用户名: 密码: 验证码:
二元机翼颤振及其主动控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颤振是动气动弹性力学中最重要的研究内容之一,本文以亚音速内二元机翼为研究对象,对机翼发生颤振时的动态特性、结构非线性对气动弹性响应的影响、颤振主动控制方法及其试验验证等方面进行了深入研究,主要研究内容如下:
     (1)研究了具有扑动和俯仰两自由度二元矩形机翼的气动弹性特性。采用片条理论推导了作用于翼面上的气动升力和气动力矩,利用能量法分别建立了两自由度二元刚性机翼和四自由度二元弹性机翼的气弹运动方程;采用特征值法、图解法和二次颤振曲线法求解机翼系统的颤振频率和颤振速度,分析了气动和结构参数对机翼气动弹性特性的影响,讨论了影响颤振速度的各个因素,得到了机翼系统频率和阻尼比随风速变化的趋势图。
     (2)研究了硬立方刚度结构非线性对二元刚性机翼颤振特性的影响,采用能量法建立了此类机翼系统的气弹运动方程,应用描述函数法对立方非线性进行等效线性化处理,采用传统的线性系统颤振分析方法预测了非线性系统的颤振速度和极限环幅值;进一步利用Hopf分岔理论验证了预测结果的准确性并根据Routh-Hurwitz判据研究零平衡点的稳定性。结果表明,立方非线性不会改变原线性系统的临界颤振速度;但当超过该速度时,系统出现极限环振动,不同初始条件下系统收敛于相同的极限环。
     (3)研究了操纵面间隙非线性对二元刚性机翼颤振特性的影响,利用拉格朗日方程建立了三自由度二元机翼系统的气弹运动方程,应用描述函数法对间隙非线性进行拟线性化处理,通过系统的特征多项式求得极限环的幅值和频率,利用摄动法推导了极限环稳定时需满足的条件。结果表明,间隙非线性导致系统的颤振提前产生,且系统出现幅值突变现象;当风速大于系统的临界颤振速度时,不同初始值将导致系统发散或产生亚谐波周期、准周期运动等复杂动力学行为。
     (4)以带操纵面的二自由度二元刚性机翼模型为研究对象,当不考虑非线性因素时,提出了一种基于实测柔度的颤振主动控制方法,建立了机翼系统的闭环控制模型,利用闭环系统的动柔度推导了实现任意极点配置时的增益。结果表明,闭环控制条件下系统颤振速度大幅度提高;当考虑立方非线性因素时,针对极点难于精确配置的情况提出了基于系统实测柔度的鲁棒控制方法,通过求解系统的极小范数最小二乘解得到了系统的控制增益,实现了极限环的准确配置和期望极点在一定范围内的配置,使系统具有很好的鲁棒性。
     (5)以具有NACA0018型标准截面的二元刚性机翼模型为试验对象,设计了风洞试验装置和控制系统,对基于动柔度法的系统极点配置和颤振主动控制理论进行了验证。试验结果表明,基于测量得到的系统动柔度,结合求解控制增益的方法,可方便地实现系统的任意极点配置;相比采用提高模态阻尼的方法,采用分离系统模态频率的方法可更加有效地提高系统的颤振速度;试验证明了动柔度法在颤振主动控制中的有效性和准确性。
The flutter phenomenon is one of the most important problems in dynamicaeroelastictiy. In this dissertation, by taking two-dimensional airfoil in subsonic flow as theresearch object, the flutter characteristics, the influence of structure nonlinearities onaeroelastic response, flutter active control method and its test verification aresystematically and thoroughly studied. The main contents are included as follows:
     (1) The aeroelastic characteristics of two-dimensional airfoil with flap and pitchdegrees of freedom is investigated. Applying strip theory, the expressions of unsteadyaerodynamic for lift and pitching moment acting on airfoil are derived, then aeroelasticequations of motion for two degrees of freedom rigid airfoil and four degrees of freedomflexible airfoil are established by using energy method. Eigenvalue method, graphicmethod and flutter conic method are employed to determine flutter frequencies and fluttervelocity. The effects of system parameters on aerodynamic characteristics are analyzed andsubsequently the trends of frequency and damping ratio for system are obtained.
     (2) The effect of cubic hard spring stiffness in pitching direction on fluttercharacteristic of two-dimensional rigid airfoil is studied. Firstly, with the help of describingfunction method, the equivalent linear flutter motion equations of airfoil system areestablished based on energy method. Then using the traditional linear analytical method topredict the flutter speed and limit circle amplitude of original nonlinear system.Furthermore, Hopf bifurcation theory is used to verify the accuracy of the above results,and the Routh-Hurwitz criterion to determine the stability of system. Finally, it isconcluded that cubic nonlinearity has no effects on flutter speed of the corresponding linearsystem, but the nonlinear airfoil system will generate limit circle oscillation behavior whenthe air speed beyond the flutter speed, moreover the system will converge to the same limitcircle under different initial value.
