用户名: 密码: 验证码:
新型多工作模式塔形直线超声电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线超声电机具有无电磁干扰、结构简单、设计灵活等特点,尤其它能直接实现直线运动并获得很高定位精度的优点,使之受到业界广泛关注。近些年,直线超声电机的基础理论研究和应用基础研究均获得长足进步,一些直线超声电机在德国、日本、美国、以色列等发达国家已进入产业化阶段,部分产品对一些高新技术装备的性能提升提供了强有力的支撑。经过近些年的锐意开拓,我国直线超声电机的研究开发工作取得了较大进展,但距离实际应用还有一定差距。
     本课题在国家自然科学基金重点项目“压电精密致动技术的基础研究”(No.50735002)的资助下,以多工作模式塔形拓扑结构直线型超声电机为研究对象,设计制作了三种不同塔形结构的原理样机,通过对比研究电机的不同驱动方式对输出性能的影响规律,揭示其微步进特性,建立高精度定位控制方法和措施,为直线超声电机在大行程情况下的微纳米级定位控制技术奠定基础。本论文的主要研究内容和成果如下:
     1、通过回顾直线型超声电机的发展历史和现状,概括了直线型超声电机的特点;对现有塔形结构直线超声电机和多工作模式直线超声电机进行了概述分析,明确了本课题的研究目标。按照超声电机驱动端面的理论运动轨迹对超声电机进行了分类,认为这种分类方法更容易将超声电机的多种工作模式及多种运行机理统一化。在此基础上,提出了将超声电机驱动端面的运动轨迹分为推程与回程运动轨迹,并对推程运动轨迹做功与回程运动轨迹做功进行比较的能量传递分析方法。通过对超声电机进行能量传递分析,得出了各类超声电机所共同遵循的能量传递规律。
     2、研究了双模态驱动直线超声电机的相关问题,包括异形工作模态的设计和接触边界条件的频率协调方法、定子支撑方法、预压力施加方式及其对定子最佳工作频率的影响规律。研制了一种工作模态控制解耦的塔形直线超声电机;采用了突变结构弹性支撑结构,用于缓解支撑对定子工作模态的影响;通过测定定子的工作模态频率与预压力的关系,获得了电机在共振运行模式下的最佳工作点;设计了基于三滚子结构的通用化的超声电机一维精密定位运动平台。
     3、提出了一类倾斜动子结构超声电机的设计方法,并研制了一种单模态驱动双向运动的斜轨塔形直线超声电机。分析了电机的工作原理及设计原则,并推导了电机运行的导轨倾角适用范围,为这一类直线超声电机的深化研究和工程设计提供了理论依据。
     4、发现了由非对称结构引起的塔形定子模态转化现象,并由此研制了一种单模态驱动双向运动的非对称定子结构的塔形直线超声电机。分析了非对称塔形直线超声电机的工作原理,为非对称定子结构这一类直线超声电机的深化研究和工程设计提供了理论依据。
     5、根据工作模态控制解耦塔形直线超声电机和非对称塔形直线超声电机的特性,分别为这两种超声电机设计了四种工作模式:共振连续运行模式、非共振连续模式、共振和非共振状态步进运行模式;通过四种工作模式的组合,建立实现大行程微纳米级精度的定位方法。实验表明,两种超声电机在共振连续运行模式可以实现高速稳定运行、在非共振连续运行模式可以实现低速稳定运行、在共振和非共振状态步进运行模式可以稳定实现纳米级(<100nm)微步距;因此四种工作模式的组合应用可以充分发挥这两种塔形直线超声电机在精确定位方面的潜力。这种思路可推广运用到其它类型的直线超声电机上。
     6、根据定子的振动能与能量阈值的关系对超声电机的瞬态特性和“死区特性”进行了理论研究,得出以下结论:超声电机的步距取决于超声电机的瞬态特性;超声电机的最小步距取决于超声电机的“死区”特性。对模态控制解耦塔形超声电机的“死区”特性进行了实验研究,用实验证实了“死区速度”的存在,进而证明了超声电机的最小步距存在极值。对模态控制解耦塔形超声电机和非对称结构塔形超声电机的纳米级精度步进实验数据进行了统计分析,得出超声电机纳米级精度步进运行的特点;提出了限制超声电机最小步距三个因素,并进而提出进一步降低超声电机步进运行的最小步距应采取的措施。
Linear ultrasonic motor(LUSM) has characteristics of non-electromagnetic interference, simplestructure, flexible design, in particular, it is easy to obtain linear motion with high positioningaccuracy and so is paid more attention to in wide industry. Recently there is considerable progress ofLUSM on basic theory research and application research, and the technologies of LUSM in Germany,Japan, the United States, Israel and other developed countries have been employed to the stage ofindustrialization. Some of the products give a strong support to enhance the performance of some hightechnology equipment. Although the technologies on LUSM have made great progress in china bymuch more efforts in recent years, there is still a large gap from practical applications.
