it is easy to achieve. It is proposed that use morphing wing technology take the place oftraditional flaps and slats in the MAV. An airfoil shape that can provide a larger lift is obtained by theoptimization algorithm; then take off flight path of different take-off method is compared between themorphing wing and the traditional wing. It is proved that the morphing wing can develop the take offperformance.
     It is found that morphing wing can not only reduce drag at the same lift but also have a bigaerodynamic center which can improve the static stability of pitch which is the challenge of blendedwing body when comparing aerodynamic characteristics of the traditional rudder and morphing wing.The static stability of morphing wing and traditional wing is compared, and it is proved that themorphing wing have a big benefit.
引文
[1] Bowman Jason, Sanders Brian P, Weisshaar Terrence A, Identification of military morphingaircraft missions and morphing technology assessment, Smart Structures and Materials, SPIE Vol.4698, p.121-132.
    [2] Green W., Swanborough G., The Complete Book of Fighters, SMITHMARK Publishers Inc.,New York, USA,1994.
    [3] Curry R. E., Sim A. G., The Unique Aerodynamic Characteristics of the A-1Oblique-WingResearch Airplane, AIAA198-1329.
    [4] Yuemin Yu, Yanju Liu, Jinsong Leng, Design and Aerodynamic Characteristics of a SpanMorphing Wing, Industrial and Commercial Applications of Smart Structures Technologies,Volume7290(2009), pp.72900U-72900U-8(2009).
    [5] Thomas F., Milgram J., Fundamentals of Sailplane Design, College Park Press, College ParkMaryland, USA,1999.
    [6] Kermode A. C., Barnard R. H., Mechanics of Flight, Pitman Publishing Limited, London,Chapter9. ISBN0-273-31623-0.
    [7] B Sanders, F E Eastep, E Forster, Aerodynamic and Aeroelastic Characteristics of Wings withConformal Control Surfaces for Morphing Aircraft, Journal of Aircraft (2003), Volume:40, Issue:1, Pages:94-99.ISSN:00218669. DOI:10.2514/2.3062
    [8] McGowan, Anna-Maria R., Washburn Anthony E., Recent Results from NASA's MorphingProject, Proceedings of the SPIE9th Annual International Symposium on Smart Structures andMaterials, San Diego, California, March17-21,2002.
    [9] Clarke Robert, Allen Michael J. and Dibley Ryan P., Flight Test of the F/-18Active AeroelasticWing Airplane, AIAA-2005-6316.
    [10] H Namgoong, WA Crossley, Aerodynamic Optimization of a Morphing Airfoil UsingEnergy as an Objective, AIAA journal, Volume:40, No.9, pp.2113-2124.
    [11] Anna-Mtria R., McGowan, AVST morphing project research summaries in fiscal year2001,NASA/TM-2002-211769.
    [12] Anna-Maria R. McGowan and Martin R. Waszak, NASA’s Morphing Project ResearchSummaries in Fiscal Year2002. NASA/TM-2005-213266.
    [13] Cody Lafountain, Kelly Cohen, Shaaban Abdallah, Camber Controlled Airfoil Design forMorphing UAV.47th AIAA Aerospace Sciences Meeting Including The New Horizons Forumand Aerospace Exposition, Orlando, Florida,5–8January2009.
    [14] J Florance, AW Burner, GA Fleming, Contributions of The NASA Langley Research Centerto The DARPA/AFRL/NASA/Northrop Grumman Smart Wing Program,2003.
    [15] AMR McGowan, WK Wilkie, RW Moses, Aeroservoelastic and structural dynamicsresearch on smart structures conducted at NASA Langley Research Center, Smart Structures andMaterials,1998, pp.188-201. DOI:10.1117/12.310634
    [16] Siochi E. J., Anders J. B., Biomimetics for NASA Langley Research Center--Year2000Report of Findings From a Six-Month Survey, NASA TM-2002-211445, February,2002.
    [17] E. Stanewsky, Adaptive wing and flow control technology, Progress in Aerospace Sciences,Volume37, Issue7, October2001, Pp583–667.
    [18] M. Siclari, W. V. Nostrand, F. Austion, The Design of Transonic Airfoil Secions For AnAdaptive Wing Concept Using A Stochastic Optimization Method, AIAA Paper96-0329,1996.
    [19] J. Poggie, C. P. Tilmann, P. M. Flick et al., Closed-Loop Stall Control on a Morphing AirfoilUsing Hot-Film Sensors and DBD Actuators, in Proceedings of The48th AIAA AerospaceSciences Meeting, Orlando, Fla, USA, January2010, AIAA2010-547.
    [20] M. Secanell, P. Gamboa and A. Suleman, Design of a Morphing Airfoil for a LightUnmanned Aerial Vehicle Using High-Fidelity Aerodynamic Shape Optimization, AIAA Journal,44(7):1550-1562, July2006.
    [21] Secanell, M., Suleman, A. and Gamboa, P., Design of a Morphing Airfoil UsingAerodynamic Shape Optimization, AIAA Journal,44(7):1550-1562.
    [22] P Chwaloeski, JA Samareh, LG Horta, Efficient Multidisciplinary Analysis Approach forConceptual Design of Aircraft with Large Shape Change, NATO RTO Symposium on MorphingVehicles,2009.
    [23] Jamshid A. Samareh, Pawel Chwalowski, Lucas G. Horta, Integrated AerodynamicStructural Dynamic Analyses of Aircraft with Large Shape Changes, Scientific and TechnicalAerospace Reports, Vol45,(11),2007.
    [24] Yudi Heryawan, Hoon C. Park, Nam S. Goo, Design and demonstration of a smallexpandable morphing wing, Proceedings of the SPIE, Volume5764, pp.224-231(2005).
