用户名: 密码: 验证码:
应用昆虫细胞表达预防性人乳头瘤病毒疫苗和应用填充床生物反应器表达H1N1流感病毒疫苗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物细胞培养起始于上世纪60年代初,由于动物细胞体系十分适合表达有生物活性的生物大分子,具有重要医用价值的疫苗、基因工程药物、抗体药物、蛋白药物等生物制品都可应用动物细胞表达。按照动物细胞不同的培养方式可分为悬浮培养、贴壁培养。本论文分两部分研究内容,第一部分为应用WAVE反应器悬浮培养昆虫细胞表达人乳头瘤病毒预防性疫苗的研究;第二部分为应用一次性填充床生物反应器贴壁培养MDCK细胞表达H1N1流感病毒的研究。
     一、人乳头瘤病毒预防性疫苗研究
     人类多种癌症,特别是子宫颈癌经相关的分子流行病学资料证明与HPV有着密切的关系。HPV的型别众多,人们不断地在皮肤癌症、疣状表皮等病理组织中发现新的HPV型别。目前为止已知型别已经突破200种。
     根据中国大陆地区流行病学调查结果,选用在大陆地区的第三大优势型别-HPV58型作为疫苗的组分之一,确定以HPV16、18、58、6、11型为主要疫苗型别的五价疫苗。期望此疫苗可以保护75%以上的由HPV16、18、58引起子宫颈癌,还可预防由HPV6、11引起的低度癌前病变和生殖器疣。
     主要内容如下:
     HPV各型VLP的构建表达:通过PCR合成HPV16型、18型、58型、6型、11型主要衣壳蛋白全长L1目的基因,根据核定位信号设计PCR引物扩增截短型HPV16型、18型、58型、6型、11型目的基因。测序正确后分别重组入杆状病毒表达系统穿梭质粒pFastBac1,通过基因移位作用将目的基因片段重组入Bacmid基因组,提取重组的Bacmid DNA,M13引物PCR鉴定正确。各亚型重组杆状病毒Bacmid-HPVL1转染Sf9细胞,大量感染昆虫细胞后,分别表达52-55kD大小的蛋白,经Western-Blot鉴定,与Camvir1单克隆抗体产生特异性反应,证明转染成功目的蛋白为HPVL1蛋白。应用蔗糖垫离心结合氯化铯密度梯度超速离心纯化HPV各亚型VLP,将各亚型VLP透析后的样品放置于透射电镜下观察。发现其形成的病毒样颗粒与野生型病毒的大小和形态相似,在氯化铯溶液中密度为1.27g/ml。
     HPV各型VLP免疫原性研究:通过全长型(HPV16-505)和截短型(HPV16-483)假病毒中和抗体试验证明:去除HPV16L1C端核定位信号的截短型(HPV16-483)中和抗体滴度显著高于全长型(HPV16-505)。说明截短型所诱发的体液免疫应答水平显著高于全长型。通过上述研究结果可知,去除核定位信号的VLP可能更易于被B淋巴细胞识别,有利于产生高滴度的中和抗体。因此在中和抗体实验中,仅对五种亚型的截短型VLP进行研究。
     HPV16型、18型、6型单价疫苗免疫分别免疫小鼠后,均可产生高滴度的型特异中和抗体。1618双价疫苗和16186三价疫苗,分别免疫小鼠后均可产生针对于相应型别高滴度的中和抗体。多价HPV疫苗联合免疫时,随着疫苗型别增多,各型别的中和抗体滴度均出现降低的趋势,即存在免疫干扰现象。
     HPV VLP生产工艺初步研究:以HPV6L1为例,研究了昆虫细胞体系的VLP疫苗生产工艺研究。首先比较不同接毒量、感染密度、细胞收获时间对HPV6L1蛋白表达量的影响。对比不同原理生物反应器培养昆虫细胞的区别,发现WAVE生物反应器更适合悬浮培养昆虫细胞。为了考察不同裂解方法对sf9昆虫细胞裂解的影响,结果表明与超声法、化学裂解法相比,低渗裂解法更适合于昆虫细胞裂解。又比较不同孔径的中空纤维微滤膜对sf9昆虫细胞收获的影响,选择了GE公司面积为420cm2的三种孔径微滤膜(0.10,0.22,和0.45μm),结果表明,与0.10,0.22μm中空纤维微滤膜相比,孔径为0.45μm中空纤维微滤膜具有更大的平均膜孔径,滤膜阻力较小,有利于培养基的透过,浓缩过程中可以缓解引起的膜表面凝胶层,因此具有更快的处理速度,其平均透过通量可达90L/hm2。在此基础上结合细胞破碎相关的实验结果,设计应用中空纤维系统作为一个整合系统,实现细胞收获液的浓缩、洗滤、抽提、澄清步骤。此工艺避免了离心机,死端过滤等实验步骤,而且在抽提过程中,采用低渗的方法裂解昆虫细胞,释放目的蛋白,避免了裂解剂(Triton X-100)的加入和超声仪的使用,使整个操作都处于密闭和无菌状态,更适合于工业化生产。
     在柱层析初级分离纯化阶段,选择DMAE弱阴离子层析纯化HPV6L1蛋白,与Q Sepharose XL强阴离子层析相比,DMAE弱阴离子层析纯化的HPV6L1蛋白纯度更高,基本达到初级分离纯化的要求。之后在柱层析精制分离纯化阶段尝试了应用Octyl Sepherose FF、Butyl-S Sepherose FF、Fractogel EMDTMAE、CM Sepherose FF等层析介质进行精纯工艺摸索。考虑到初级分离纯化阶段采用的是阴离子交换层析,不同阶段采用不同原理的层析介质纯化蛋白更有效。因此在精制分离纯化阶段,选择Octyl Sepherose FF疏水层析纯化HPV6L1蛋白。又摸索了类病毒颗粒体外组装工艺,经解组装、重组装步骤后,获得了均一稳定的病毒样颗粒。对于上述优化的放大纯化工艺所制备的HPV6L1VLPs,进行了SF9细胞宿主DNA残留量;SF9昆虫细胞宿主蛋白残留量;HPV VLP疫苗抗原含量;内毒素等检测。
     综上所述,本研究利用杆状病毒-昆虫细胞表达系统表达了HPV各型VLP,应用假病毒中和抗体体系评价了各型VLP疫苗的免疫原性。初步建立了昆虫细胞体系的HPV6L1的生产工艺和质量研究体系。以上研究结果为研制适合中国大陆地区昆虫细胞体系人乳头瘤病毒预防性疫苗提供参考。
     二、应用一次性填充床生物反应器表达MDCK细胞表达H1N1流感病毒
     流行性感冒是由流感病毒引起的,呼吸系统常见的传染性疾病,流感的临床特征为鼻咽部的急性炎症。流感是一种发病率高,传染性强,并且与患者的年龄、性别无关的传染病。接种合适的流感疫苗是避免流感传染最有效的方法。相关人群的发病率和死亡率通过接种疫苗可以明显降低,同时也减少了流感病毒的继续感染的机会。
     鸡胚生产流感疫苗已有多年历史,临床应用表明其具有较好的免疫效果和安全性。其缺点在于:需要提供足够的SPF级鸡蛋来生产流感疫苗,鸡胚的质量标准和方法学研究不易控制和标准化;同时可能存在鸡胚带有禽流感病毒的危险;并且大规模SPF级种蛋的供应难以应对流感大暴发。由于流感病毒能够在多种动物细胞内繁殖,因此可以应用哺乳动物细胞大规模生产流感疫苗来满足流感的大流行性以及新发流感的需求。MDCK细胞(MDCK Cell Lines)是在上世纪五十年代由Madin和Darby经Cocker Spaniel犬的肾脏组织分离后培养获得,MDCK细胞通常是以贴壁方式生长的上皮样细胞。由于其病毒感染效率高、增殖快,且不易变异,被公认为最适于流感病毒疫苗生产的细胞系。
     MDCK细胞为贴壁细胞,可用各型生物反应器大规模培养,其中包括:微载体生物反应器,填充床反应器,中空纤维生物反应器。与传统的填充床反应器不同,安普生物反应器采用外循环式纸片灌注培养方式,其分为灌注袋、培养袋两部分。灌注袋中放置,细胞培养液经培养袋置于特制摇床中,通过激流反应补充氧气,再经蠕动泵泵进灌注袋提供给吸附在聚酯纸片载体的贴壁细胞。安普生物反应器在细胞培养过程中通过PID模式可以自动控制相关的细胞生长参数。所用的一次性聚酯纸片载体内部相互交织的三维结构可提供传统培养模式无法比拟的表面积,适合多种类型细胞吸附生长,细胞增殖速度快维持时间长,符合生物安全要求。同时细胞聚集可形成支撑保护,减少培养基流动时对细胞产生的剪切力。因为贴壁细胞可吸附在聚酯纸片载体的表面和内部结构里,避免了由于培养基的流动可能造成的损伤,不需要中空纤维等特殊的分离细胞装置,更换培养液更方便。因此采用安普生物反应器可实现在含有血清的培养基条件下培养MDCK细胞,待细胞长满后迅速更换为适合病毒繁殖的无血清培养基,从而获得高效价的流感病毒。而与传统生物反应器微载体悬浮培养MDCK细胞表达流感病毒相比,省去了多次洗涤更换培养基的步骤,并且降低了由于载体间的相互碰撞容易造成细胞损伤细胞损伤。
     本研究首先将用鸡胚传代得来的H1N1毒株(A/New Caledonia/20/99)感染MDCK细胞(66代),并进行传代稳定性试验。随后应用安普微型反应器考察MDCK细胞数目与葡萄糖消耗速率(GCR)之间关系,实现通过监控葡萄糖消耗速率(GCR)掌握MDCK细胞数量的方法。同时在安普微型反应器上考察TPCK胰酶浓度、MOI、接种量对安普微型反应器上MDCK细胞生长和流感病毒产量的影响。通过以上研究,选择接种量为0.05和TPCK-胰酶浓度为2.5μg/ml作为AP20C生物反应器感染参数。在安普AP20C生物反应器进行MDCK细胞生长和流感病毒产量的放大实验,试验中流感病毒滴度最高为512HA units/100μl并且一直保持到96小时。而此时的TCID50为7.3×10~7/ml。为了考察生物反应器表达流感病毒的重复性,以同样的培养条件和相同感染参数又进行了两次实验。结果证实感染3天后,两次生物反应器的流感病毒滴度分别为7.8×10~7和6.7×10~7/ml,血凝值分别为768和512。与第二次生物反应器试验基本一致。此外,安普生物反应器所使用的灌注袋和培养袋经钴60辐照灭菌,一次性使用后即可抛弃,省略原有的灭菌步骤减少相关附属管道从而降低了生产成本,生物反应器无需进行清洗、消毒等工作,缩短生物反应器培养间隔周期,疫苗生产效率得到了明显提高。
     综上所述,我们应用安普微型反应器通过监控葡萄糖消耗速率(GCR)来实现间接评估MDCK细胞数量的方法,并考察TPCK胰酶浓度、MOI、接种量对安普微型反应器上MDCK细胞生长和流感病毒产量的影响。应用上述优化的感染参数在一次性安普AP20C生物反应器进行MDCK细胞生长和H1N1流感病毒产量的放大实验。以上研究结果为研制MDCK细胞基质的流感疫苗奠定了基础。
The paper describes the HPV preventive vaccine research which based insectcell-baculovirus expression system. To develop new types influenza vaccine, thethesis also describes the application Disposable packed bed bioreactor expressingMDCK cells expressing the H1N1influenza virus research.