     This research is supported by the key projects of National Natural Science Foundation of “Basicstudies on piezo precision driving technology”(No.50735002). Choosing the multi-driving-patternLUSM with tower-shaped stator to study, the author designed three prototype motors with differentstructural tower-shaped stator; according to the comparative study between their different driving lawswith relative output performance, the characteristics of the micro-stepping is revealed, and thehigh-precision positioning control method is built up, as the foundation for micron-positioning ornano-positioning technologies of the tower-shaped LUSMs in the case of large stroke control. Toconclude, main research contents and achievements of this dissertation are as follows:
     1. The research status and the history of the development in LUSM are reviewed, and thecharacteristics of LUSM are summarized. that linear ultrasonic motor is of great significance for thedevelopment of modern science and engineering technology. The existing tower-shaped LUSMs andmulti-driving-pattern LUSMs are summarized and analyzed, obtaining a clear research objective ofthis subject. In accordance with the theoretical motion trajectory of the driving end on USM, theclassification of USM is completed, and this classification method is easier to unify manifold drivingpattern and driving mechanism of USM. On this basis, it is provided by the author that the motiontrajectory of the driving end is divided into two processes: push part and return part, and a new energytransfer analysis method is obtained by comparing the push part’s acting with the return part’s acting.Through the energy transfer analysis of ultrasonic motor, the energy transfer laws of every types ofultrasonic motors are gotten.
     2. The relative issues of dual-mode-driving LUSM are researched, including the design ofUSM’s operation modes of different mode shape, modal frequency harmonizing method in the contact boundary conditions, the stator’s supporting method, pre-pressure applying method and its influenceon the optimal operating frequency of the stator. A mode-control-uncoupling LUSM with atower-shaped stator is designed and manufactured. The support structure of elastic support withabrupt changing configuration is designed to release the impact of the stator’s supporting on theUSM’s operation modes; the optimum operating point of the mode-control-uncoupling LUSMworking in the resonance mode is obtained by testing the relationship between working modalfrequency and pre-pressure;a universal one-dimension and LUSM-driving precision moving stagebased on three roller structure are designed.
     3. The design method of a kind of USM with inclined rotor are put forward, and asingle-mode-drive bi-direction-moving LUSM composed of an inclined slider and a tower-shapedstator is designed and manufactured. The working principle and the design principles of the motor areanalyzed, and the obliquity range of the inclined slider which can make the motor running normallywas derived,which provides a theoretical basis to the farther research and engineering design of theinclined-rotor USM.
     4. The mode-conversion phenomenon of a tower-shaped stator arise from asymmetrical structureis discovered, and a single-mode-drive bi-direction-moving LUSM composed of a tower-shaped statorwith asymmetrical structure is designed and manufactured. The working principle of theasymmetrical-stator LUSM is analyzed, which provides a theoretical basis to the farther research andengineering design of the asymmetrical-stator LUSM.
     5. According to the features of and the mode-control-uncoupling LUSM and theasymmetrical-stator LUSM, four operating patterns are designed. The four operating patterns include:the resonant and continuous-moving pattern, the nonresonant and continuous-moving pattern, theresonant and step-moving pattern, the nonresonant and step-moving pattern. A large strokemicron-positioning or nano-positioning method is provided by a combination of the four operatingpatterns. The experiments show that the two motors can realize high speed moving in the resonant andcontinuous-moving pattern, and can realize low speed moving in the nonresonant andcontinuous-moving pattern, and can realize nano-scale(<100nm) step moving in the resonant andstep-moving pattern, and can realize nano-scale(<100nm) step moving in the nonresonant andstep-moving pattern. So the combination of the four operating patterns can sufficiently exert the twomotor’s ability to precise positioning, and this idea can be extended to other types of LUSM.