    [25] Manzo, J., Garcia, E., Horner, G., Adaptive structural systems and compliant skintechnology of morphing aircraft structures, Proceedings of SPIE, Vol.5390, pp.225-234, March14-17, San Diego,2004.
    [26] Allen Hurst, Ephrahim Garciaa, Controller Design for a Morphing, Perching Aircraft aSibley School of Mechanical and Aerospace Engineering, Cornell University Laboratory forIntelligent Machine Systems, Ithaca, New York14853.
    [27] McGowan, A. R., Cox, D.E., Lazos, B. S., Biologicall-Inspired Technologies in NASA’sMorphing Project, SPIE Smart Stctures and Materials Conference, Paper5051-1,2003.
    [28] Joshi S. P., Jha A. K., Rodrian, J. E., Design of the NextGen Morphing Wing Wind TunnelModel, AIAA200-1731.
    [29] Scott Ferguson, Edward Kasprzak, Kemper Lewis, Designing a family of reconfigurablevehicles using multilevel multidisciplinary design optimization, Structural and MultidisciplinaryOptimization, Volume39, Number2(2009),171-186, DOI:10.1007/s00158-008-0319-3.
    [30] MD Skillen, Modeling and Optimization for Morphing Wing Concept Generation II Part I:Morphing Wing Modeling and Structural Sizing Techniques, Morphing Wing Modeling andStructural Sizing Techniques,2008,2.
    [31] Love M. H., Zink P. S., Stroud R. L., Demonstration of Morphing Technology throughGround and Wind Tunnel Tests, AIAA200-1729.
    [32] Akhilesh K. Jha, Jayanth N. Kudva, Morphing Aircraft Concepts, Classifications, andChallenges. Proceedings-Spie The International Society For Optical Engineering,2004, VOL5388, pages213-224.
    [33] T. G. lvanco, R. C. Scott, M. H. Love, Validation of the Lockheed Martin MorphingConcept with Wind Tunnel Testing,48th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference;23-26Apr.2007; Waikiki, HI; United States.
    [34] C. Thill, J. Etches, I. Bond, Morphing Skins, The Aeronautical Journal, March2008.
    [35] Matthew Keennon, Karl Klingebiel, Henry Won, Tailless Flapping Wing Propulsion andControl Development for the Nano Hummingbird Micro Air Vehicle, American HelicopterSociety Future Vertical Lift Aircraft Design Conference,2012, San Francisco, California,January18-20.
    [36] J P Whitney, R J Wood, Conceptual design of flapping-wing micro air vehicles,Bioinspiration&Biomimetics, Volume7, Number3.
    [37] Ifju P., Jenkins A., Ettingers S., Chapter11FlexibleWings and Fluid–Structure Interactionsfor Micro-Air Vehicles, Biological Sciences, Springer Berlin Heidelberg, Pages:143-157. ISBN:9783540893936. DOI:10.1007/978-3-540-89393-6.
    [38] P. Ifju, A. Jenkins, S. Ettingers, Flexible-wing based micro air vehicles. IEEE Transactionson Robotics22,137–146(2002).
    [39] C. Boller, C.-M. Kuo, N. Qin, Approaching Morphing Wing Concepts on the Basis ofMicro Aerial Vehicles. Department of Mechanical Engineering The University of Sheffield.
    [40] D. H. Lee, Terrence A. Weisshaar, Aeroelastic Studies On a Folding Wing,46thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Confer, Austin,Texas,18–21April2005.
    [41] Neha Gandhi, Akhilesh Jha, Jerey Monaco, Intelligent Control of a Morphing Aircraft,48thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con, Honolulu,Hawaii,23–26April2007.
    [42] McGowan, Anna-Maria R., Washburn,Anthony E, Recent Results from NASA's MorphingProject, Smart Structures and Materials2002, SPIE Vol.4698, p.97-111.
    [43] McGowan, Anna-Maria R., AVST Morphing Project Research Summaries in Fiscal Year2001, NASA TM2002-211769, August2002.
    [44] McGowan, Anna-Maria R., Waszak, Martin, NASA Morphing Project Research Summariesfrom Fiscal Year2002, NASA TM200-213266.
    [45] William E. Milholen, Lewis R. Owens, On the Application of Contour Bumps for TransonicDrag Reduction, AIAA-2005-0462.
    [46] J. H. Ran, Z. Q. Liu and P. Bai, Investigation of the Local Morphing’s Influence on theCharacteristics of Aerodynamics for Airfoil in Low-Re Flows, Computational Mechanics,2009,Part3, Part2,253, DOI:10.1007/978-3-540-75999-7_53.
    [47] Miller, Adam Cole, Flow control via synthetic jet actuation. Master's thesis, Texas A&MUniversity. Texas A&M University.
    [48] Scott J Johnson, C P Case Van Dam, Dale E Berg, Active Load Control Techniques forWind Turbines, Sandia report, SAND2008-4809.
    [49] Intelligent Multi-Resolut ion Modelling: Application to Synthetic Jet Actuation and FlowControl, Computational Mechanics,2009, Part3, Part2,253.DOI:10.1007/978-3-540-75999-7_53.
    [50] D H Lee, Terrence A Weisshaar, Aeroelastic Studies on a Folding Wing Configuration,Engineering (2005) Issue: April, Pages:1-13.
    [51] Daisaku Inoyama, Brian P Sanders, James J Joo, Computational Design of Morphing WingStructures through Multiple-Stage Optimization Process,48th AIAAASMEASCEAHSASCStructures Structural Dynamics and Materials Conference (2007), Publisher: AIAA, Pages:23-26.