     (3) Considering the effects of freeplay in control surface, aeroelastic equations ofthree degrees of freedom two-dimensional airfoil system are constructed with Lagrangianequation. Similarly, by the use of describing function method to deal with the freeplaynonlinearity, then amplitude and frequency of limit circle could be deduced from thecharacteristic polynomial of system, thereafter the conditions for stabilization system arederived by perturbation technique. The numerical simulation shown that freeplaynonlinearity leads to the flutter phenomenon advanced, and the jumping behavior of limit circle amplitude for control surface deflection could be observed. In addition, the differentinitial condition of system will cause complex dynamic responses, such as period motionor divergence.
     (4) A two-dimensional airfoil with a control surface is studied, in which thenonlinearities are not included. A novel flutter active control method based on measuredreceptance is put forward, the close-loop control model of airfoil system is conducted, andcontrol gains can be derived by using its receptance, with the gains the poles can beassigned arbitrarily. It is conclude that the critical flutter speed is greatly increased underthe closed-loop system by way of numerical simulation. When cubic nonlinearity inpitching direction is considered, a robust control method based on measured receptance isproposed according to the difficulty of accurately assigning desired poles, where thecontrol gains can be obtained by solving the minimal norm least square solution fornonlinear airfoil system. With the proposed method, limit circle can be assigned accuratelyand the desired poles can be assigned around a range of values, the system has very goodrobustness.
     (5) Take a working section containing a NACA0018airfoil as the wind tunnel testobject, the test fig and control system are designed and built firstly. Then the verificationfor the above theoretical analysis including pole assignment and flutter active controlmethod is implemented through the wind tunnel test. The results shown that combing thesolved gains, the desired poles can be assigned conveniently based on the measuredreceptance. The flutter speed could be increased more efficiently by separating the flap andpitch frequencies method than increasing the mode damping ratio method. Experimentalresults validate the availability and accuracy of the receptance method in flutter activecontrol.
引文
[1] Livne E. Future of airplane aeroelasticity[J]. Journal ofAircraft,2003,40(6):1066-1092.
    [2] Bisplinghoff R L, Ashley H. Principles of aeroelasticity[M]. Courier Dover Publications,1962.
    [3] Fung Y C. An Introduction to the Theory of Aeroelasticity John Wiley and Sons[J].New York, NY,1955.
    [4] Scanlan R H, Rosenbaum R. Aircraft vibration and flutter[J]. The Kacmillan Company, New York,1951.
    [5] Bisplinghoff R L. H. Ashley, and RLHalfman. Aeroelasticity[M]. Dover:Addison Wesley,1955.
    [6] Kehoe M W. A historical overview of flight flutter testing[M]. National Aeronautics and SpaceAdministration, Office of Management, Scientific and Technical Information Program,1995.
    [7] Lanchester F W. Torsional vibration of the tail of an airplane[J]. ARCR. and M.:Part1.1916:276-283.
    [8] Bairstow L, Fage A. Oscillations of the tail plane and body of an airplane in flight[J]. ARCR. andM.:Part2.1920:461-467.
    [9] Mottershead J E, Ram Y M. Inverse eigenvalue problems in vibration absorption: passivemodification and active control[J]. Mechanical systems and signal processing,2006,20(1):5-44.
    [10] Singh K V, McDonough LA, Mottershead J, et al. Active Aeroelastic Control Using the ReceptanceMethod[C]. ASME,2010.
    [11] Tisseur F, Meerbergen K. The quadratic eigenvalue problem[J]. Siam Review,2001,43(2):235-286.
    [12]陈桂彬,杨超,邹丛青.气动弹性设计基础[M].北京:北京航空航天大学出版社,2010.
    [13]道尔,陈文俊.气动弹性力学现代教程[M].北京:宇航出版社,1991.
    [14] Theodorson G A, TheodorsonAG. Amodern dictionary of sociology[M]. London: Methuen,1970.
    [15] Djayapertapa L, Allen C B. Aeroservoelastic computations in unsteady transonic flow[J]. AIAApaper,2000,2000-4226.
    [16] Peters D A. Toward a unified lift model for use in rotor blade stability analyses[J]. Journal of theAmerican Helicopter Society,1985,30(3):32-42.
    [17] Ashley H, Zartarian G. Piston theory-a new aerodynamic tool for the aeroelastician[J]. Journal ofthe Aeronautical Sciences,1956,23(12):1109-1118.
    [18] Nydick I, Friedmann P P, Zhong X. Hypersonic panel flutter studies on curved panels[J]. AIAApaper,1995,1485.
    [19]李静.导弹气动伺服弹性稳定性分析[J].现代防御技术,2000,28(4):34-40.