     6. According to the relationship between the stator’s vibration energy and energy threshold,USMs’ transient characteristics and dead-zone characteristics are analyzed, and come to the following conclusion: an USM’ step distance is dependent on its transient characteristics, and an USM’sminimum step distance is dependent on its dead-zone characteristics. An experiment on the dead-zonecharacteristics of the mode-control-uncoupling LUSM has been carried out. From the experiment it isfound that the dead-zone velocity exists. The phenomenon of the existing dead-zone velocity provethat an USM’s minimum step distance has an extremum. A statistical analysis of themode-control-uncoupling LUSM’s and the asymmetrical-stator LUSM’s experiment data on thenano-scale(<100nm) step moving is made, and LUSM’s characteristics of nano-scale(<100nm) stepmoving are obtained. Three main factors to limit LUSM’s smallest step are revealed to propose themethod for the further reduction of the minimum step of LUSM.
引文
[1]赵淳生.超声电机技术与应用.北京:科学出版社,2007.9.
    [2] T SASHIDA,T KENJO.An Introduction to Ultrasonic motors. London:Oxford SciencePublications,1993.
    [3] S Ueha,Y Tomikawa. Ultrasonic motors theory and applications. Oxford University Press,1993.
    [4] Neal B. Hubbard,Martin L. Culpepper,Larry L. Howell.Actuators for Micropositioners andNanopositioners.Transactions of the ASME,2006,59(11):324-334.
    [5]赵淳生.世界超声电机技术的新进展.振动、测试与诊断,2004,24(1):1-5.
    [6]赵淳生,面向21世纪的超声电机技术,中国工程科学,2002,4(2):86-92.
    [7]赵淳生,金家楣.方板式直线超声电机及其电激励方法.中国发明专利,CN200710020965.7,2007-4-5.
    [8]赵淳生,金家楣.圆柱结构双轮足驱动直线超声电机及电激励方法.中国发明专利,CN200710020963.8,2007-4-5.
    [9]金家楣.若干新型超声电机的研究,[博士学位论文].南京:南京航空航天大学,2007.
    [10]李玉宝.新型直线型超声电机及其应用研究,[博士学位论文].南京:南京航空航天大学,2009.
    [11]时运来.新型直线超声电机的研究及其在运动平台中的应用,[博士学位论文].南京:南京航空航天大学,2011.
    [12] Jin J M, Shi Y L, Li Y B, et al.Research on novel inertial linear ultrasonic piezoelectricmotor.Optics and Precision Engineering,2008,16(12):2372-2377.
    [13] Shi Y L, Zhang H L, Li Y B, et al.Two DOF positioning stage using linear ultrasonicmotors.Transactions of Nanjing University of Aeronautics&Astronautics,2008,25(3):161-168.
    [14]陈乾伟,黄卫清,赵淳生.超声电机寿命测试的方法研究.振动、测试与诊断,2004,24(1):19-22.
    [15]时运来,李玉宝,赵淳生.面内模态直线型超声电机的优化设计.中国电机工程学报,2008,28(30):56-60.
    [16]李玉宝,时运来,赵淳生,等.高速大推力直线型超声电机的设计与实验研究.中国电机工程学报,2008,28(33):49-53.
    [17]姚志远,杨东,赵淳生.杆结构直线超声电机的结构设计和功率流分析.中国电机工程学报,2009,29(24):56-60.
    [18]黄卫清,黄国庆,赵淳生.一种新型多定子直线型超声电机的研究.压电与声光,2004,26(6):451-453.
    [19]陈乾伟,时运来,黄卫清.新型塔形直线超声电机.中国电机工程学报,2010,36(30):27-32.
    [20]陈乾伟,黄卫清.单相斜轨塔形直线超声电机设计与实验.振动工程学报,2011,24(3):260-267.
    [21] Nanomotion Ltd.Ceramic Motor.US Patent:5453653,1995-09-26.
    [22]殷之文.电介质物理学.北京:科学出版社,2005.
    [23]李远,秦自凯,周志刚.压电与铁电材料的测量.北京:科学出版社,2001.
    [24]宋道仁,肖鸣山.压电效应及其应用.北京:科学普及出版社,1980.
    [25]许煜寰.铁电与压电材料.北京:科学出版社,1978.