    [52] Rudolph N Yurkovich, A Flutter Analysis of a Morphing Aircraft based on a Co-planar,Variable Geometry, Joined Wing,49th AIAAASMEASCEAHSASC Structures StructuralDynamics and Materials (2008), Publisher: American Institute of Aeronautics and Astronautics,1801Alexander Bell Drive, Suite500, Reston, VA,20191-4344, USA, Pages:1-16.
    [53] Neha Gandhi, Akhilesh Jha, Jeffrey Monaco, Intelligent Control of a Morphing Aircraft,Methodology (2007) Issue: April.
    [54] Westfall, James T, Structural Optimization of a Distributed Actuation System In A FlexibleIn-Plane Morphing Wing, Master's thesis, JUN2007.
    [55] Wenwu Cao, Harley H. Cudney, Rainer Waser, Smart Materials and Structures, PNAS July20,1999vol.96no.158330-8331. DOI:10.1073/pnas.96.15.8330.
    [56] Christopher Johnston, William Mason, Virginia Tech, Actuator-Work Concepts Applied toUnconventional Aerodynamic Control Devices, Journal of Aircraft2007,0021-8669vol.44, no.5(1459-1468), doi:10.2514/1.26423.
    [57] V. Galantai, A. Sofla, S. Meguid, Bio-inspired wing morphing for unmanned aerial vehiclesusing intelligent materials, International Journal of Mechanics and Materials in Design (12November2011), pp.1-9, doi:10.1007/s10999-011-9176-0.
    [58] Kai Yu, Shouhua Sun, Liwu Liu, Novel deployable morphing wing based on SMPcomposite, Second International Conference on Smart Materials and Nanotechnology inEngineering.20October2009.
    [59] Sridhar Kota, Joel A. Hetrick, Russell Osborn, Design and application of compliantmechanisms for morphing aircraft structures, Smart Structures and Materials2003, Proceedingsof the SPIE, Volume5054, pp.24-33(2003).
    [60] Smita Bharti, Mary Frecker, George Lesieutre, Optimal Design of Tendon-ActuatedMorphing Structures: Nonlinear Analysis and Parallel Algorithm, Smart Structures and Materials2005: Modeling, Signal Processing, and Control,19May2005.
    [61] Smita Bharti, Mary Frecker, George Lesieutre, Active and Passive Material Optimization ina Tendon Actuated Morphing Aircraft Structure, Proceedings of SPIE (2004), Volume:5390,Publisher: Spie, Pages:247-257. ISSN:0277786X. DOI:10.1117/12.540198.
    [62] Blacksburg, Energy Based Topology Optimization of Morphing Wings a MultidisciplinaryGlobal/Local Design Approach.-Final technical rept.31Dec2006-1Apr2007.
    [63]朱鹏刚,葛文杰等.基于SIMP和GA变形柔性机翼后缘的拓扑优化,机械科学与技术,2009,11:1468-1472.
    [64]李哲,葛文杰等.柔性变形机翼后缘拓扑优化设计,计算机仿真,2009,3:62-65.
    [65] WA Crossley, Improved Methodology For Advanced Aircraft Design, Final rept.29Sep2000-31May2004.
    [66] Weisshaar, Terrence A, Terrence A. Weisshaar, Morphing Aircraft Technology–NewShapes for Aircraft Design, Journal of Aircraft,37:554—561.
    [67] J. Enrique Herencia, Paul M. Weaver, Morphing wing design via aeroelastic tailoring,48thAIAA/ASME/AHS/ASC Structures, Structural Dynamics and Materials Conference.Hawall.2007.
    [68] S.Ricci, M.Terraneo, Conceptual design of an adaptive wing for a three-surfaces airplane,46thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Conference,Austin, Texas18-21April2005.
    [69] P. Gamboa, J. Vale, F. Lau, Optimization of a Morphing Wing Based on CoupledAerodynamic and Structural Constraints, AIAA Journal, vol.47no.9(2087-2104).
    [70] Adam Wickenheiser, Ephrahim Garciaa, Martin Waszakb aSibley, Evaluation ofbio-inspired morphing concepts with regard to aircraft dynamics and performance, Proceedingsof SPIE (2004), Volume:5390, Publisher: SPIE, Pages:202-211. ISSN:0277786X. DOI:10.1117/12.540346.
    [71] Chwalowski Pawel, Samereh Jamhsid, Horta Lucas, Efficient Multidisiplinary AnalysisApproach for Conceptual Design of Aircraft with Large Shape Change, NATO RTO Symposiumon Morphing Vehicles, AV-168, Evora, Portugal, Paper16, April2009.
    [72] P. Gamboa, Design and Testing of a Morphing Wing for an Experimental UAV, IntegrationThe Vlsi Journal,2007.
    [73] Michael D. Skillen, William A. Crossley, Modeling and Optimization for Morphing WingConcept Generation, NASA/CR-2007-214860.
    [74] Samikkannu Raja, Design and Development of a Smart Composite T-Tail for TransportAircraft, IUTAM Symposium on Multi-Functional Material Structures and Systems IUTAMBookseries (closed),2010, Volume19, Part5,241-249, DOI:10.1007/978-90-481-3771-8_24.
    [75] J. A. Samareh, D. Sensmeier, B. A. Stewart, Rapid Assessment of Aircraft StructuralTopologies for Multidisciplinary Optimization and Weight Estimation, Technical Report, NasaLangley Research Center,2006.
    [76] Oliver Rhodes, Matthew Santer, Structural Optimization of a Morphing Shock ControlBump,52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference2011, Denver, Colorado, USA, April2011, pp:6039-6056.