    [20] Borglund D, Kuttenkeuler J. Active wing flutter suppression using a trailing edge flap[J]. Journal ofFluids and Structures,2002,16(3):271-294.
    [21] Olds S D. Modeling and LQR control of a two-dimensional airfoil[D]. Virginia PolytechnicInstitute and State University,1997.
    [22] Rodden W P, Johnson E H. MSC/NASTRAN Aeroelastic Analysis: User's Guide, Version68[M].MacNeal-Schwendler Corporation,1994.
    [23]管德,宗捷.结构非线性对颤振特性的影响[J].北京航空航天大学学报,1994,20(4):357-361.
    [24] Lau S L, Cheung Y K. Amplitude incremental variational principle for nonlinear vibration ofelastic systems[J]. ASME Journal of Applied Mechanics.198l,1981,48.
    [25] Incremental harmonic balance method with multiple time scales for aperiodic vibration ofnonlinear systems[J].1983.
    [26] Pierre C, Dowell E H. A study of dynamic instability of plates by an extended incrementalharmonic balance method[J]. Journal of applied mechanics,1985,52(3):693-697.
    [27] Cheung Y K, Chen S H, Lau S L. Application of the incremental harmonic balance method to cubicnon-linearity systems[J]. Journal of Sound and Vibration,1990,140(2):273-286.
    [28]陈树辉.应用于具有二次,三次非线性系统的增量谐波平衡法[J].非线性动力学学报,1993,1(1):73-79.
    [29] LAU S H I L I N, TIAN Q L I, LIU Y U B I O. A dynamic analysis of locally nonlinear structureby IHB method[J]. Acta mechanica solida sinica,1993,6(1):99-113.
    [30] Raghothama A, Narayanan S. Bifurcation and chaos in geared rotor bearing system by incrementalharmonic balance method[J]. Journal of Sound and Vibration,1999,226(3):469-492.
    [31] Raghothama A, Narayanan S. Non-linear dynamics of a two-dimensional airfoil by incrementalharmonic balance method[J]. Journal of Sound and Vibration,1999,226(3):493-517.
    [32] Raghothama A, Narayanan S. Bifurcation and chaos in escape equation model by incrementalharmonic balancing[J]. Chaos, Solitons&Fractals,2000,11(9):1349-1363.
    [33]李学平,肖万伸.非线性强迫系统的分叉[J].振动与冲击,2002,21(2):48-49.
    [34] Khalil H K. Nonlinear systems,3rd[J]. New Jewsey, Prentice Hall,2002.
    [35] Slotine J J E, Li W. Applied nonlinear control[M]. New Jersey: Prentice hall,1991.
    [36]陈桂彬,邹丛青,杨超.气动弹性设计基础[M].北京:北京航空航天大学出版社,2004.
    [37] Dowell E H, Edwards J W, Strganac T W. Nonlinear Aeroelasticity[J]. Journal of Aircraft,2003,40(5):857-874.
    [38] Dowell E H, D. Tang, Nonlinear aeroelasticity and unsteady aerodynamics[J]. AIAAJournal,2002,40(9):1697-1707.
    [39] H. W. Forsching.气动弹性力学原理(沈克扬译)[M].上海:上海科学技术文献出版社,1982.
    [40] I. E. Garrick, W. H. Reed III. Historical Development of Aircraft Flutter[J]. Journal of Aircraft,1981,18(11):897-912.
    [41] E.Nissim. Flutter Suppression Using Active Controls Based on the Concepts of AerodynamicEnergy[J]. NASATN D-6199,1971.
    [42] E.Nissim, John J. Berken.Control Spanwise Placement in Active Flutter Suppression Systems[J].NASATechnical Paper,1988,9:2873.
    [43] Waszak, Martin R., Srinathkumar, S.Design and Experimental Validation of a Flutter SuppressionController for theActive Flexible Wing[J]. NASATechnical Memorandum,1992,4381:138-155.
    [44] Pratt, R.W.Flight Control Systems: Practical Issues in Design and Implementation[M]. London, TJInternational, Padstow, Cornwall,2000.
    [45] Hak-Tae Lee, Ilan M. Kroo, Stefan Bieniawski.Flutter Suppression for High Aspect Ratio FlexibleWings Using Microflaps[J].AIAA2002-1717.
    [46] Jeffrey, D., Zhang X., and Hurst, D. W.. Aerodynamics of Gurney Flaps on a Single-ElementHigh-Lift Wing[J]. Journal of Aircraft,2000,37(2):295-301.
    [47] Giguere, P., Lemay, J., and Dumas, G.. Gurney Flap Effects and Scaling for Low-Speed Airfoils[C].Proceedings of theAIAAApplied Aerodynamics Conference, San Diego,1995.