    [26]王树昕,董蜀湘,桂治轮,等.压电陶瓷材料对超声马达性能的影响.压电与声光.2002,22(1):23-29.
    [27]张福学,王丽坤.现代压电学.北京:科学出版社,2001.
    [28]王大春.压电陶瓷超声波电机.压电与声光,1989.11(4),53-60.
    [29]陈超.旋转型行波超声电机理论模型的研究,[博士学位论文].南京:南京航空航天大学,2005.
    [30]袁易全.超声换能器,南京:南京大学出版社,1992.
    [31]林书玉.超声换能器的原理和设计,北京:科学出版社,2004:91-98.
    [32] F J. Britten. Britten’s watch and clock maker’s handbook: dictionary and guide. New York:Arco Publishing Co.,1978:109.
    [33] Akiyama Y. Present status of ultrasonic motors in Japan. JEE. April1987:76-80.
    [34] Barth H V. Ultrasonic Drive Motor. IBM Technical Disclosure Bulletin,1973,6(7):2263.
    [35] Sashida T. Trial construction and operation of an ultrasonic vibration driven motor. OyoButsiuri,1982,51(6):713-718.
    [36] Sashida T. Motor Device Utilizing Ultrasonic Oscillation. US Patent,4562374.1984-5-16.
    [37] Linear piezoelectric ultrasonic motor. U.S. Patent,6984920,2006.
    [38] Zumeris J. European Patent Application, EP0663616A2,1994.
    [39] S. Ueha, Y. Tomikawa, et al. Ultrasonic motors: theory and applications. Oxford UniversityPress,1993.
    [40] Endo, N. Sasaki and Y. Tomikawa. Linear type ultrasonic motor using two-dimensionallypositioned piezoelectric elements. Ferroelectrics,1990.112:165-170.
    [41]上羽贞行.超音波アクチュエ—タ.电子情报通信学会志,1989,72(4):457-462.
    [42] Y.Tomikawa, T.Ogasawara. Ultrasonic motors-constructions/characteristics/applications.Ferroelectrics,1989,91:163-178.
    [43]大西一正,内藤浩一,中泽彻,等.纵-曲げ结合振动を用いた超音波リニアアクチュエ—タ.日本音响学会志,1991,47(1):27-34.
    [44] M. Kurosawa, O. Kodaira, Y. Tsuchitoi, et al. Transducer for high speed and large thrustultrasonic linear motor using two sandwich-type vibrators. IEEE Transactions on UltrasonicFerroelectrics and Frequency Control,1998,45(5):1186-1195.
    [45] T Wakai, M Kurosawa, T Higuchi. Transducer for an ultrasonic linear motor with flexibledriving part.1998IEEE Ultrasonic Symposium.
    [46]赵淳生,金家楣,时运来.二自由度超声电机.中国发明专利,CN101202519,2008-6-18.
    [47]金家楣,张建辉,赵淳生.新型方尖塔形定子二自由度超声电机的结构设计、驱动机理与性能研究.振动与冲击,2009,28(12):63-67.
    [48] P Vasiljev, S Borodinas, J Stankevichius. V-mode Piezomotor Using Flexural BendingMode.Journal of the Korean Physical Society,2010,57(4):955-958.
    [49] Siyuan He, Weishan Chen, Xie Tao, et al. Standing Wave Bi-directional Linearly MovingUltrasonic Motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control,1998,45(5):1133-1140.
    [50] http://www.elliptec.com/en/products/motor-x15g/elliptec-motor-x15g.html.
    [51] O Vyshnevskyy, S Kovalev, W Wischnewskiy. A Novel, Single-Mode Piezoceramic PlateActuator for Ultrasonic Linear Motors. IEEE Transaction on Ultrasonics,Ferroelectrics,andFrequency Control,2005,52(11):2047-2053.
    [52] M Kurosawa. State-of-the-art surface acoustic wave linear motor and its future applications.Ultrasonics,2000,38(3):15-19.
    [53] J Kim, B Kang. Micro–macro linear piezoelectric motor based on self-moving cell.Mechatronics,2009,(19):1134-1142.
    [54] Y Egashira1, K Kosaka1, T Endo1, et al. Development Of Nonresonant Ultrasonic MotorWith Sub-Nanometer Resolution.2002, IEEE Ultrasonics Symposium.