    [77] MD. Skillen, Modeling and Optimization for Morphing Wing Concept Generation II Part I:Morphing Wing Modeling and Structural Sizing Techniques, Technical Report,NASA/CR-2008-214902/PT1.
    [78] J. B. Davidson, P. Chwalowski, B.S. Lazos, Flight Dynamic Simulation Assessment of aMorphable Hyper-Elliptic Cambered Span Winged Configuration, AIAA-2003-5301.
    [79] Christopher O. Johnston, William H. Mason, Cheolheui Han, Unsteady thin airfoil theoryrevisited for a general deforming airfoil, Journal of Mechanical Science and Technology Volume24, Number12(2010),2451-2460, DOI:10.1007/s12206-010-0920-4.
    [80] P. Chinnasamy,Y. T. Chen, Application of Computational Fluid Dynamics on Smart WingDesign,43th AIAA Aerospace sciences meeting and exhibit, Jan2005, Reno, Nevada, USA.
    [81] D.D. Liu, P.C. Chen, Z. Zhang, Continuous Dynamic Simulation for Morphing WingAeroelasticity,50thAIAA/ASME/ASCE/AHS/ASC/Structure Dynamics, and MaterialsConference.May2009, Palm Springs, California.
    [82] B. Smyers, D. Robertson, G. W. Reich, System Design And Modeling of A ThermallyActivated Reconfigurable Wing, ASME2010Conference on Smart Materials, AdaptiveStructures and Intelligent Systems, Volume2. ISBN:978-0-7918-4416-8.
    [83] J. Smoker, A. Baz, Monitoring the bending and twist of morphing structures, Sensors andSmart Structures Technologies for Civil, Mechanical, and Aerospace Systems2008, Proceedingsof the SPIE, Volume6932, pp.69321X-69321X-11(2008). DOI:10.1117/12.776433.
    [84] Michael D. Skillen, William A. Crossley, Research of Morphing Wing Efficiency, LangleyResearch Center, NASA/CR-2008-214903.
    [85] Edgar Cuji, Ephrahim Garcia, Prediction of aircraft dynamics with shape changing wings,Active and Passive Smart Structures and Integrated Systems2008. Proceedings of the SPIE,Volume6928, pp.69282B-69282B-10(2008). DOI:10.1117/12.776351.
    [86] J.J. Henry, J.E. Blondeau, D.J. Pines, Stability Analysis for UAVs with a Variable AspectRatio Wing, April2005, AIAA-2005-2044.
    [87] B. R. Jones, W. A. Crossley, A. S. Lyrintzis, Aerodyamic and Aeroacoustic Optimization ofAirfoils via a Parallel Genetic Algorithm, Journal of Aircraft, Vol.37, No.5, Nov.-Dec.2000, pp.1088-1096.
    [88] H. Namgoong, Airfoil Optimization for Mophing Aircraft, Ph.D. Dissertation, Shool ofAeronautics and Astronautics, Purdue Univ, West Lafayette, IN,2005.
    [89] Alexandra A. Gomes, Afzal Suleman, Spectral Level Set Methodology in the Design of aMorphing Airfoil, UTAM Symposium on Topological Design Optimization of Structures,Machines and Materials Solid Mechanics and Its Applications Volume137,2006, pp343-352.
    [90] Howoong Namgoong, William A. Crossley, Morphing Airfoil Design for MinimumAerodynamic Drag and Actuation Energy Including Aerodynamic Work,
    [91] M. Drela, XFOIL: An Analysis and Design System for Lw Reynolds Number Airfoils,Conference on Low Reynolds Number Airfoil Aerodynamics, Univ. of Notre Dame, South Bend,IN, Jun.1989.
    [92] Gregory W. Reich, Jason C. Bowman, Brian Sanders, Development of an IntegratedAeroelastic Multibody Morphing Simulation Tool,47th. AIAA/ASME/ASCE/AHS/ASCStructures, Structural. Dynamics, and Materials Conference,2006.
    [93] Jamshid A. Samareh, Aerodynamic Shape Optmization Based on Free-Form Deformation,AIAA-2004-4630.
    [94] Daisaku Inoyama, Brian P. Sanders, James J. Joo, Conceptual Design and MultidisciplinaryOptimization of In-plane Morphing Wing Structures,48th AIAAASMEASCEAHSASCStructures Structural Dynamics and Materials Conference (2007), pp:23-26.DOI:10.1117/12.658686.
    [95] M. Secanell, A. Suleman, P. Gamboa, Design of a Morphing Airfoil Using AerodynamicShape Optimization, AIAA Journal, Vol.44, No.7, July2006, pp.155-1562.doi:10.2514/1.18109.
    [96] H. Sobieczky, Parametric Airfoils and Wings, Notes on Numerical Fluid Mechanics, Vol.68, pp.71-88, Vieweg Verlag,1998.
    [97] J.A. Samareh, Survey of Shape Parameterization Techniques for High-FidelityMultidisciplinary Shape Optimization, AIAA Journal, Vol.39(2001), No.5.
    [98] G. M. Robinson, A. J. Keane, Concise Orthogonal Representation of Supercritical Airfoils,Journal of Aircraft, Vol.38, NO.3.
    [99] W. Song, A.J. Keane, A Study of Shape Parameterisation Airfoil Optimisation,10thAIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York,Aug.30-1,2004.
    [100] S. Padula, W. Li, Options for Robust Airfoil Optimization Under Uncertainty,9th AIAAMultidisciplinary Analysis and Optimization Symposium,4-6September2002.
    [101] R. M. Hicks, P. A. Henne, Wing design by numerical optimization, Journal of Aircraft, Vol.15, pp.407-412,1978.