    [48] Jennifer Heeg. Analytical and Experimental Investigation of Flutter Suppression by PizoelectricActuation[J].NASATechnical Paper,1993:32-41.
    [49] C.Y.Lin, E.F.Crawley, J.Heeg. Open and Closed loop Results of Strain-actuated Acitve AeroelasticWing[J]. Journal ofAircraft,1996,33(5):987-994.
    [50] Ram, Yitshak M, Mottershead, John E. Receptance method in active vibration control[J]. AIAAJournal,2007,45(3):562-567.
    [51] Xiaojun Wei, John E Mottershead. Limit Cycle Assignment in Nonlinear Aeroelastic Systems usingDescribing Functions and the Receptance Method[C]. Proceedings of the31st IMAC, AConference on Structural Dynamics,2013,7.
    [52] Woolston D S, Runyan H L, Andrews R E. An investigation on effect of certain types of structuralnonlinearities on wing and control surface flutter[J]. Journal of the Aeronautical Sciences,1957,24:57263.
    [53] Shen S F. An approximate analysis of nonlinear flutter problems[J]. Journal of the AeronauticalSciences,1959,28(45):25-32.
    [54] Breitbach E. Effects of structural non-linearities on aircraft vibration and flutter[R]. ADVISORYGROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT NEUILLY-SUR-SEINE(FRANCE),1978.
    [55] Breitbach E J. Flutter analysis of an airplane with multiple structural nonlinearities in the controlsystem[J].1980.
    [56] Lee C L. An iterative procedure for nonlinear flutter analysis[J]. AIAA journal,1986,24(5):833-840.
    [57] Lee B.H.K, Leblanc P. Flutter analysis of a two-dimensional airfoil with cubic nonlinear restoringforce, Aeronautical Note NAE-AN-36, NRC No.25438, National Research Concil ofCanada,1986.
    [58] Lee B H, Leblanc P. Flutter analysis of a two-dimensional airfoil with cubic non-linear restoringforce[J].1986.
    [59] Hauenstein A, Zara J, Eversman W.et.cl. Chaotic and nonlinear dynamic response of aerosurfaceswith structural nonlinearities[C]. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamicsand Materials Conference,33rd, Dallas, TX.1992:2367-2375.
    [60] Price S J, Alighanbari H, Lee B H K. The aeroelastic response of a two-dimensional airfoil withbilinear and cubic structural nonlinearities[J]. Journal of Fluids and Structures,1995,9(2):175-193.
    [61] Price, S.J., Lee, B.H.K., Alighanbari, H.,1994. Postinstability behaviour of a two-dimensionalairfoil with a structural nonlinearity[J].Journal ofAircraft31,1395–1401.
    [62] Levitas J, Weller T, Singer J. Poincare-like simple cell mapping for non-linear dynamicalsystems[J]. Journal of sound and vibration,1994,176(5):641-662.
    [63] Lee I, Kim S.H. Aeroelastic analysis of a flexible control surface with structural nonlinearity[J].Journal ofAircraft,1995,32(4):868-874.
    [64] Kim D H, Lee I. Transonic and low-supersonic aeroelastic analysis of a two-degree-of-freedomairfoil with a freeplay non-linearity[J]. Journal of Sound and Vibration,2000,234(5):859-880.
    [65] Kim S H, Lee I. Aeroelastic analysis of a flexible airfoil with a freeplay non-linearity[J]. Journal ofSound and Vibration,1996,193(4):823-846.
    [66] Raghothama A, Narayanan S. Nonlinear dynamics of a two-dimensional airfoil by incrementalharmonical balance method[J]. Journal of Sound and Vibration,1999,226(3):493-517.
    [67] Liu L., Wong Y.S., Lee B. H. K.. Application of the center manifold theory in nonlinearaeroelasticity[J], Journal of Sound and Vibration,2000,234(4):641-659.
    [68] Liu L, Wong Y.S. Nonlinear aeroelastic analysis using the point transformation method. Part1:freeplay model[J]. Journal of Sound and Vibration,2002,253(2):447-469.
    [69] Liu L, Wong Y.S. Nonlinear aeroelastic analysis using the point transformation method. Part2:hystersis model[J]. Journal of Sound and Vibration,2002,253(2):471-483
    [70] Dimitrijevi Z, Mortchéléwicz G D, Poirion F. Nonlinear dynamics of a two dimensional airfoilwith freeplay in an inviscid compressible flow[J]. Aerospace science and technology,2000,4(2):125-133.
    [71] Sedaghat A, Cooper J E, Wright J R, et al. Limit cycle oscillation prediction for aeroelastic systemwith continuous non-linearities[J].2000.
    [72] Shahrzad P, Mahzoon M. Limit cycle flutter of airfoils in steady and unsteady flows[J]. Journal ofsound and vibration,2002,256(2):213-225.