    [55] Chong-Yun Kang, Kyoung-Ho Yoo, Hyun-Phill Ko, et al. Analysis of driving mechanism fortiny piezoelectric linear motor. J Electroceram,2006,17:609-612.
    [56]陈培洪.新型非共振式压电直线电机的研究,[硕士学位论文].南京:南京航空航天大学,2011.
    [57]董蜀湘,孟永钢.利用压电和电流变功能材料构造的平面步进式驱动器,功能材料,2000,31(5):534-535.
    [58]胡伟.直线型行波超声马达的研究,[硕士学位论文].南京:南京航空航天大学,1996.
    [59]胡伟,赵淳生.直线型行波超声马达的研究.振动、测试与诊断,1996,16(3):8-14.
    [60]刘维东,狄士春.线形双向式超声马达的设计与分析.压电与声光,1997,19(4):226-230.
    [61]辜承林,董干.双π型压电超声波直线电机.中国电机工程学报,1998,18(2):226-330.
    [62]李朝东,金龙,赵淳生.复合定子型大推力行程直线超声电机特性研究.声学学报,1999,24(6):653-654.
    [63]赵淳生,李朝东.直线超声电机及其驱动振子.中国发明专利,ZL9811128.2,1998-5-7.
    [64]李朝东.仿生步行小型直线超声电机.微特电机,2001,11(6):10-11.
    [65]赵淳生,刘剑.基于矩形压电陶瓷薄板面内振动的直线超声电机,中国发明专利,ZL01127038.1,2001-7-27.
    [66]刘剑.基于薄板面内振动的直线超声电机的研究,[硕士学位论文].南京:南京航空航天大学,2001.
    [67]许海.小型、精密直线超声电机及其驱动与控制技术,[博士学位论文].南京:南京航空航天大学,2005.
    [68] Markus G. Bauer, Thomas A. Dow. Design of a linear high precision ultrasonic piezoelectricmotor. North Carolina State University, Raleigh, NC27695.
    [69]超声波线性电动机的应用产品-小型电动遥控反射镜.机电信息,Vol.5.
    [70] SQUIGGLE motor overview. http://www.newscaletech.com/downloads.html,2007-6-6.
    [71]胜又育秀,小川矿一,通口健.宇宙用π字型リニア超音波モ—タの试作.宇宙科学技术连合讲演会讲演论文集,1994,38th:123-124.
    [72] P Vasiljev, S Borodinas, S-J Yoon, et al.The actuator for micro moving of a body in aplane.Materials Chemistry and Physics,2005,91(1):237-242.
    [73] P Vasiljev, S Borodinas, R Bareikis, et al.The square bar-shaped multi-DOF ultrasonicmotor. Journal of Electroceramics,2008,20:231-235.
    [74] Kyongjai Lee, Dong-Kyun Lee, S Borodinas, et al.Analysis of Shaking Beam Actuator forPiezoelectric Linear Ultrasonic Motor.IEEE Transaction on Ultrasonics,Ferroelectrics,andFrequency Control,2004,51(11):1508-1513.
    [75] P Vasiljev. Actuator for Type “a Shaking Beam”.2002International Conference on NewActuators.
    [76] T Hemsel, M Mracek, J Twiefel, et al.Piezoelectric linear motor concepts based on couplingof longitudinal vibrations.Ultrasonics,2006,44(5):591-596.
    [77] S Borodinas, Jeong-Do Kim, Hyun-Jai Kim, et al. Nano-Positioning System Using LinearUltrasonic Motor with “Shaking Beam”.Journal of Electroceramics,2004,12:169-173.
    [78] Hyun-Phill Ko, Sangsig Kim, Chong-Yun Kang, et al.Optimization of a piezoelectric linearmotor in terms of the contact parameters.Materials Chemistry and Physics,2005,90:322-326.
    [79]薛实福,李庆祥.精密仪器设计.北京:清华大学出版社,1991.
    [80]刘俊标.微纳加工中的精密运动平台技术.北京:北京工业大学出版社,2004.
    [81] S Hidenori, H Hitoshi. Nanometer positioning of a linear motor-driven ultraprecisionaerostatic table system with electrorheological fluid dampers.CIRP Annals-ManufacturingTechnology,1999,48(1):289-292.