    [102] S. Padula, W. Li, Options for Robust Airfoil Optimization Under Uncertainty,9th AIAAMultidisciplinary Analysis and Optimization Symposium,4-6September2002.
    [103] B M. Kulfan, J E. Bussoletti, Parametric Geometry Representations for Aircraft ComponentShapes. AIAA2006-6948,2006.
    [104] B M. Kulfan, A Universal Parametric Geometry Representation Method-"CST". AIAA,2007-0062,2007.
    [105] B.M. Kulfan,"CST" Universal Parametric Geometry Representation Method WithApplications to Supersonic Aircraft, Fourth International Conference on Flow Dynamics, Sendai,Japan,200726-28.
    [106] B M. Kulfan, Universal Parametric Geomentry Representation Method. Journal of Aircraft,2008, Vol.45pp.142-158. Doi:10.2514/1.29958
    [107] B M. Kulfan, J E. Bussoletti,"Fundamental" Parametric Geometry Representations forAircraft Component Shapes. AIAA-2006-6948,2006.
    [108] M. Drela, H. Youngren, XFOIL6.94User Guide, published by the authors, Cambridge, MA,10Dec.2001.
    [109] P. Huang, Y G. Meng, Optimal Theories and Methods. Beijing: Qinghua University Press,2009.(in Chinese)
    [110] K. Akhilesh Jha, N. Kudva Jayanth, Morphing Aircraft Concepts, Classifications, andChallenges. Proceedings-Spie the International Society for Optical Engineering,2004, VOL5388, pages213-224.
    [111] M.M. Keihl, R.S. Bortolin, B. Sanders, Mechanical Properties of Shape Memory Polymersfor Morphing Aircraft Applications, In: Proceedings of SPIE, Smart Structures and Materials2005: Industrial and Commercial Applications of Smart Structures Technologies, pp.143-151.
    [112] Kai Yu, Weilong Yin, Yanju Liu, Application of SMP composite in designing a morphingwing, ICEM2008: International International Conference on Experimental Mechanics2008.Proceedings of the SPIE, Volume7375., pp.737560-737560-6(2008).
    [113] Jee Soo-Chan, Development of Morphing Aircraft Structure Using SMP, Master's thesis.OH school of engineering. Mar2010.
    [114] JS Leng, K Yu, YJ Liu, Recent progress of smart composite material in HIT,4thInternational Conference on Advances in Experimental Mechanics, NOV18-20,2009.
    [115] Y. Shan, Amir Lotfi, M. Philen, Fluidic Flexible Matrix Composites For AutonomousStructural Tailoring, SPIE Conf. on Smart Structures and Materials, San Diego, CA,2007.
    [116] O. Bilgen, K. Kochersberger, E. Diggs, Morphing Wing Aerodynamic Control viaMacro-Fiber-Composite Actuators in an Unmanned Aircraft, AIAA InfoTech@AerospaceConference, Rohnert Park, CA, May2007.
    [117] Manzo Justin, Garcia Ephrahim, Wickenheiser Adam, Design of a shape-memory alloyactuated macro-scale morphing aircraft mechanism, Smart structures and integrated systems.Conference, San Jose CA, ETATS-UNIS (07/03/2005)2005, vol.5764, pp.232-240.
    [118] James J. Joo, Brian Sanders, Terrence Johnson, Optimal Actuator Location within aMorphing Wing Scissor Mechanism Configuration, Proceedings of the SPIE, Volume6166, pp.24-35(2006).
    [119] Justin Manzo, Ephrahim Garciaa, Evolutionary Flight and Enabling Smart Actuator Devices,Proceedings-Spie the International Society for Optical Engineering,2007, VOL6525, pages65250L.
    [120] R. Lyons, Fiber Optic Sensor Components and Systems for Smart Materials and Structures,Final Report for NASA Grant NAG8-1340.1999.
    [121] Gregory W. Reich, Brian P Sanders, Gregory W. Reich, Structural Shape Sensing forMorphing Aircraft, Proceedings of the SPIE, Volume5056, pp.134-141(2003).
    [122] Chris S. Baldwin, Toni J. Salter, Jason S. Kiddy, Static shape measurements using amultiplexed fiber Bragg grating sensor system, Proc.: Smart Structures and Materials: SmartSensor Technology And Measurement Sustems, SPIE, Vol.5384, pp.206-217, March2004.
    [123] Kara Peters, Sharon Kiesel, Omid Abdi, Intrinsic Polymer Optical Fiber Sensors forHigh-Strain Applications,3March2008, SPIE Newsroom. DOI:10.1117/2.1200802.1065.
    [124] J. Smoker, A. Baz, Remote Control of a Morphing Model Aircraft with Distributed Sensors,Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Proc.of SPIE Volume6529, pp6529-23,2007.
    [125] W. Akl, S. Poh, A. Baz, Wireless and Distributed Sensing of Shape and Health Monitoringof Morphing Structures, Smart Structures and Materials2006: Sensors and Smart StructuresTechnologies for Civil, Mechanical, and Aerospace Systems, Proceedings of the SPIE, Volume6174, pp.267-275(2006).
    [126] Keisuke Kumagai, A. Todoroki, Ryosuke Matsuzaki, Self-sensing and self actuating CFRPstructure using Partially Flexible Composite, Behavior and Mechanics of Multifunctional andComposite Materials2008. Proceedings of the SPIE, Volume6929, pp.69290S-69290S-8(2008).
    [127] D. H. Lee, Terrence A. Weisshaar, Aeroelastic Studies on a Folding Wing,46thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Confer, Austin,Texas,18–21April2005.