    [73] Lewis A P. An investigation of stability in the large behaviour of a control surface with structuralnon-linearities in supersonic flow[J]. Journal of sound and vibration,2002,256(4):725-754.
    [74] Librescu L, Chiocchia G, Marzocca P. Implications of cubic physical/aerodynamic non-linearitieson the character of the flutter instability boundary[J]. International Journal of Non-LinearMechanics,2003,38(2):173-199.
    [75] Abbas L K, Chen Q, O'Donnell K, et al. Numerical studies of a non-linear aeroelastic system withplunging and pitching freeplays in supersonic/hypersonic regimes[J]. Aerospace Science andTechnology,2007,11(5):405-418.
    [76] Emory C W, Patil M J. Predicting Limit Cycle Oscillation in an Aeroelastic System UsingNonlinear Normal Modes[J]. Journal ofAircraft,2013:1-9.
    [77] Yang Z C, Zhao L C. Analysis of limit cycle flutter of an airfoil in incompressible flow[J]. Journalof Sound and Vibration,1988,123(1):1-13.
    [78] Zhao LC, Yang Z C. Chaotic motion of an airfoil with nonlinear stiffness in incompressible flow[J].Journal of Sound and Vibration,1990,138(2):245-254.
    [79]杨翊仁,赵令诚.带外挂三角机翼极限环颤振的实验研究[J].应用里学学报,1991,8(3):38-43.
    [80] Yang Y R, Zhao L C. Subharmonic bifurcation analysis of wing with store flutter[J]. Journal ofSound and Vibration,1992,157(3):477-484.
    [81]杨翊仁,赵令诚.机翼外挂系统极限环颤振的次谐波响应研究.振动工程学报.1992,5(4):296-305.
    [82]杨翊仁,倪樵.结构非线性颤振分析的KBM法及实验对比[J].振动工程学报.1995,8(4):351-355.
    [83] Liu J K, Zhao L C. Bifurcation analysis of airfoils in incompressible flow[J]. Journal of Sound andVibration,1992,154(1):117-124.
    [84]赵永辉,胡海岩.具有操纵面间隙非线性二维翼段的气动弹性分析[J].航空学报,2003,24(6):521-525.
    [85]丁千,王冬立.结构和气动非线性机翼颤振分析[J].动力学与控制学报.2004,2(2):18-22.
    [86]刘菲,杨翊仁.立方非线性机翼的二重半稳定极限环分叉[J].西南交通大学学报,2004,39(5):638-669.
    [87]谷迎松,杨智春.带迟滞非线性环节二元机翼的气动弹性响应分析[J].机械科学与技术,2006,25(8):900-904.
    [88]蔡铭,刘济科,李军.多自由度强非线性颤振分析的增量谐波平衡法[J].应用数学和力学,2006,27(7):833-838.
    [89]任爱娣,张琪昌.具有不对称间隙的二元机翼颤振研究[J].工程力学,2006,23(9):25-29.
    [90]李道春,向锦武.迟滞非线性二元机翼颤振特性分析[J].航空学报,2007,28(3):600-604.
    [91]郑国勇,杨翊仁.超音速流中结构非线性二元机翼的复杂响应研究[J].振动与冲击,2007,26(1):96-100.
    [92]郑国勇,杨翊仁.具由操纵面立方非线性机翼的混沌响应[J].工程力学,2010,27(2):209-221.
    [93]李道春,向锦武.控制面间隙对非线性二元机翼气动弹性响应的影响[J].航空学报,2009,30(8):1385-1391.
    [94]陈衍茂,刘济科.非线性颤振极限环稳定性判别的复数正规形法[J].航空动力学报,2004,22(4):614-617.
    [95]陈衍茂,刘济科.非线性颤振系统中既是超临界又是亚临界的Hopf分岔点研究[J].应用数学和力学,2008,29(2):181-187.
    [96] Chen Y M, Liu J K. Homotopy analysis method for limit cycle oscillations of an airfoil with cubicnonlinearities[J]. Journal of Vibration and Control,2010,16(2):163-179.
    [97] Chen Y M, Liu J K, Meng G. Incremental harmonic balance method for nonlinear flutter of anairfoil with uncertain-but-bounded parameters[J]. Applied Mathematical Modelling,2012,36(2):657-667.
    [98]郭虎伦,陈予恕.超声速流中含间隙和立方非线性二元机翼的动力学分析[J].应用数学和力学,2012,33(1):1-13.
    [99]陈科文,赵海,周立杰等.超声速流中二元机翼的颤振与极限环[J].动力学与控制学报,2012,10(1):62-66.
    [100]丁千,陈予恕.用胞映射法分析双线性结构刚度的经济机翼颤振[J].空气动力学学报,2006,20(2):123-131.
    [101]吴志强,张建伟.二元机翼极限环颤振复杂分岔[J].工程力学,2008,25(2):52-55.