    [82]米凤文,戴旭涵,沈亦兵.0.1m大行程精密定位控制系统的研究.仪器仪表学报,1998,21(1):89-91,94.
    [83]朱煜,尹文生,段广洪.光刻机超精密工件台研究.电子工业专用设备,2004,33(2):25-27,44.
    [84]郝晓红,梅雪松,张东升,等.新型磁悬浮精密定位平台的研究.西安交通大学学报,2005,39(9):937-940.
    [85]雷勇,陈本永,杨元兆,等.纳米级微动工作台的研究现状及发展趋势.浙江理工大学学报,2006,23(1):72-82.
    [86]李鸣鸣,欧阳航空,龚振邦,等.精密直线运动平台的振动测试与分析.纳米技术与精密工程.2006,2:92-97.
    [87]李鸣鸣.大行程纳米定位系统若干关键技术研究,[博士学位论文].上海:上海大学,2007.
    [88] http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=1000580.
    [89] T Shigematsu, M Kurosawa, K Asai. Nanometer Stepping Drives of Surface Acoustic WaveMotor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control,2003,50(4):376-385.
    [90] T Shigematsu, M Kurosawa. Friction Drive Modeling Of Saw Motor Using Classical TheoryOf Contact Mechanics. ACTUATOR2006,10th International Conference on New Actuators.
    [91] W Van de Vijver, D Reynaerts, H Van Brussel, et al. Design and control of a novelpiezoelectric drive module for application in a multi-DOF positioning stage.2006ProceedingsOf ISMA.
    [92]曾励.机电一体化系统设计.北京:高等教育出版社,2004.
    [93] T Takano, Y Tomikawa, C Kusakabe. Same phase drive-type ultrasonic motors using twodegenerate bending vibration modes. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,1998,39(2)(1992)13-19.
    [94] A Iino, K Suzuki, M Kasuga, et al. Development of a self-oscillating ultrasonic micro-motorand its application to a watch. Ultrasonics,2000,38:54-59.
    [95]苏鹤玲,赵淳生.单相旋转型驻波超声电机的数学模型及仿真.应用力学学报.2003,20(2):78-82.
    [96] W Wischnewskiy,Waldbronn.Piezoelectric adjusting element.US Patent:6765335B2,2004-07-20.
    [97] Takeshi Morita, Ryuichi Yoshida, Yasuhiro Okamoto, et al. A Smooth Impact Rotation MotorUsing a Multi-Layered Torsional Piezoelectric Actuator. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency control,1999,46(6):1439-1445.
    [98] P Vasiljev, D Mazeika. Miniature flat type inertial piezoelectric motor.2009IEEEInternational Ultrasonics Symposium Proceedings.
    [99] Chong-Yun Kang, Kyoung-Ho Yoo, Hyun-Phill Ko, et al. Analysis of driving mechanism fortiny piezoelectric linear motor. Journal of Electroceramics,2006,17:609-612.
    [100] Kyong-Jae Lee, Hyun-Phill Ko, Chong-Yun Kang, et al. A study on the friction and thrustforce of the shaft and mobile element in the impact typed piezoelectric ultrasonic linear motor.Journal of Electroceramics,2006,17:499-503.
    [101] Jean-Marc Breguet, Reymontl Clavel. Stick and Slip Actuators: design, control, performancesand applications.1998International Symposium On Micromechatronics And Human Science.
    [102]华顺明.压电式粘滑精密运动机构驱动理论与实验研究,[博士学位论文].长春:吉林大学,2005.
    [103] Maximilian Fleischer, Dieter Stein, Hans Meixner. New Type of Piezoelectric UltrasonicMotor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control,1989,36(6):614-619.
    [104]程光明,曾平,邱晓阳,等.超声振动减摩现象的研究.压电与声光.1998,20(5):322-325.
    [105]曲建俊,姜开利,张凯,等.超声驱动的超声波振动减摩作用研究.声学学报.2006,26(6):497-502.
    [106]陈超,曾劲松,赵淳生.旋转型行波超声电机理论模型的仿真研究.振动与冲击,2006,25(2):129-133.
    [107]王光庆,沈润杰,郭吉丰.预压力对超声波电机特性的影响研究.浙江大学学报(工学版),2007,41(3):436-440.
    [108]张锦,刘晓平.叶轮机振动模态分析理论及数值方法.北京:国防工业出版社,2001.