     1. Study on Prophylactic Human Papillomavirus Vaccines
     By IARC in a number of countries for the investigation of the HPV types thatcause invasive cervical cancer (ICC). The histological diagnosis of99.7%of the1000ICC cases found positive for HPV DNA. Forty HPV subtypes related tocervical cancer have been discovered.HPV16and18are two of the most prevalenttypes in cervical cancer worldwide.So far known HPV types already exceeded200.
     In this paper, the HPV epidemiology survey in mainland China results as wellas the worldwide based on the choice of cervical cancer in women of mainlandChina's third-largest advantage type-HPV58type as a vaccine component, todetermine of HPV16,18,58,6,11is prophylactic human papillomavirus vaccinesvaccine type. Expectations pentavalent prophylactic human papillomavirus vaccineswe developed the face of the region can prevent75%of cervical cancer caused byHPV16,18,58, but also the prevention of the low-risk cancer caused by HPV6,11precancerous lesions and genital warts.
     Using PCR technique, major capsid protein full length L1gene of HPV16, type18, type58, type6, type11were amplified, truncated HPV16type, type18, type58,type6,type11gene were also amplified by nuclear localization signal. The clonedgenes were subcloned into pFastBac-1.The recombinant pFastBac-1were used totransform DH10Bac.Infected insect cells expressed52-55kD protein aftertransfected, which identified by the Western-Blot, with Camvir-1monoclonalantibody specific reactions successfully. HPV subtypes VLP were purified bygradient ultracentrifugation, the various VLPs was placed in a transmission electronmicroscope. It found that the formation of the virus-like particles in a cesiumchloride solution, similar to the size and morphology of wild-type virus, the density is about1.27g/ml.
     A successful HPV prophylactic vaccine is judged by whether induced highneutralizing antibody. Therefore, how to effectively and quickly detect a protectiveefficacy of neutralizing antibodies, become the key to the success of HPVprophylactic vaccines. Due to the human papillomavirus (HPV) has stricttissue-specific and species-specific, limited infection of human skin and mucosaltissue, is extremely difficult to cultivate in vitro tissue culture system. Currently,there have been a considerable number of neutralizing antibodies in a method forneutralizing antibody titers in the serum to be tested. However, these methods allhave some limitations: some complex method of operation, long life cycle.Somemethods only detect several HPV types; Some methods likely to cause false positiveresults; Some lower sensitivity; Some trials containing radioactive Isotope causeharm to the human and the environment.
     According to the characteristics of antibody assay, we selected luciferase as areporter gene of the HPV-pseudovirus neutralizing antibodies.The advantage ofluciferase as a reporter gene as described above shown with a microplate reader withthe use of high throughput detection and can simultaneously detect the96samples.The traditional luciferase system requires cell lysate which were lysed to releaseluciferase. For high-throughput detection operation is somewhat cumbersome. Inorder to be suitable for high-throughput detection, using the Promega Bright-Glo Luciferase system, without the medium was removed or washed cells in this systembefore joining the detection reagent. The cells can be cultured with a96-well plateand testing, and very suitable for continuous operation in the automation system.
     The neutralization assay was used to detect the neutralizing antibodies inducedby the full-length (HPV16-505) and the truncated (HPV16-483). We also found thatthe antibody titer of removal of HPV16L1C-terminal of the nuclear localizationsignal (HPV16-483) was significantly higher than that of full-length (HPV16-505).Description truncated L1of the humoral immune response induced significantlyhigher levels of full-length. Therefore, in the neutralizing antibody experiments, wehave select five truncated VLP to research.
     HPV16,18,6type monovalent vaccine iwere immunized mice which alsoinduce high titers of type-specific antibody. The bivalent vaccine16/1816/18/6trivalent vaccine, were immunized mice could induce high titer specific neutralizingantibodies. Polyvalent HPV vaccines combined immunodeficiency, with the vaccinetype number indrease, various types of neutralizing antibody titers were decreased,immunological interference phenomenon.