    [128] Yuji Matsuzaki, Flutter Boundary Prediction of an Adaptive Smart Wing during Process ofAdaptation Using Steady-State Response Data, Proceedings of SPIE (2005) Volume:5764, Issue:May, Publisher: SPIE, Pages:203-213.
    [129] Terrence Johnson, Mary Frecker, Mostafa Abdalla, Optimal Design of Tendon-ActuatedMorphing Structures: Nonlinear Analysis and Parallel Algorithm, In Proceedings of SPIE-TheInternational Society for Optical Engineering, Smart Structures and Materials2005-Modeling,Signal Processing, and Control, pp5757:132-143.
    [130] G.R. Andersen, D.L. Cowan, D.J Piatak, Aeroelastic Modeling, Analysis and Testing of aMorphing Wing Structure, In: Proceedings of the48th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference, April,2007.
    [131] D Lundstrom, K Amadori, P Berry, Morphing Wing Design, from Study to Flight Test,47thAIAA Aerospace Sciences Meeting including The New Horizons Forum and AerospaceExposition, Orlando, Florida, Jan.5-8,2009.
    [132] M. Detrick, G.N. Washington, Modeling and Design of a Morphing Wing for MicroUnmanned Aerial Vehicles via Active Twist,48th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference,2007, AIAA2007-1788.
    [133] Neha Gandhi, Akhilesh Jha, Jerey Monaco, Intelligent Control of a Morphing Aircraft,48thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con, Honolulu,Hawaii,23–26April2007.
    [134] Cody Lafountain, Kelly Cohen, Shaaban Abdallah, Camber Controlled Airfoil Design forMorphing UAV,47th AIAA Aerospace Sciences Meeting Including The New Horizons Forumand Aerospace Exposition, Orlando, Florida,5–8January2009.
    [135] D. Munday, J.D. Jacob, Active Control of Separation on a Wing with Oscillating Camber,AIAA Journal of Aircraft,39, No.1,2002.
    [136] J.E. Hubbard, Dynamic Shape Control of a Morphing Airfoil Using Spatially DistributedTransducers, AIAA Journal of Guidance, Control, and Dynamics, vol.29, No.3,2006,pp.612-616. doi:10.2514/1.15196
    [137] S. Barbarino, R. Pecora, L. Lecce, A Novel SMA-Based Concept for Airfoil StructuralMorphing, Journal of Materials Engineering and Performance,18:696-705.
    [138] N. J Kudva, Overview of the DARPA smart wing project. Intelligent Material Systems andStructures,2004,15:261-269.
    [139]葛文杰,朱鹏刚等.基于柔性机构的机翼前缘变形多目标优化,2010,28(2):211-217.
    [140] Sanghaun Kim, Maenghyo Cho, A simple smart wing actuator using Ni-Ti SMA, Journal ofMechanical Science and Technology,2010, Vol.24,9,1865-1873.
    [141] Min Li, JunXian Yuan, De Guan, WeiMin Chen, Application of piezoelectric fibercomposite actuator to aircraft wing for aerodynamic performance improvement, Science ChinaTechnological Sciences, February2011, Volume54, Issue2, pp395-402.
    [142] E. J. Abdullah, C. Bil and S. Watkins, Application of Smart Materials for Adaptive AirfoilControl,47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum andAerospace Exposition, Orlando, Florida,5-8January2009.
    [143] V.K. Wickramasinghe, Y. Chen, M. Martinez, Design and Verification of a Smart Wing foran Extremely-Agile Micro-Air-Vehicle, In: Proceedings of50th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference,4-7May, Palm Springs, CA, AIAA2009-2132.
    [144] Sanghaun Kim, Manwon Yoon, Hyunho Choi, Experimental Test and NumericalSimulation of SMA characteristics and Device Verification,46thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynanics, and Materials Conference,AIAA-2005-1912,2005.04, TEXAS, Ostine.
    [145] Masaki Shimomura, Yoji Maeda, Yoshikazu Tanabe, Mechanical properties of polyoxymethylene whiskers/polyxymethylene resin composite films, Journal of Materials Science24(1989)2245-2249.
    [146] Thomas Buhl, Compliant mechanism design for adaptive trailing edge flaps. XXIInternational Congress of Theoretical and Applied Mechanics. Warsaw, Poland, August15-21,2004.
    [147] D.M. Elzey, A.Y. N. Sofla, H.N.G. Wadley, A Bio-Inspired, High-Authority Actuator ForShape Morphing Structures, In: Lagoudas, D.(ed.), Proceedings of SPIE: Smart Structures andMaterials: Active Materials Behavior and Mechanics, Vol.5053, pp.92-100(2003).
    [148] James E. Hubbard, Shape Control: Distributed Transducer Design, Spatial Filtering for theControl of Smart Structures2010,145-166, DOI:10.1007/978-3-642-03804-4_6
    [149] Cezar G. Diaconu, Paul M. Weaver, Concepts for morphingairfoilsections usingbi-stablelaminatedcompositestructures, Thin-Walled Structures, Volume46, Issue6, June2008,Pages689–701.
    [150] W. Gregory Reich, C. Jason Bowman, Brian Sanders, Morphing Aircraft Structures:Research In AFRL/RB, Final rept.10Dec2001-15Sep2008.
    [151] Smita Bharti, Mary Frecker, George Lesieutre, Tendon Actuated Cellular Mechanisms forMorphing Aircraft Wing, Proceedings of SPIE (2004) Volume:5390, Publisher: Spie, Pages:247-257.
    [152] F. Mattioni, P. M. Weaver, K. D. Potter, The application of thermally induced multistablecomposites to morphing aircraft structures, Industrial and Commercial Applications of SmartStructures Technologies2008. Proceedings of the SPIE, Volume6930, pp.693012-693012-11(2008).