    [109]周盛强,赵淳生.超声电机接触界面的两种简化有限元模型.振动、测试与诊断,2009,29(3):251-255.
    [110]周盛强,赵淳生.超声电机定子振动分析的模态选择.光学精密工程,2009,17(12):3009-3015.
    [111]周盛强,赵淳生,黄卫清.旋转型行波超声电机接触界面的空间域分析.中国电机工程学报,2010,36(12):63-68.
    [112] I Okumura,H Mukohjima. A structure of ultrasonic motor for auto focus lenses.1987,Proceeding Motor-Con’87,75-85.
    [113]胡海岩.机械振动与冲击.北京:航空工业出版社,1997.
    [114]施引,朱石坚.船舶动力机械噪声及其控制.北京:国防工业出版社,1990.
    [115]姚熊亮,钱徳进,张阿漫,等.刚性阻振降噪技术的应用研究与发展.中国舰船研究,2008,5(3):1-6.
    [116]刘见华,金咸定,李喆.阻振质量阻抑结构声的传递.上海交通大学学报,2003,37(8):1201-1204.
    [117] EDO piezoelectric motor. http://www.sensorsmag.com/sensors/article/articleDetail.jsp?id=361287.
    [118] W Wischnewskiy,Waldbronn.Piezoelectric drive,especially a holding frame,a friction elementand a circuit configuration.US Patent:6979934B1,2005-12-27.
    [119] K Spanner,O Vyshneevskyy, W Wishnewskiy. New linear ultrasonic micro-motor forprecision mechatronic systems. Actuator2006, Bremen.
    [120]于会民.V形直线超声电机弹性夹持装置的研究,[硕士学位论文].南京:南京航空航天大学,2011.
    [121]于会民,陈乾伟,黄卫清.柔性铰链结构夹持的直线型超声电机.微电机,2011,44(3):1-4.
    [122]于会民,王寅,陈乾伟,等.双层板簧夹持的直线型超声电机.压电与声光,2011,33(1):89-92.
    [123]黄卫清,陈乾伟.双向单模态斜轨塔形直线超声电机及电激励方式.中国发明专利:ZL200910185020.X,2011.11.30.
    [124]黄卫清,陈乾伟.双向单模态斜轨V形直线超声电机及电激励方式.中国发明专利, ZL200910184876.5,2012.05.23.
    [125]张杰.直线超声电机摩擦磨损实验装置设计和实验研究,[硕士学位论文].南京:南京航空航天大学,2011.
    [126]姚志远,吴辛,赵淳生.行波超声电机定、转子接触状态试验分析.振动、测试与诊断,2009,29(4):388-391.
    [127]丁庆军,姚志远,郑伟,等.行波型超声电机定子摩擦材料的研制及其摩擦磨损性能研究.摩擦学学报,2007,27(6):578-582.
    [128]姚志远,吴辛,尹育聪,等.超声电机定子和转子接触微观表面分析和形貌模拟.润滑与密封,2009,34(6):5-7.
    [129]温诗铸,黄平.摩擦学原理.北京:清华大学出版社.2002.
    [130]杨淋.纵扭复合型超声电机的研究,[博士学位论文].南京:南京航空航天大学,2010.
    [131]杨淋,金家楣,赵淳生.一种新型孔式模态转换型超声电机.振动、测试与诊断,2009,29(2):133-136.
    [132]杨淋,赵淳生,张建辉,等.斜槽式模态转换型超声电机振动分析及性能.北京工业大学学报,2010,36(7):870-875.
    [133]黄卫清,陈乾伟.非对称结构近似塔形超声电机及非对称模态与电激励方式.中国发明专利,CN102237818A,2011.06.29.
    [134] T Senjyu, S Yokoda, Y. Gushiken, et al. Position Control of Ultrasonic Motors with AdaptiveDead-Zone Compensation.1998, IEEE Industry Applications Sociely33rd Annual Meeting.
    [135]梁晋文,陈林才,何贡.误差理论与数据处理.北京:中国计量出版社,2001.
    [136]苏金明,阮沈勇,王永利.MATLAB工程数学.北京:电子工业出版社,2005.
    [137]陈永奇.现代测量数据处理理论与方法.北京:测绘出版社,2009.
    [138] Chunsheng Zhao.Ultrasonic Motors Technologies and Applications.Springer Press,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700