     We compared the difference of the different principles bioreactor cultures ofinsect cells and found that the WAVE Bioreactor more suitable for suspensionculture of insect cells. In order to investigate the impact of different lysis methods ofsf9insect cell, the results show that compared with the ultrasonic method, chemicallysis, hypotonic lysis method is more suitable for insect cell lysates.。 We alsocompare different pore size hollow fiber microfiltration membrane for sf9insectcells harvested, we selected GE420cm2microfiltration membranes (0.10,0.22, and0.45μm), the results show that, compared with the0.10and0.22μm hollow fibermicrofiltration membrane0.45μm membrane with a larger average membrane poresize which membrane resistance is small, favor the medium through the enrichmentprocess can alleviate the cause the film surface of the gel layer, and thus has a fasterprocessing speed, mean through flux of up to90L/hm2. In combination on this basis,we design application of the hollow fiber system as an integrated system, theconcentrated cell harvest, diafiltration, extraction and clarification step. This processavoids the centrifuge, and dead-end filtration experimental procedure, and in theextraction process, we use the hypotonic lysis of insect cells, the release of the targetprotein, and to avoid the lysis agent (Triton X-100) was added and ultrasonic, sothat the operation in a sealed and sterile state, and more suitable for industrialproduction. In the primary separation of purification stage, we choose DMAEchromatograph (the weak anion chromatography) to purify HPV6L1protein,compared to Q Sepharose XL (strong anion exchange chromatography), HPV6L1protein purity higher by the DMAE chromatography purified. In the polishseparation of purification stage, we select Octyl Sepherose FF, Butyl-S SepheroseFF, Butyl-S Sepherose FF, Fractogel EMD TMAE,CM Sepherose FF media. For the primary separation of purification stage is anion exchange chromatography,different principles of chromatography media is more effective in the differentpurified stages Therefore we choose Octyl Sepherose FF in the polish stage. And weexplored the virus-like particles in vitro assembly process after disassembly andreassembly steps to obtain homogeneous and stable virus-like particles. Finalpurified HPV L1protein was characterized to confirme to be free of host cellproteins, and endotoxins.
     In summary, this study was expressed HPV VLP by insect cell-baculovirusexpression system which evaluated the immunogenicity of the VLP vaccine in theapplication of pseudovirus-based neutralization assay. Next, studied the productionprocess of HPV6L1in insect cell system, which was more reasonable and suitablefor scale-up production.
     Production of H1N1Influenza Virus Vaccines using a Packed-bedBioreactor
     Influenza is a major cause of hospitalization and lower respiratory illnesses,especially in children and elderlyindividuals. Vaccination is the primar y method forpreventing influenza and its complications. Vaccination can not only reduce themorbidity and mortality of high-risk groups, and also ease symptoms and reduce theincidence of complications, reducing the probability of further spread. During aninfluenza pandemic, antiviral drugs are necessary, but not a substitute for thevaccine, so vaccination is the prevention of influenza.
     Embryo culture technology to produce influenza inactivated vaccine has been60years of history, clinical applications for many years that they have good immuneeffects and clinical safety, protection rates are generally75%to90%. However,there are some limitations: such as the dependence of chickens, chick embryoproduction of influenza vaccines need to consume a large amount of SPF grade eggs,difficult to control quality, the method is difficult to standardize; chick embryo withthe potential viral contamination; and large-scale supply of SPF grade eggs difficultto cope with the outbreak of influenza. The cell culture derived vaccine does notrequire extensive advance planning and can be produced rapidly on a large scale in the event of an emerging pandemic. The most prominent adherent mammalian celllines for influenza vaccine development is Madine Darby Canine Kidney (MDCK)cells, which have been extensively studied. The MDCK cell line was derived from akidney of an apparently normal adult female cocker spaniel, September,1958, byS.H. Madin and N.B. Darby. MDCK cells are particularly favored, because it canyield high quantities of influenza virus.
     Compared to traditional packed bed bioreactor, the Amprotein CurrentPerfusion Bioreactor (APCB) based on a non-sparging O2transfer method is used asa dissolved O2generator to culture immobilized cells in a perfusion column filledwith a non-woven polymer fiber carrier. During the cell culture, mixed gas iscontinually passed through the headspace utilizing the sterilizing filters provided onthe bioreactor bag. The gentle shaking motion of the bioreactor bag provides abubble-free oxygenated culture medium which flows into an inlet of the perfusioncolumn by a peristaltic pump, passes through the paper carrier to which MDCK cellsare attached, and exits at an outlet of the perfusion column to the inlet of thebioreactor bag for recirculation through the system. The shaking rate and gas flowhave been optimized by the system controller to provide an oxygenated culturemedium for high-density cell culture in the perfusion column without excessivefoaming or shear damage. While using serum containing DMEM in microcarriercultivations for influenza production requires time-consuming steps for washing andmedium exchange. Compared with cell suspension perfusion culture using anexpensive hollow fiber column, perfusion culture in the ACPB is much moreaffordable and scalable. Although using serum-free medium can eliminate the needfor washing cells before infection, cell growth is generally not as robust as that inserum-containing medium.Compared with microcarrier cultures, usingserum-containing DMEM for the production of influenza vaccine in the ACPB hasdefinite advantages in terms of the reduced cost and need for cleaning/validation.
     The H1N1strain (A/New Caledonia/20/99) which passaged by the chickembryo infected MDCK cells (66passages), and test the stability. The mini-bioreactor was used to study the relationship between cell density and glucoseconsumption rate (GCR) and to optimize the infection parameters of the influenzaH1N1virus (A/New Caledonia/20/99). Then the MDCK cell culture and virusinfection was maintained in a disposable perfusion bioreactor (Amprotein CurrentPerfusion Bioreactor) with Proportional-Integral-Derivative (PID) control of pH,dissolved O2(DO), agitation and temperature. During six days of culture, the totalcell number increased from2.0×109to3.2×1010. The maximum virus titers of768hemagglutinin (HA) units/100μL and7.8×10~7TCID50/mL was obtained3days afterinfection. These results demonstrated that using a disposable perfusion bioreactor forlarge-scale cultivation of MDCK cells, through the control of DO, pH and otherconditions, is a convenient, stable technology for the industrial-scale production ofinfluenza vaccines.
     In the ACPB, the bioreactor bag and perfusion column are constructed withpre-sterilized plastic. This design eliminates the need for cleaning, sterilization andassociated validation and thus shortens the implementation time to conform to GoodManufacturing Practices (GMP). The gamma-radiation sterilized ACPB reduces therisk of contamination due to equipment malfunction or operator error typical oftraditional bioreactors such as stirred tanks, spinners and hollow-fiber systems. Oncea cultivation cycle is completed, the culture is harvested, and a new ACPB canimmediately replace the discarded one on the shaking platform, which will greatlyimprove the capacity of vaccine production.