    [102] Ding Q, Wang D L. The flutter of an airfoil with cubic structural and aerodynamicnon-linearities[J].Aerospace science and technology,2006,10(5):427-434.
    [103]郑国勇.结构非线性超音速颤振系统的复杂响应研究[D].成都:西南交通大学,2008.
    [104]赵海.超声速/高超声速流中二元机翼的颤振与极限环[D].长春:哈尔滨工业大学,2009.
    [105]王冬立.结构和气动非线性机翼的颤振与控制研究[D].天津:天津大学,2005.
    [106]刘海英.具有立方非线性机翼极限环颤振的研究[D].天津:天津大学,2004.
    [107]袁鹏程.非定常跨音速机翼的颤振分析[D].杭州:浙江大学,2011.
    [108]刘菲.非线性气动弹性系统的分叉分析[D].成都:西南交通大学,2007.
    [109]牟让科,机翼非线性颤振和抖振特性研究[D].西安:西北工业大学,2003.
    [110] Nissim E. Flutter suppression using active controls based on the concept of aerodynamicenergy[J].1971.
    [111] G. L. Ghiringhelli., M. Lanz, P.Mantegaza. Active Flutter Suppression for a Wing Model[J].Journal ofAircraft,1990,27(4):334-341.
    [112] Millott T A, Friedmann P P. Vibration reduction in hingeless rotors in forward flight using anactively controlled trailing edge flap: implementation and time domain simulation[C]. Proceedingsof the AIAA/ASME/ASCE/AHS/ASC35thStructures, Structural Dynamics and Materials Conf,Hilton Head, South Carolina,1994.
    [113] V. Mulhopadyay. Flutter Suppression Control Law Design and Testing for the Active FlexibleWing[J]. Journal ofAircraft,1995,32(1):45-51.
    [114] C. Y. Lin, E. F. Crawley, J. Heeg. Open and Closed-Loop Results of Strain Actuated ActiveAeroelastic Wing[J]. Journal ofAircraft,1996,33(5):987-994.
    [115] I. D. Roy, W. Eversman. Adaptive Flutter Suppression of an Unswept Wing[J]. Journal of Aircraft,1996,33(4):775-783.
    [116] W. Eversman, I. D. Roy. Active Flutter Suppression Using Multi-Input/Multi-Output AdaptiveLeast Mean Square Control[J]. Journal of Aircraft,1997,34(2):244-250.
    [117] Kim S J. Comparison of active and passive suppression of nonlinear panel flutter using finiteelement method[C]. AIAA Structures, Structural Dynamics and Materials Conf and Exhibit,41st,Atlanta, GA,Apr,3-6,2000.
    [118] T. W. Strganac, J. Ko, D. E. Thompson. Identification and Control of Limit Cycle Oscillations inAeroelastic Systems[J]. Journal of Guidance, Control, and Dynamics,2000,34(4):1279-1286.
    [119] J. Ko, T. W. Strganac, A. J. Kurdila. Nonlinear Adaptive Control of an Aeroelastic System viaGeometric Methods[C].39thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andMaterials Conferemnce.1998, Long Beach CA, AIAA98-1795.
    [120] J. Ko, A. J. Kurdila, T. W. Strganac. Nonlinear Control of a Prototypical Wing Section withTorsional Nonlinearity[J]. Journal of Guidance, Control, and Dynamics,2000,20(6):1181-1189.
    [121] S. N. Singh, W. Yim. State Feedback Control of an Aeroelastic System with StructuralNonlinearity[J]. Aerospace Science and Technology,2003,7(1):23-31.
    [122] N. Bhoir, S. N. Singh. Output Feedback Nonlinear Control of an Aeroelastic System withUnsteadyAerodynamics[J].Aerospace Science and Technology,2004,8(3):195-205.
    [123] Rao V. M., Behal A., Marzocca P. Hierarchical adaptive controller for a nonlinear aeroelastic wingsection with multiple control surfaces[C].200544th IEEE Conference on Decision and Control&European Control Conference,2005,1-8:2487-2492.
    [124] Suleman Afzal, Moniz Paulo. Active aeroelastic aircraft structures[J]. Computational Mechanics:Solids, Structures and Coupled Problems,2006,6:85-106.
    [125] Rocha J, Moniz P, Suleman A. Aeroelastic control of a wing with active skins using piezoelectricpatches[J]. Mechanics ofAdvanced Materials and Structures,2007,14(1):23-32.
    [126] Librescu Liviu, Na Sungsoo, Qin Zhanming. Active aeroelastic control of aircraft compositewings impacted by explosive blasts[J]. Journal of Sound and Vibration,2008,36(3):285-305.
    [127] Munteanu, Eliza.3D Wing Model Analysis for Flutter Active Control[J]. Control Engneering andApplied informatics,2010,12(4):36-42.