    [153] Apte AP, Wang BP, Topology optimization using hyper radial basis function network.American Institute of Aeronautics and Astronautics Journal46(9):2211-2218.
    [154] Apte AP, Wang BP,3D topology optimization using hyper radial basis function network.AIAA2009-2010, presented at the50th AIAA/ASME/ASCE/AHS/ASC structures, structuraldynamics and materials conference, Palm Springs, CA, May4-7.
    [155] David A Perkins, Adaptive Wing Structures, Proceedings of SPIE (2005) Volume:5762,Publisher: Spie, Pages:225-233.
    [156] David A Perkins, John L Reed, Ernie Havens, Morphing Wing Structures for Loitering AirVehicles,45th AIAAASMEASCEAHSASC Structures Structural dynamics and materialsconference,2004.
    [157] Vipul Mehta, Mary Frecker, George Lesieutre, Contact-Aided Compliant Mechanisms forMorphing Aircraft Skin, Conference on Modeling, Signal Processing, and Control for SmartStructures, San Diego, CA, MAR2008, pp.9260-9264.
    [158] G P McKnight, C P Henry, Large Strain Variable Stiffness Composites for ShearDeformations With Applications To Morphing Aircraft Skins, Proc. SPIE,6929(2008)692919/692911-692919/692912.
    [159] Yuying Xia, Michael I. Friswell, Equivalent Models of Corrugated Laminates for MorphingSkins, Proceedings of the SPIE, Volume7977, pp.79771I-79771I-10(2011).
    [160] W. G. Reich, B. Sanders, J.J. Joo, Development of Skins for Morphing Aircraft ApplicationsVia Topology Optimization, In: Proceedings of the48th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference. Honolulu, Hawaii, USA.2007.
    [161] Kingnide Raymond Olympio, Farhan Gandhi, Skin Designs Using Multi-ObjectiveTopology Optimization, AIAA Conference (2008), Issue: April, Pages:2008
    [162] N. Wang, K. Tai, A hybrid genetic algorithm for multiobjective structural optimization,IEEE Congress on Evolutionary Computation-CEC, pp.2948-2955,2007.
    [163] N. J Kudva, Overview of the DARPA smart wing project. Intelligent Material Systems andStructures,2004,15:261-269.
    [164] Jonathan D, Bartley Cho, Development of High-Rate, Adaptive Trailing Edge ControlSurface For The Smart Wing Phase2Wind Tunnel Model. Intelligence Material Systems andStructures,2004,15:279-292.
    [165]赵淳生.超声电机技术与应用[M].北京:科学出版社,2007:1-19.
    [166] K. Moored, H. Bart-Smith, The analysis of tensegrity structures for the design of amorphing wing. Journal of Applied Mechanics,2007.74,668–676.
    [167] Kerr-Jia Lu, Sridhar Kota, Synthesis of Shape Morphing Compliant Mechanisms Using aLoad Path Representation Method, Proceedings of the2003SPIE Modeling Signal Processing,and Control Conference, San Diego, CA, Vol.5049, pp.337-348, March2-6,2003.
    [168] Keith W. Moored, Stuart A. Taylor, Hilary Bart-Smith, Optimization of a tensegrity wingfor biomimetic applications, Proceedings of the45th IEEE Conference on Decision&Control,San Diego, CA, USA, December13-15,2006.
    [169] Brian Trease, Sridhar Kota, Adaptive and Controllable Compliant Systems With EmbeddedActuators and Sensors, Active and Passive Smart Structures and Integrated Systems2007, Proc.of SPIE Vol.6525,65251R,(2007)!¤0277-786X/07/$18!¤doi:10.1117/12.7159.
    [170] A. George, Lesieutre Mary Frecker, Compliant Frame: A New Paradigm to EnableReconfigurable Aircraft Structures. AFOSR Agreement FA9550-05-1-0165. March1,2005
    [171] Samantha A. Cirone, Gregory R. Hayes, Brian L. Babcox, Design, fabrication and testing ofcontact-aided compliant cellular mechanisms with curved walls, Active and Passive SmartStructures and Integrated Systems2011, Proceedings Vol.7977.
    [172] Daisaku Inoyam, P. Brian Sanders, J. James Joo, Topology Synthesis of DistributedActuation Systems For Morphing Wing Structures, Journal of Aircraft,2007. Vol44, No.4, pp.1205-1213. doi:10.2514/1.25535.
    [173] Smita Bharti1a, Mary Freckera, George Lesieutreb, Optimal Structural Design of aMorphing Aircraft Wing using Parallel Non-Dominated Sorting Genetic Algorithm IIProceedings-Spie The International Society For Optical Engineering,2006, VOL6166, pages616602.
    [174]丁倩,刘卫东,基于超声电机的变弯度翼的驱动与集成,振动测试诊断.
    [175]余雄庆,徐惠民,昂海松.飞机总体设计,北京,航空工业出版社,2000.11.p75-77.
    [176] Gerald R. Andersen, David L. Cowan, Aeroelastic Modeling, Analysis and Testing of aMorphing Wing Structure,48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,and Materials Con AIAA2007-1734,23-26April2007, Honolulu, Hawaii.
    [177]孙殿杰,谷良贤,龚春林.伸缩翼气动特性估算方法研究,飞行力学,2012,1.
    [178]陶洋,林俊,屠恒章等.实体鼓包改进超临界翼型跨声速气动特性研究,空气动力学学报,vol.25,NO.1,2007.p116-119.
    [179]陈金,陈方等,超临界翼型加装鼓包减阻的数值研究及优化设计,微型电脑应用,vol27,NO.22011.