引文
[1]R. E. Shope.Immunization of Rabbits to Infectious Papillomatosis.J ExpMed.1937,65(2):219-231
    [2]M. J. Strauss,E. W. Shaw,et al..Crystalline virus-like particles from skinpapillomas characterized by intranuclear inclusion bodies.Proc Soc Exp BiolMed.1949,72(1):46-50
    [3]E. M. de Villiers,L. Gissmann,H. zur Hausen.Molecular cloning of viralDNA from human genital warts.J Virol.1981,40(3):932-935
    [4]M. Durst,L. Gissmann,H. Ikenberg,et al.A papillomavirus DNA from acervical carcinoma and its prevalence in cancer biopsy samples from differentgeographic regions.Proc Natl Acad Sci U S A.1983,80(12):3812-3815
    [5]E. Schwarz,M. Durst,C. Demankowski,et al.DNA sequence and genomeorganization of genital human papillomavirus type6b.EMBO J.1983,2(12):2341-2348
    [6]N. Munoz.Human papillomavirus and cancer: the epidemiological evidence.JClin Virol.2000,19(1-2):1-5
    [7]K. Munger,A. Baldwin,K. M. Edwards,et al.Mechanisms of humanpapillomavirus-induced oncogenesis.J Virol.2004,78(21):11451-11460
    [8]E. M. de Villiers, C. Fauquet, T. R. Broker, et al. Classification ofpapillomaviruses.Virology.2004,324(1):17-27
    [9]H. U. Bernard,R. D. Burk,Z. Chen,et al.Classification of papillomaviruses(PVs) based on189PV types and proposal of taxonomicamendments.Virology.2010,401(1):70-79
    [10]刘大维.预防性人乳头瘤病毒病毒样颗粒疫苗的研究.吉林大学博士.2008
    [11]A. Heise.The clinical significance of HPV.Nurse Pract.2003,28(10):8-19;quiz20-11
    [12]J. Doorbar,P. H. Gallimore.Identification of proteins encoded by the L1andL2open reading frames of human papillomavirus1a.J Virol.1987,61(9):2793-2799
    [13]Y. Modis,B. L. Trus,S. C. Harrison.Atomic model of the papillomaviruscapsid.EMBO J.2002,21(18):4754-4762
    [14]M. Li,P. Beard,P. A. Estes,et al.Intercapsomeric disulfide bonds inpapillomavirus assembly and disassembly.J Virol.1998,72(3):2160-2167
    [15]R. B. Roden,H. L. Greenstone,R. Kirnbauer,et al.In vitro generation andtype-specific neutralization of a human papillomavirus type16virionpseudotype.J Virol.1996,70(9):5875-5883
    [16]X. S. Chen,R. L. Garcea,I. Goldberg,et al.Structure of small virus-likeparticles assembled from the L1protein of human papillomavirus16.MolCell.2000,5(3):557-567
    [17]J. Doorbar.The papillomavirus life cycle.J Clin Virol.2005,32Suppl1:S7-15
    [18]M. Muller,L. Gissmann,R. J. Cristiano,et al.Papillomavirus capsidbinding and uptake by cells from different tissues and species. JVirol.1995,69(2):948-954
    [19]Y. M. Qi,S. W. Peng,K. Hengst,et al.Epithelial cells display separatereceptors for papillomavirus VLPs and for soluble L1capsidprotein.Virology.1996,216(1):35-45
    [20]C. Volpers,F. Unckell,P. Schirmacher,et al.Binding and internalizationof human papillomavirus type33virus-like particles by eukaryotic cells.JVirol.1995,69(6):3258-3264
    [21]M. Evander,I. H. Frazer,E. Payne,et al.Identification of the alpha6integrin as a candidate receptor for papillomaviruses. J Virol.1997,71(3):2449-2456
    [22]T. Giroglou,L. Florin,F. Schafer,et al.Human papillomavirus infectionrequires cell surface heparan sulfate.J Virol.2001,75(3):1565-1570
    [23]S. Shafti-Keramat,A. Handisurya,E. Kriehuber,et al.Different heparansulfate proteoglycans serve as cellular receptors for human papillomaviruses.JVirol.2003,77(24):13125-13135
    [24]J. G. Joyce,J. S. Tung,C. T. Przysiecki,et al.The L1major capsid proteinof human papillomavirus type11recombinant virus-like particles interacts withheparin and cell-surface glycosaminoglycans on human keratinocytes.J BiolChem.1999,274(9):5810-5822
    [25]I. H. Frazer. Prevention of cervical cancer through papillomavirusvaccination.Nat Rev Immunol.2004,4(1):46-54
    [26]D. M. Parkin,F. Bray,J. Ferlay,et al.Global cancer statistics,2002.CACancer J Clin.2005,55(2):74-108
    [27]U. Winters,R. Roden,H. Kitchener,et al.Progress in the development of acervical cancer vaccine.Ther Clin Risk Manag.2006,2(3):259-269
    [28]L. Yang,D. M. Parkin,J. Ferlay,et al.Estimates of cancer incidence inChina for2000and projections for2005.Cancer Epidemiol BiomarkersPrev.2005,14(1):243-250
    [29][IARC]. International Agency for Research on Cancer. Cervix cancerscreening.2005
    [30]WHO.Human Papillomavirus and Cervical Cancer,Summary Report.2010
    [31]WHO.Human Papillomavirus and Cervical Cancer,Summary Report CHINA
    [32]D. M. Parkin, F. Bray. Chapter2: The burden of HPV-relatedcancers.Vaccine.2006,24Suppl3:S3/11-25
    [33]A. de Jong, T. O'Neill, A. Y. Khan, et al. Enhancement of humanpapillomavirus (HPV) type16E6and E7-specific T-cell immunity in healthyvolunteers through vaccination with TA-CIN, an HPV16L2E7E6fusionprotein vaccine.Vaccine.2002,20(29-30):3456-3464
    [34]S. E. Goldstone,J. M. Palefsky,M. T. Winnett,et al.Activity of HspE7, anovel immunotherapy, in patients with anogenital warts. Dis ColonRectum.2002,45(4):502-507
    [35]B. Klencke,M. Matijevic,R. G. Urban,et al.Encapsulated plasmid DNAtreatment for human papillomavirus16-associated anal dysplasia: a Phase Istudy of ZYC101.Clin Cancer Res.2002,8(5):1028-1037
    [36]E. E. Sheets,R. G. Urban,C. P. Crum,et al.Immunotherapy of humancervical high-grade cervical intraepithelial neoplasia withmicroparticle-delivered human papillomavirus16E7plasmid DNA.Am JObstet Gynecol.2003,188(4):916-926
    [37]L. K. Borysiewicz,A. Fiander,M. Nimako,et al.A recombinant vacciniavirus encoding human papillomavirus types16and18, E6and E7proteins asimmunotherapy for cervical cancer.Lancet.1996,347(9014):1523-1527
    [38]J. Simova, J. Bieblova, T. Jandlova, et al. Immunotherapy of HPV16-associated tumours with tumour cell line/dendritic cell line (TC-1/DC2.4)hybrid vaccines.Folia Biol (Praha).2003,49(5):203-206
    [39]P. J. Baldwin,S. H. van der Burg,C. M. Boswell,et al.Vaccinia-expressedhuman papillomavirus16and18e6and e7as a therapeutic vaccination forvulval and vaginal intraepithelial neoplasia. Clin Cancer Res.2003,9(14):5205-5213
    [40]W. J. van Driel,M. E. Ressing,G. G. Kenter,et al.Vaccination withHPV16peptides of patients with advanced cervical carcinoma: clinicalevaluation of a phase I-II trial.Eur J Cancer.1999,35(6):946-952
    [41]I. H. et al. Frazer.In Vaccines for Human PapillomavirusInfection and Anogenital Disease..Landes Bioscience.1999:91-104
    [42]L. Muderspach,S. Wilczynski,L. Roman,et al.A phase I trial of a humanpapillomavirus (HPV) peptide vaccine for women with high-grade cervical andvulvar intraepithelial neoplasia who are HPV16positive. Clin CancerRes.2000,6(9):3406-3416
    [43]L. F. Zhang,J. Zhou,S. Chen,et al.HPV6b virus like particles are potentimmunogens without adjuvant in man. Vaccine.2000,18(11-12):1051-1058
    [44]A. Ferrara,M. Nonn,P. Sehr,et al.Dendritic cell-based tumor vaccine forcervical cancer II: results of a clinical pilot study in15individual patients.JCancer Res Clin Oncol.2003,129(9):521-530
    [45]P. K. Chan,S. J. Liu,T. H. Cheung,et al.T-cell response to humanpapillomavirus type58L1, E6, And E7peptides in women with clearedinfection, cervical intraepithelial neoplasia, or invasive cancer.Clin VaccineImmunol.2010,17(9):1315-1321