    [128] Zeng Jie, Moulin Boris, de Callafon Raymond.Adaptive Feedforward Control for Gust LoadAlleviation[C]. AIAAAtmospheric Flight Mechanics Conference,2010,33(3):862-872.
    [129]杨永年.二元颤振主动抑制系统的数字仿真研究[J].西北工业大学学报,1984,2(4):413-420.
    [130]卢叔全.用极点配置法确定双输入、多输出系统的控制律及其在颤振主动抑制研究中的应用[J].南京航空航天大学学报学报,1984,2:128-138.
    [131]耿征,傅道里.特征结构配置及其在飞行控制系统设计中的应用[J].航空学报,1985,6(2):164-171.
    [132]王卫平,顾仲权,朱德懋.颤振主动抑制控制律的研究[J].航空学报,1986,7(6):566-574.
    [133]顾仲权.二元机翼颤振主动抑制控制律的确定[J].南京航空航天大学学报,1982,1:36-46.
    [134]邹丛青,陈桂彬.机翼/外挂颤振主动抑制的控制律研究[J].力学学报,1991,23(3):274-282.
    [135]朱美玲.振动主动控制系统理论与实验研究[D].南京:东南大学,1994.
    [136]胡卫兵.颤振的增益调度控制实验研究[J].实验力学,2000,15(4):454-459.
    [137]陈伟民,管德,李敏.采用分布式压电驱动器升力面的颤振主动抑制[J].力学学报,2002,34(5):756-763.
    [138]牟全臣,黄文虎,郑钢铁等.航天结构主、被动一体化振动控制技术的研究现状和进展[J].应用力学学报,2001,18(3):1-7.
    [139]任勇生,韩景龙,向锦武.飞行器非线性气动弹性和颤振主动控制研究进展[J].力学季刊,2003,24(4):534-540.
    [140]杨发友,顾仲权.飞机机翼颤振自适应抑制研究[J].南京航空航天大学学报,2004,36(6):708-712.
    [141]王晓磊,吴宏鑫.挠性航天器振动抑制的自适应方法及实验研究[J].宇航学报,2005,26(3):275-281.
    [142]谷迎松,杨智春.带迟滞非线性环节二元机翼的气动弹性响应分析[J].机械科学与技术,2006,25(8):900-904.
    [143]蔡铭,刘济科,李军.多自由度强非线性颤振分析的增量谐波平衡法[J].应用数学和力学,2006,27(7):833-838.
    [144]李道春,向锦武.迟滞非线性二元机翼颤振特性分析[J].航空学报,2007,28(3):600-604.
    [145]马红杰.结构极点配置中输出反馈增益矩阵的模态算法研究[D].吉林大学,2007.
    [146]孟艳平.重特征值结构极点配置中输出反馈增益矩阵的模态算法研究[D].吉林大学,2008.
    [147]王艳光.结构振动控制的动柔度法研究[D].长春:吉林大学,2008.
    [148]李道春,向锦武.非线性气动弹性模型参考自适应控制[J].航空学报,2008,29(2):280-284.
    [149]丁千,陈玉恕.机翼颤振的非线性动力学和控制研究[J].科技导报,2009,27(2):53-61.
    [150]宋晨,吴志刚,杨超.基于PID控制器的颤振主动抑制控制律设计[C].第十一届全国空气弹性学术交流会,2009.
    [151]李正强,张怡哲,宋述杰,邓建华.非线性结构自适应模型逆飞行控制律设计研究[J].西北工业大学学报,2009,27(4):471-476.
    [152]欧阳绍修,谷迎松.采用非定常涡气动力理论的非线性颤振主动抑制仿真研究[J].机械科学与技术,2010,29(8):1060-1064.
    [153]杨超,宋晨,吴志刚,张瞿辉.多控制面飞机的全机颤振主动抑制设计[J].航空学报,2010,31(8):1501-1508.
    [154] Waszak M R. Robust Multivariable Flutter Suppression for Benchmark Active ControlTechnology Wind-tunnel Model[J]. Journal of Guidance, Control, and Dynamics,2001,24(1):147-153.
    [155] Borglund D. Robust Aeroelastic Stability Analysis Considering Frequency-domain AerodynamicUncertainty[J]. Journal ofAircraft,2003,40(1):189-193.
    [156] Borglund D, Nilsson U. Robust Wing Flutter Suppression Considering AerodynamicUncertainty[J]. Journal ofAircraft,2004,41(2):331-334.
    [157]孙卫,邹丛青.多变量气动伺服弹性系统的鲁棒稳定性研究[J].北京航空航天大学学报,1999,25(4):447-450.
    [158] Fujimori A, Nikiforuk P N.A Design of Active Flutter Suppression Control System UsingSynthesis and Controller Reduction[J].PIME,1997,211(G):183-191.