    [180] P. Gamboa, F.J.P. Lau, J. Vale, Optimization of a Morphing Wing Based On CoupledAerodynamic and Structural Constrains. AIAA JOURNAL, Vol.47, No.9, p.2087–2104.
    [181] Yurkovich, Rudolph N., Analysis Of The Integration Of Active Aeroelastic Wing Into AMorphing Wing.50th AIAA/ASME/ASCE/AHS/ASC Structures Structural Dynamics andMaterials Conference, p.4–7.
    [182] C. Lafountain, K. Cohen, S. Abdallah, Camber Controlled Airfoil Design for MorphingUAV.47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum andAerospace Exposition, p.211-218.
    [183] M. Santer, S. Pellegrino, Topological Optimization of Compliant Adaptive Wing Structure.AIAA Journal, Vol.47, No.3, doi:10.2514/1.36679.
    [184] C. Thill, J. Etches, I. Bond, Morphing Skins, Aeronautical Journal, Vol.112, No.1129, p.117–139.
    [185] G. Murray, F. Gandhi, C. Bakis, Flexible Matrix Composite Skins for One-DimensionalWing Morphing.48th AIAA/ASME/ASCE/AHS/ASC Structures Structural Dynamics andMaterials Conference, p23–26.
    [186] S. Wakayama, I. Kroo, The Challenge And Promise of Blended Wing Body Optimization,AIAA Paper98-4736, Sep.1998.
    [187] E.M. Murman, M. Walton, E. Rebentisch, hallenges in the Better, Faster, Cheaper Era TheAeronautical Journal, Vol.105, of Aeronautical Design, Engineering and Manufacturing,October2000, pp481-89.
    [188]马松辉,吴成富,陈怀民.飞翼飞机稳定性与操纵性研究,飞行力学,Vol24,No.3:17-21.
    [189]李林,王立新.大展弦比飞翼作战飞机横航向飞行品质特性,北京航空航天大学学报,2009,6.
    [190]柴雪,王钢林,武哲,大后掠飞翼布局无人机操纵面特性及控制研究,2009,6.
    [191]周明,周洲,某电动飞翼无人机横航向稳定性飞行试验研究,2009,6.
    [192] Clara Nieto-Wire, Kenneth Sobel, Flight Control Design for a Tailless Aircraft UsingEigenstructure Assignment, International Journal of Aerospace Engineering Volume2011(2011), Article ID549131, doi:10.1155/2011/549131
    [193] Ehlers, Jana und Niedermeier, Dominik und Lei ling, Verificaiton of A Flying WingHandling Qualities Analysis By Means of In-Flight Simulation, AIAA Atmospheric FlightMechanics Conference2011,8.-11. August2011, Portland, Oregon, USA.
    [194] Wildschek A, Grunewald M, Maier R, Multi-Functional Morphing Trailing Edge DeviceFor Control Of All-Composite, All-Electric Flying Wing Aircraft,26th Congr. Int. Council of theAeronautical Sciences.
    [195] M. Carlsson, Control Surface Response of a Blended Wing Body Aeroelastic Wind TunnelModel, Journal of Aircraft,42(3):738-742,2005, doi:10.2514/1.5440
    [196] Y. Staelens, M. Page, R. Blackwelder, Study Of Belly-Flaps To Enhance Lift-And PitchingMoment Coefficient of A BWB-Airplane,25th Applied Aerodynamics Conference,AIAA-2007-4176,2007.
    [197] Bourdin P, Gatto A, Friswell M, The Application of Variable Cant Angle Winglets forMorphing Aircraft Control,24thApplied Aerodynamics Conference(San Francisco,CA).
    [198] I. M. Gregory, C. Cao, V. Patel, N. Hovakimyan, Adaptive Control Laws for FlexibleSemi-Span Wind Tunnel Model of High-Aspect Ratio Flying Wing, AIAA-2007-6525, AIAAGuidance, Navigation, and Control Conference and Exhibit,2007.
    [199] Coleman, Gary John, A Generic Stability And Control Tool For Conceptual DesignPrototype System Overview, thesis for the Degree of Master Of Science In AerospaceEngineering, The University of Texas at Arlington in Partial Fulfillment, May2007.
    [200] Y. D. Staelens, R. F. Blackwelder, Novel Pitch Control Effectors for A Blended Wing BodyAirplane In Takeoff And Landing Configuration, AIAA-2007-0068, January2007.
    [201] CharlesA. Mader, JoaquimR. R. A. Martins, Stability-Constrained Aerodynamic ShapeOptimization of a Flying Wing Configuration,13th AIAA/ISSMO Multidisciplinary AnalysisOptimization Conference,13-15September2010, Fort Worth, Texas.
    [202] Frank Gern, Daniel Inman, Rakesh Kapania, Computation of Actuation PowerRequirements For Smart Wings With Morphing Airfoils, AIAA Journal, vol.43, issue12, pp.2481-2486.
    [203] Frank H. Gern, Daniel J. Inman, Rakesh K. Kapania, Structural and Aeroelastic Modelingof General Planform Wings with Morphing Airfoils, AIAA Journal, vol.40, issue4, pp.628-637.
    [204] Frank Gern, Daniel Inman, Rakesh Kapania, Computation of Actuation PowerRequirements for Smart Wings with Morphing Airfoils, AIAA Journal, vol.43, issue12, pp.2481-2486.
    [205] R. Guiler, W. Huebsch, Wind Tunnel Analysis of a Morphing Swept Wing Tailless Aircraft,23rd Applied Aerody-namics Conference, Toronto, Ontario, June6-9,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700