    [46]S. J. Liao,X. J. Hu,L. F. Han,et al.[Preparation of human papillomavirus16E7peptide vaccine and its effectiveness in vitro and in vivo.].ZhonghuaFu Chan Ke Za Zhi.2009,44(12):903-908
    [47]K. B. Gendron,A. Rodriguez,D. A. Sewell.Vaccination with humanpapillomavirus type16E7peptide with CpG oligonucleotides for prevention oftumor growth in mice. Arch Otolaryngol Head Neck Surg.2006,132(3):327-332
    [48]L. Zhao,B. Liu,J. Ren,et al.Immunogenicity in mice and rhesus monkeysvaccinated with recombinant vaccinia virus expressing bivalent E7E6fusionproteins from human papillomavirus types16and18.Virol J.2011,8:302
    [49]W. Huang,H. W. Tian,J. Ren,et al.[Construction and identification ofnon-replication recombinant vaccinia virus co-expressing humanpapillomavirus type16L1/L2/E6/E7proteins].Zhonghua Shi Yan He LinChuang Bing Du Xue Za Zhi.2005,19(3):240-243
    [50]J. Qian,Y. Dong,Y. Y. Pang,et al.Combined prophylactic and therapeuticcancer vaccine: enhancing CTL responses to HPV16E2using a chimeric VLPin HLA-A2mice.Int J Cancer.2006,118(12):3022-3029
    [51]C. Sharma,B. Dey,M. Wahiduzzaman,et al.Human papillomavirus16L1-E7chimeric virus like particles show prophylactic and therapeutic efficacyin murine model of cervical cancer.Vaccine.2012,30(36):5417-5424
    [52]D. Kuck,C. Leder,A. Kern,et al.Efficiency of HPV16L1/E7DNAimmunization: influence of cellular localization and capsidassembly.Vaccine.2006,24(15):2952-2965
    [53]Z. Meshkat,H. Soleimanjahi,M. Mahmoudi,et al.CTL responses to aDNA vaccine encoding E7gene of human papillomavirus type16from anIranian isolate.Iran J Immunol.2008,5(2):82-91
    [54]J. M. Brulet,F. Maudoux,S. Thomas,et al.DNA vaccine encodingendosome-targeted human papillomavirus type16E7protein generates CD4+T cell-dependent protection.Eur J Immunol.2007,37(2):376-384
    [55]Q. Yan,Y. K. Cheung,S. C. Cheng,et al.A DNA vaccine constructed withhuman papillomavirus type16(HPV16) E7and E6genes induced specificimmune responses.Gynecol Oncol.2007,104(1):199-206
    [56]W. F. Jarrett,B. W. O'Neil,J. M. Gaukroger,et al.Studies on vaccinationagainst papillomaviruses: the immunity after infection and vaccination withbovine papillomaviruses of different types.Vet Rec.1990,126(19):473-475
    [57]J. Zhou,D. J. Stenzel,X. Y. Sun,et al.Synthesis and assembly ofinfectious bovine papillomavirus particles in vitro.J Gen Virol.1993,74(Pt4):763-768
    [58]J. Zhou,X. Y. Sun,D. J. Stenzel,et al.Expression of vaccinia recombinantHPV16L1and L2ORF proteins in epithelial cells is sufficient for assembly ofHPV virion-like particles.Virology.1991,185(1):251-257
    [59]D. Marais, J. A. Passmore, J. Maclean, et al. A recombinant humanpapillomavirus (HPV) type16L1-vaccinia virus murine challenge modeldemonstrates cell-mediated immunity against HPV virus-like particles.J GenVirol.1999,80(Pt9):2471-2475
    [60]J. A. Zhou,A. McIndoe,H. Davies,et al.The induction of cytotoxicT-lymphocyte precursor cells by recombinant vaccinia virus expressing humanpapillomavirus type16L1.Virology.1991,181(1):203-210
    [61]J. Zhou,L. Crawford,L. McLean,et al.Increased antibody responses tohuman papillomavirus type16L1protein expressed by recombinant vacciniavirus lacking serine protease inhibitor genes.J Gen Virol.1990,71(Pt9):2185-2190
    [62]王晋.人乳头瘤病毒11型L1蛋白的突变分析及其类病毒颗粒疫苗的研制.厦门大学硕士.2007
    [63]魏旻希,李少伟,黄博,et al.人乳头瘤病毒16型病毒样颗粒的制备及其免疫原性研究.病毒学报.2009(04):245-250
    [64]谢明辉.人乳头瘤病毒18型类病毒颗粒疫苗研制、中和抗体筛选及冷冻电镜三维结构重建.厦门大学硕士.2008
    [65]L. Shi,H. L. Sings,J. T. Bryan,et al.GARDASIL: prophylactic humanpapillomavirus vaccine development--from bench top to bed-side. ClinPharmacol Ther.2007,81(2):259-264
    [66]E. Hanna,G. Bachmann.HPV vaccination with Gardasil: a breakthrough inwomen's health.Expert Opin Biol Ther.2006,6(11):1223-1227
    [67]M. A. Siddiqui,C. M. Perry.Human papillomavirus quadrivalent (types6,11,16,18) recombinant vaccine (Gardasil): profile report.BioDrugs.2006,20(5):313-316
    [68]周朝明,马新兴,周婧怡,刘佳骅,王洪芳,雷建强.重组人乳头瘤病毒双价(16/18型)疫苗免疫原性评价方法的研究.药物分析杂志.2011(09):1743-1749
    [69]沈琼,雷建强,周朝明,张高峡.人乳头瘤病毒18型L1蛋白在毕赤酵母中的表达及其病毒样颗粒的免疫原性.中国生物制品学杂志.2012(02):129-133
    [70]K. McKeage, B. Romanowski. AS04-adjuvanted human papillomavirus(HPV) types16and18vaccine (Cervarix(R)): a review of its use in theprevention of premalignant cervical lesions and cervical cancer causally relatedto certain oncogenic HPV types.Drugs.2011,71(4):465-488
    [71].FDA licensure of bivalent human papillomavirus vaccine (HPV2, Cervarix)for use in females and updated HPV vaccination recommendations from theAdvisory Committee on Immunization Practices (ACIP). MMWR MorbMortal Wkly Rep.2010,59(20):626-629
    [72]. Cervarix--a second HPV vaccine. Med Lett Drugs Ther.2010,52(1338):37-38
    [73]G. La Torre,C. de Waure,G. Chiaradia,et al.The Health TechnologyAssessment of bivalent HPV vaccine Cervarix in Italy.Vaccine.2010,28(19):3379-3384
    [74]D. Le Tallec, D. Doucet, A. Elouahabi, et al. Cervarix, the GSKHPV-16/HPV-18AS04-adjuvanted cervical cancer vaccine, demonstratesstability upon long-term storage and under simulated cold chain breakconditions.Hum Vaccin.2009,5(7):467-474
    [75]A. Monie,C. F. Hung,R. Roden,et al.Cervarix: a vaccine for theprevention of HPV16,18-associated cervical cancer.Biologics.2008,2(1):97-105
    [76].STD vaccine breakthrough. Cervarix would prevent human papilloma viruswhich can lead to cervical cancer; FDA approval anticipated. HealthNews.2005,11(10):6-7
    [77]J. J. Treanor,H. El Sahly,J. King,et al.Protective efficacy of a trivalentrecombinant hemagglutinin protein vaccine (FluBlok(R)) against influenza inhealthy adults: a randomized, placebo-controlled trial.Vaccine.2011,29(44):7733-7739
    [78]R. Baxter,P. A. Patriarca,K. Ensor,et al.Evaluation of the safety,reactogenicity and immunogenicity of FluBlok(R) trivalent recombinantbaculovirus-expressed hemagglutinin influenza vaccine administeredintramuscularly to healthy adults50-64years of age.Vaccine.2011,29(12):2272-2278
    [79]J. C. King, Jr.,M. M. Cox,K. Reisinger,et al.Evaluation of the safety,reactogenicity and immunogenicity of FluBlok trivalent recombinantbaculovirus-expressed hemagglutinin influenza vaccine administeredintramuscularly to healthy children aged6-59months.Vaccine.2009,27(47):6589-6594
    [80]M. M. Cox, P. A. Patriarca, J. Treanor. FluBlok, a recombinanthemagglutinin influenza vaccine.Influenza Other Respi Viruses.2008,2(6):211-219
    [81]M. M. Cox,J. R. Hollister.FluBlok, a next generation influenza vaccinemanufactured in insect cells.Biologicals.2009,37(3):182-189
    [82]V. C. Huber, J. A. McCullers. FluBlok, a recombinant influenzavaccine.Curr Opin Mol Ther.2008,10(1):75-85
    [83]C. D. Agardh,K. F. Lynch,M. Palmer,et al.GAD65vaccination:5yearsof follow-up in a randomised dose-escalating study in adult-onset autoimmunediabetes.Diabetologia.2009,52(7):1363-1368