    [159] Vipperman J S, Clark R L, Conner M. Experimental active control of a typical section using atrailing-edge flap[J]. Journal ofAircraft,1998,35(2):224-229.
    [160] Turevskiy A, Feron E, Paduano J. Flutter boundary prediction using experimental data[C].2ndInternational Conference on Nonlinear Problems in Aviation and Aerospace,Embry RiddleAeronaut University, Daytona Beach, FL,1999,1-2:761-769.
    [161] Silva W A, Keller D F, Florance J R. Experimental steady and unsteady aerodynamic and flutterresults for HSCT semispan models[J]. AIAAJournal,2000,1(1-3):1943-1953.
    [162] Vivek Mukhopadhyay. Transonic Flutter Suppression Control Law Design and Wind-Tunnel TestResults[J]. Journal of Guidance, Control, and Dynamics,2000,23(5):930-937.
    [163] R.E.Richard. Optimized Flutter Control for an Aeroelastic Delta Wing[D]. Durnam NC: DukeUniversity,2002.
    [164] Chowdhury AG, Sarkar P P. Identification of eighteen flutter derivatives of an airfoil and a bridgedeck [J]. WINDAND STRUCTURES,2004,7(3):187-202.
    [165] De Marqui C, Belo E M, Marques F D. A flutter suppression active controller[J]. Proceedings ofthe Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering,2005,219(G1):19-33.
    [166] Ardelean E V, McEver M A, Cole D G,Clark R L. Active flutter control with V-stackpiezoelectric flap actuator[J]. Journal ofAircraft,2006,43(2):482-486.
    [167] McEver Mark A, Ardelean Emil V, Cole Daniel G.. Active control and closed-loop identificationof flutter instability in typical section airfoil[J]. Journal of Guidance, Control, and Dynamics,2007,30(3):733-740.
    [168] Tang Deman, Grasch Adam, Dowell Earl H. Gust Response for Flexibly Suspended High-AspectRatio Wings[J]. AIAAJournal,2010,48(10):2430-2444.
    [169] Tang Deman, Dowell Earl H. Aeroelastic Response Induced by Free Play, Part2:Theoretical/Experimental CorrelationAnalysis[J].AIAAJournal,2011,49(11):2543-2554.
    [170] Song Jieun, Kim Taehyoun, Song Seung Jin. Experimental determination of unsteadyaerodynamic coefficients and flutter behavior of a rigid wing[J]. Journal of Fluids and Structures,2012,29:50-61.
    [171]陈奎林.飞机设计中的颤振综合分析[J].南京航空航天大学学报,1999,31(6):686-690.
    [172]杨智春,李斌.利用电流变阻尼铰抑制操纵鸭翼颤振试验研究[J].机械科学与技术,2000,19:3-4.
    [173]陈伟民,管德,李敏.采用分布式压电器升力面的颤振主动抑制[J].力学学报,2002,34(5):756-763.
    [174]庞志一.某无人机机翼颤振模型试验研究[J].战术导弹技术,2002,(5):26-31.
    [175]林衍荣.外挂物、副翼操纵刚度对机翼颤振特性的影响[J].洪都科技,2003,(4):6-11.
    [176]孙伟,胡海岩.基于多级磁流变阻尼器的操纵面振动半主动抑制—数值仿真与风洞试验[J].振动工程学报,2005,18(1):14-18.
    [177]于明礼.基于超声电机作动器的二维翼段颤振主动抑制[D].南京:南京航空航天大学,2006.
    [178]冉景洪,季辰,刘子强,赵玲.跨声速风洞颤振试验模型激励与数据处理方法研究[J].实验流体力学,2009,2(4):87-97.
    [179]陈磊,吴志刚,杨超,唐长红等.多控制面机翼阵风减缓主动控制与风洞试验验证[J].航空学报,2009,30(12):2250-2256.
    [180] Kelly S G. Mechanical Vibrations: Theory andApplications[M]. Cl-Engineering,2011.
    [181] Niblett LT. A guide to classical flutter[J].Aeronautical Journal,1988,92:339-354.
    [182] Arthur Gelb, Sc.D., Wallace E. Vander Velde, Sc.D. Multiple-input Describing Functions andNonlinear System Design[M]. McGraw-Hill Book Company.1968.
    [183] Lancaster P, Tismenetsky M T. The theory of matrices: with applications[M]. Academic Press,1985.
    [184] Wright J R, Wong J, Cooper J E, et al. On the use of control surface excitation in flutter testing[J].Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2003,217(6):317-332.
    [185] Zimmermann H. Aeroservoelasticity[J]. Computer methods in applied mechanics and engineering,1991,90(1):719-735.
    [186]李勇.Sherman—Morrison公式的一个推广[J].辽宁工程技术大学学报,1993,12(2):105-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700