    [84]W. A. Keitel, J. J. Treanor, H. M. El Sahly, et al. Comparativeimmunogenicity of recombinant influenza hemagglutinin (rHA) and trivalentinactivated vaccine (TIV) among persons> or=65yearsold.Vaccine.2009,28(2):379-385
    [85]J. Ludvigsson,M. Faresjo,M. Hjorth,et al.GAD treatment and insulinsecretion in recent-onset type1diabetes. N Engl J Med.2008,359(18):1909-1920
    [86]J. J. Treanor, B. E. Wilkinson, F. Masseoud, et al. Safety andimmunogenicity of a recombinant hemagglutinin vaccine for H5influenza inhumans.Vaccine.2001,19(13-14):1732-1737
    [87]L. Mauch,J. Seissler,H. Haubruck,et al.Baculovirus-mediated expressionof human65kDa and67kDa glutamic acid decarboxylases in SF9insect cellsand their relevance in diagnosis of insulin-dependent diabetes mellitus.JBiochem.1993,113(6):699-704
    [88]M. Peakman,T. I. Tree,J. Endl,et al.Characterization of preparations ofGAD65, proinsulin, and the islet tyrosine phosphatase IA-2for use in detectionof autoreactive T-cells in type1diabetes: report of phase II of the SecondInternational Immunology of Diabetes Society Workshop for Standardizationof T-cell assays in type1diabetes.Diabetes.2001,50(8):1749-1754
    [89]P. A. Burch,J. K. Breen,J. C. Buckner,et al.Priming tissue-specificcellular immunity in a phase I trial of autologous dendritic cells for prostatecancer.Clin Cancer Res.2000,6(6):2175-2182
    [90]R. A. Robinson, W. H. Burgess, S. U. Emerson, et al. Structuralcharacterization of recombinant hepatitis E virus ORF2proteins inbaculovirus-infected insect cells.Protein Expr Purif.1998,12(1):75-84
    [91]M. P. Shrestha,R. M. Scott,D. M. Joshi,et al.Safety and efficacy of arecombinant hepatitis E vaccine.N Engl J Med.2007,356(9):895-903
    [92]S. F. Dosch, S. D. Mahajan, A. R. Collins. SARS coronavirus spikeprotein-induced innate immune response occurs via activation of theNF-kappaB pathway in human monocyte macrophages in vitro. VirusRes.2009,142(1-2):19-27
    [93]N. Bonafe,J. A. Rininger,R. G. Chubet,et al.A recombinant West Nilevirus envelope protein vaccine candidate produced in Spodoptera frugiperdaexpresSF+cells.Vaccine.2009,27(2):213-222
    [94]E. Arefian,T. Bamdad,H. Soleimanjahi,et al.[A kinetic study of gammainterferon production in herpes simplex virus-1DNA prime-protein boostregimen comparing to DNA or subunit vaccination]. Mol Biol(Mosk).2009,43(3):422-428
    [95]D. E. Arnot,D. R. Cavanagh,E. J. Remarque,et al.Comparative testing ofsix antigen-based malaria vaccine candidates directed toward merozoite-stagePlasmodium falciparum.Clin Vaccine Immunol.2008,15(9):1345-1355
    [96]B. E. Johansson,I. C. Brett.Recombinant influenza B virus HA and NAantigens administered in equivalent amounts are immunogenically equivalentand induce equivalent homotypic and broader heterovariant protection in micethan conventional and live influenza vaccines. Hum Vaccin.2008,4(6):420-424
    [97]P. Pushko,T. Kort,M. Nathan,et al.Recombinant H1N1virus-like particlevaccine elicits protective immunity in ferrets against the2009pandemic H1N1influenza virus.Vaccine.2010,28(30):4771-4776
    [98]P. Pushko,T. M. Tumpey,F. Bu,et al.Influenza virus-like particlescomprised of the HA, NA, and M1proteins of H9N2influenza virus induceprotective immune responses in BALB/c mice. Vaccine.2005,23(50):5751-5759
    [99]R. A. Bright,D. M. Carter,S. Daniluk,et al.Influenza virus-like particleselicit broader immune responses than whole virion inactivated influenza virusor recombinant hemagglutinin.Vaccine.2007,25(19):3871-3878
    [100]R. A. Bright,D. M. Carter,C. J. Crevar,et al.Cross-clade protectiveimmune responses to influenza viruses with H5N1HA and NA elicited by aninfluenza virus-like particle.PLoS One.2008,3(1):e1501
    [101]C. Sico, S. White, E. Tsao, et al. Enhanced kinetic extraction ofparvovirus B19structural proteins.Biotechnol Bioeng.2002,80(3):250-256
    [102]W. R. Ballou,J. L. Reed,W. Noble,et al.Safety and immunogenicity of arecombinant parvovirus B19vaccine formulated with MF59C.1.J InfectDis.2003,187(4):675-678
    [103]X. Jiang,M. Wang,D. Y. Graham,et al.Expression, self-assembly, andantigenicity of the Norwalk virus capsid protein. J Virol.1992,66(11):6527-6532
    [104]S. F. Ausar,T. R. Foubert,M. H. Hudson,et al.Conformational stabilityand disassembly of Norwalk virus-like particles. Effect of pH andtemperature.J Biol Chem.2006,281(28):19478-19488
    [105]T. Zhang,Y. Xu,L. Qiao,et al.Trivalent Human Papillomavirus (HPV)VLP vaccine covering HPV type58can elicit high level of humoral immunitybut also induce immune interference among componenttypes.Vaccine.2010,28(19):3479-3487
    [106]Y. Xu, Q. Wang, Y. Han, et al. Type-specific and cross-reactiveantibodies induced by human papillomavirus31L1/L2virus-like particles.JMed Microbiol.2007,56(Pt7):907-913
    [107]L. El-Attar,S. L. Oliver,A. Mackie,et al.Comparison of the efficacy ofrotavirus VLP vaccines to a live homologous rotavirus vaccine in a pig modelof rotavirus disease.Vaccine.2009,27(24):3201-3208
    [108]M. S. Azevedo,A. M. Gonzalez,L. Yuan,et al.An oral versus intranasalprime/boost regimen using attenuated human rotavirus or VP2and VP6virus-like particles with immunostimulating complexes influences protectionand antibody-secreting cell responses to rotavirus in a neonatal gnotobiotic pigmodel.Clin Vaccine Immunol.2010,17(3):420-428
    [109]Z. Wen,L. Ye,Y. Gao,et al.Immunization by influenza virus-likeparticles protects aged mice against lethal influenza virus challenge.AntiviralRes.2009,84(3):215-224
    [110]J. R. Haynes,L. Dokken,J. A. Wiley,et al.Influenza-pseudotyped Gagvirus-like particle vaccines provide broad protection against highly pathogenicavian influenza challenge.Vaccine.2009,27(4):530-541
    [111]G. K. Chege,E. G. Shephard,A. Meyers,et al.HIV-1subtype C Pr55gagvirus-like particle vaccine efficiently boosts baboons primed with a matchedDNA vaccine.J Gen Virol.2008,89(Pt9):2214-2227
    [112]C. Speth,S. Bredl,M. Hagleitner,et al.Human immunodeficiency virustype-1(HIV-1) Pr55gag virus-like particles are potent activators of humanmonocytes.Virology.2008,382(1):46-58
    [113]B. Bai,X. Lu,J. Meng,et al.Vaccination of mice with recombinantbaculovirus expressing spike or nucleocapsid protein of SARS-like coronavirusgenerates humoral and cellular immune responses.Mol Immunol.2008,45(4):868-875
    [114]L. Ye,J. Lin,Y. Sun,et al.Ebola virus-like particles produced in insectcells exhibit dendritic cell stimulating activity and induce neutralizingantibodies.Virology.2006,351(2):260-270
    [115]T. C. Li,Y. Suzaki,Y. Ami,et al.Protection of cynomolgus monkeysagainst HEV infection by oral administration of recombinant hepatitis Evirus-like particles.Vaccine.2004,22(3-4):370-377
    [116]M. Qiao, M. Ashok, K. A. Bernard, et al. Induction of sterilizingimmunity against West Nile Virus (WNV), by immunization with WNV-likeparticles produced in insect cells.J Infect Dis.2004,190(12):2104-2108
    [117]C. Goldmann,H. Petry,S. Frye,et al.Molecular cloning and expressionof major structural protein VP1of the human polyomavirus JC virus: formationof virus-like particles useful for immunological and therapeutic studies.JVirol.1999,73(5):4465-4469
    [118]C. Y. Chung,C. Y. Chen,S. Y. Lin,et al.Enterovirus71virus-likeparticle vaccine: improved production conditions for enhancedyield.Vaccine.2010,28(43):6951-6957
    [119]F. Krammer,T. Schinko,P. Messner,et al.Influenza virus-like particlesas an antigen-carrier platform for the ESAT-6epitope of Mycobacteriumtuberculosis.J Virol Methods.2010,167(1):17-22
    [120]V. A. Luckow.Baculovirus systems for the expression of human geneproducts.Curr Opin Biotechnol.1993,4(5):564-572
    [121]V. A. Luckow,S. C. Lee,G. F. Barry,et al.Efficient generation ofinfectious recombinant baculoviruses by site-specific transposon-mediatedinsertion of foreign genes into a baculovirus genome propagated in Escherichiacoli.J Virol.1993,67(8):4566-4579
    [122]D. Stoffler,B. Fahrenkrog,U. Aebi.The nuclear pore complex: frommolecular architecture to functional dynamics.Curr Opin Cell Biol.1999,11(3):391-401
    [123]N. B. Elkind,N. Goldfinger,V. Rotter.Spot-1, a novel NLS-bindingprotein that interacts with p53through a domain encoded by p(CA)nrepeats.Oncogene.1995,11(5):841-851
    [124]S. A. Adam, E. J. Adam, N. C. Chi, et al. Cytoplasmic factors inNLS-mediated targeting to the nuclear pore complex.Cold Spring Harb SympQuant Biol.1995,60:687-694
    [125]T. Boulikas. Putative nuclear localization signals (NLS) in proteintranscription factors.J Cell Biochem.1994,55(1):32-58
    [126]T. Boulikas.Nuclear localization signals (NLS).Crit Rev Eukaryot GeneExpr.1993,3(3):193-227
    [127]J. Zhou, J. Doorbar, X. Y. Sun, et al. Identification of the nuclearlocalization signal of human papillomavirus type16L1protein.Virology.1991,185(2):625-632
    [128]L. M. Nelson,R. C. Rose,L. LeRoux,et al.Nuclear import and DNAbinding of human papillomavirus type45L1capsid protein. J CellBiochem.2000,79(2):225-238
    [129]J. Yang,Y. L. Wang,L. S. Si.Predicting the nuclear localization signals of107types of HPV L1proteins by bioinformatic analysis. GenomicsProteomics Bioinformatics.2006,4(1):34-41
    [130]F. Breitburd,R. Kirnbauer,N. L. Hubbert,et al.Immunization withviruslike particles from cottontail rabbit papillomavirus (CRPV) can protectagainst experimental CRPV infection.J Virol.1995,69(6):3959-3963
    [131]J. A. Suzich,S. J. Ghim,F. J. Palmer-Hill,et al.Systemic immunizationwith papillomavirus L1protein completely prevents the development of viralmucosal papillomas.Proc Natl Acad Sci U S A.1995,92(25):11553-11557
    [132]N. D. Christensen,J. W. Kreider,K. V. Shah,et al.Detection of humanserum antibodies that neutralize infectious human papillomavirus type11virions.J Gen Virol.1992,73(Pt5):1261-1267
    [133]N. D. Christensen, J. W. Kreider, N. M. Cladel, et al. Monoclonalantibody-mediated neutralization of infectious human papillomavirus type11.J Virol.1990,64(11):5678-5681
    [134]T. J. Palker,J. M. Monteiro,M. M. Martin,et al.Antibody, cytokine andcytotoxic T lymphocyte responses in chimpanzees immunized with humanpapillomavirus virus-like particles.Vaccine.2001,19(27):3733-3743
    [135]K. J. Piller, T. E. Clemente, S. M. Jun, et al. Expression andimmunogenicity of an Escherichia coli K99fimbriae subunit antigen insoybean.Planta.2005,222(1):6-18
    [136]R. B. Roden,N. L. Hubbert,R. Kirnbauer,et al.Papillomavirus L1capsids agglutinate mouse erythrocytes through a proteinaceous receptor.JVirol.1995,69(8):5147-5151
    [137]C. Pedersen,T. Petaja,G. Strauss,et al.Immunization of early adolescentfemales with human papillomavirus type16and18L1virus-like particlevaccine containing AS04adjuvant.J Adolesc Health.2007,40(6):564-571
    [138]D. Opalka, C. E. Lachman, S. A. MacMullen, et al. Simultaneousquantitation of antibodies to neutralizing epitopes on virus-like particles forhuman papillomavirus types6,11,16, and18by a multiplexed luminexassay.Clin Diagn Lab Immunol.2003,10(1):108-115
    [139]T. O. Kohl,Hitzeroth, II,N. D. Christensen,et al.Expression of HPV-11L1protein in transgenic Arabidopsis thaliana and Nicotiana tabacum.BMCBiotechnol.2007,7:56
    [140]J. Paavonen, P. Naud, J. Salmeron, et al. Efficacy of humanpapillomavirus (HPV)-16/18AS04-adjuvanted vaccine against cervicalinfection and precancer caused by oncogenic HPV types (PATRICIA): finalanalysis of a double-blind, randomised study in youngwomen.Lancet.2009,374(9686):301-314
    [141]J. Power,P. F. Greenfield,L. Nielsen,et al.Modelling the growth andprotein production by insect cells following infection by a recombinantbaculovirus in suspension culture.Cytotechnology.1992,9(1-3):149-155
    [142]P. Licari,J. E. Bailey.Factors influencing recombinant protein yields in aninsect cell-bacuiovirus expression system: multiplicity of infection andintracellular protein degradation.Biotechnol Bioeng.1991,37(3):238-246
    [143]K. Wang,K. M. Holtz,K. Anderson,et al.Expression and purification ofan influenza hemagglutinin--one step closer to a recombinant protein-basedinfluenza vaccine.Vaccine.2006,24(12):2176-2185
    [144]G. J. Ebrahim.Avian flu and influenza pandemics in human populations.JTrop Pediatr.2004,50(4):192-194
    [145]Y. Kawaoka,S. Krauss,R. G. Webster.Avian-to-human transmission ofthe PB1gene of influenza A viruses in the1957and1968pandemics.JVirol.1989,63(11):4603-4608
    [146]C. Brown,O. Horstick,F. Naville,et al.Avian influenza outbreaks in theWHO European region and public health actions.Euro Surveill.2005,10(10):E051027051022
    [147].Prevention and control of avian influenza in humans in China: achieving thenational objectives of the WHO Global Influenza Preparedness Plan.WklyEpidemiol Rec.2006,81(12):108-113
    [148]D. Normile.Avian influenza. WHO proposes plan to stop pandemic in itstracks.Science.2006,311(5759):315-316
    [149]N. Bardiya,J. H. Bae.Influenza vaccines: recent advances in productiontechnologies.Appl Microbiol Biotechnol.2005,67(3):299-305
    [150]G. T. Fabian.Pandemic influenza and lessons from history.J S C MedAssoc.2008,104(5):126-131
    [151]R. A. Kantorovich.[History of the studies on influenza in Russia].ZhMikrobiol Epidemiol Immunobiol.1954,8:106-110
    [152]P. Crovari,M. Alberti,C. Alicino.History and evolution of influenzavaccines.J Prev Med Hyg.2011,52(3):91-94
    [153]W. R. Dowdle,M. T. Coleman,M. B. Gregg.Natural history of influenzatype A in the United States,1957-1972. Prog Med Virol.1974,17(0):91-135
    [154]K. Matsumoto.[History of pandemic influenza in Japan]. NihonRinsho.2010,68(9):1595-1601
    [155].Epidemiology of WHO-confirmed human cases of avian influenza A(H5N1)infection.Wkly Epidemiol Rec.2006,81(26):249-257
    [156]. Update: WHO-confirmed human cases of avian influenza A (H5N1)infection, November2003-May2008. Wkly Epidemiol Rec.2008,83(46):415-420
    [157]J. M. Chen,J. W. Chen,J. J. Dai,et al.A survey of human cases of H5N1avian influenza reported by the WHO before June2006for infectioncontrol.Am J Infect Control.2007,35(7):467-469
    [158]J. Cohen.Avian influenza. WHO group: H5N1papers should be published infull.Science.2012,335(6071):899-900
    [159]S. L. Epstein, G. E. Price. Cross-protective immunity to influenza Aviruses.Expert Rev Vaccines.2010,9(11):1325-1341
    [160]C. Chu,V. Lugovtsev,H. Golding,et al.Conversion of MDCK cell lineto suspension culture by transfecting with human siat7e gene and its applicationfor influenza virus production. Proc Natl Acad Sci U S A.2009,106(35):14802-14807
    [161]郭元吉程小雯.流行性感冒病毒及其实验技术.中国三峡出版社,1997
    [162]J. Lin,J. Zhang,X. Dong,et al.Safety and immunogenicity of aninactivated adjuvanted whole-virion influenza A (H5N1) vaccine: a phase Irandomised controlled trial.Lancet.2006,368(9540):991-997
    [163]M. A. Moffat,T. H. Pennington,A. M. Robertson,et al.Study of theimmunogenicity of trivalent inactivated whole-virion influenza vaccine inhuman volunteers.J Biol Stand.1982,10(2):83-90
    [164]N. J. Carter,G. L. Plosker.Prepandemic influenza vaccine H5N1(splitvirion, inactivated, adjuvanted)[Prepandrix]: a review of its use as an activeimmunization against influenza A subtype H5N1virus.BioDrugs.2008,22(5):279-292
    [165]K. Hoschler, R. Gopal, N. Andrews, et al. Cross-neutralisation ofantibodies elicited by an inactivated split-virion influenzaA/Vietnam/1194/2004(H5N1) vaccine in healthy adults against H5N1clade2strains.Influenza Other Respi Viruses.2007,1(5-6):199-206
    [166]J. L. Bresson,C. Perronne,O. Launay,et al.Safety and immunogenicityof an inactivated split-virion influenza A/Vietnam/1194/2004(H5N1) vaccine:phase I randomised trial.Lancet.2006,367(9523):1657-1664
    [167]B. Lina,M. A. Fletcher,M. Valette,et al.A TritonX-100-split virioninfluenza vaccine is safe and fulfills the committee for proprietary medicinalproducts (CPMP) recommendations for the European Community forImmunogenicity, in Children, Adults and the Elderly.Biologicals.2000,28(2):95-103
    [168]G. A. El'shina, M. Masalin Iu, V. I. Shervali, et al.[The trivalentpolymer-subunit influenza vaccine Grippol studied in a controlledepidemiological trial (1)].Voen Med Zh.1996,317(8):57-60
    [169]M. P. Zykov, L. G. Rudenko, N. Y. Zoshchenkova, et al. Subunitinfluenza vaccine and its testing in clinical immunology.J Hyg EpidemiolMicrobiol Immunol.1980,24(2):212-218
    [170]S. B. Mossad. Demystifying FluMist, a new intranasal, live influenzavaccine.Cleve Clin J Med.2003,70(9):801-806
    [171]. FluMist: an intranasal live influenza vaccine. Med Lett DrugsTher.2003,45(1163):65-66
    [172].Influenza virus vaccine live intranasal (Aviron). FluMist, influenza vaccinelive intranasal.Drugs R D.1999,2(3):204-207
    [173]P. Durando,G. Icardi,F. Ansaldi.MF59-adjuvanted vaccine: a safe anduseful tool to enhance and broaden protection against seasonal influenzaviruses in subjects at risk.Expert Opin Biol Ther.2010,10(4):639-651
    [174]T. W. Clark,M. Pareek,K. Hoschler,et al.Trial of2009influenza A(H1N1) monovalent MF59-adjuvanted vaccine.N Engl J Med.2009,361(25):2424-2435
    [175]R. C. Li, H. H. Fang, Y. P. Li, et al.[Study on the safety andimmunogenicity of MF59-adjuvanted influenza subunit vaccine in Chineseelderly].Zhonghua Liu Xing Bing Xue Za Zhi.2008,29(6):548-551
    [176]E. F. Fynan,H. L. Robinson,R. G. Webster.Use of DNA encodinginfluenza hemagglutinin as an avian influenza vaccine. DNA CellBiol.1993,12(9):785-789
    [177]J. B. Ulmer,J. J. Donnelly,S. E. Parker,et al.Heterologous protectionagainst influenza by injection of DNA encoding a viralprotein.Science.1993,259(5102):1745-1749
    [178]R. R. Deck,C. M. DeWitt,J. J. Donnelly,et al.Characterization ofhumoral immune responses induced by an influenza hemagglutinin DNAvaccine.Vaccine.1997,15(1):71-78
    [179]H. Song,V. Wittman,A. Byers,et al.In vitro stimulation of humaninfluenza-specific CD8+T cells by dendritic cells pulsed with an influenzavirus-like particle (VLP) vaccine.Vaccine.2010,28(34):5524-5532
    [180]K. Mahmood,R. A. Bright,N. Mytle,et al.H5N1VLP vaccine inducedprotection in ferrets against lethal challenge with highly pathogenic H5N1influenza viruses.Vaccine.2008,26(42):5393-5399
    [181]J. M. Galarza,T. Latham,A. Cupo.Virus-like particle (VLP) vaccineconferred complete protection against a lethal influenza virus challenge.ViralImmunol.2005,18(1):244-251
    [182]N. V. Kaverin,R. G. Webster.Impairment of multicycle influenza virusgrowth in Vero (WHO) cells by loss of trypsin activity.J Virol.1995,69(4):2700-2703
    [183]E. P. Rocha,X. Xu,H. E. Hall,et al.Comparison of10influenza A(H1N1and H3N2) haemagglutinin sequences obtained directly from clinicalspecimens to those of MDCK cell-and egg-grown viruses. J GenVirol.1993,74(Pt11):2513-2518
    [184]E. A. Govorkova, S. Kodihalli, I. V. Alymova, et al. Growth andimmunogenicity of influenza viruses cultivated in Vero or MDCK cells and inembryonated chicken eggs.Dev Biol Stand.1999,98:39-51; discussion73-34
    [185]E. A. Govorkova,M. N. Matrosovich,A. B. Tuzikov,et al.Selection ofreceptor-binding variants of human influenza A and B viruses in baby hamsterkidney cells.Virology.1999,262(1):31-38
    [186]E. A. Govorkova,G. Murti,B. Meignier,et al.African green monkeykidney (Vero) cells provide an alternative host cell system for influenza A andB viruses.J Virol.1996,70(8):5519-5524
    [187]O. W. Merten,J. V. Kierulff,N. Castignolles,et al.Evaluation of the newserum-free medium (MDSS2) for the production of different biologicals: use ofvarious cell lines.Cytotechnology.1994,14(1):47-59
    [188]罗凤山.封闭连续细胞培养生产流感病毒工艺过程关键技术的研究.上海交通大学博士.2008
    [189]S. C. Lau,C. Scholtissek.Abortive infection of Vero cells by an influenza Avirus (FPV).Virology.1995,212(1):225-231
    [190]E. A. Govorkova,N. V. Kaverin,L. V. Gubareva,et al.Replication ofinfluenza A viruses in a green monkey kidney continuous cell line (Vero).JInfect Dis.1995,172(1):250-253
    [191]O. Kistner,P. N. Barrett,W. Mundt,et al.Development of a mammaliancell (Vero) derived candidate influenza virus vaccine.Vaccine.1998,16(9-10):960-968
    [192]P. Bruhl,A. Kerschbaum,O. Kistner,et al.Humoral and cell-mediatedimmunity to vero cell-derived influenza vaccine. Vaccine.2000,19(9-10):1149-1158
    [193]G. L. Plosker.A/H5N1Prepandemic Influenza Vaccine (Whole Virion, VeroCell-Derived, Inactivated)[Vepacel(R)].Drugs.2012,72(11):1543-1557
    [194]G. V. Zuccotti, V. Fabiano. Influvac, a trivalent inactivated subunitinfluenza vaccine.Expert Opin Biol Ther.2011,11(1):89-98
    [195]A. Doroshenko, S. A. Halperin. Trivalent MDCK cell culture-derivedinfluenza vaccine Optaflu (Novartis Vaccines). Expert RevVaccines.2009,8(6):679-688
    [196]P. B. Capstick,A. J. Garland,W. G. Chapman,et al.Factors affecting theproduction of foot-and-mouth disease virus in deep suspension cultures ofBHK21clone13cells.J Hyg (Lond).1967,65(3):273-280
    [197]A. L. van Wezel.Growth of cell-strains and primary cells on micro-carriers inhomogeneous culture.Nature.1967,216(5110):64-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700