用户名: 密码: 验证码:
SnS_2(SnO_2)多级微纳结构的合成及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SnS_2和SnO_2是重要的锡基氧族化合物,具有优良的光学、催化、电化学、磁学及气敏等性质,在气敏传感器、电阻器、光电探测器、光导材料、发光材料、光催化剂、锂离子电池和太阳能电池等方面具有广泛应前景。多级无机功能微纳米材料综合了物质本征效应、纳米尺度效应和组合效应所产生的多功能性使其成为纳米材料研究领域的热点之一,并在储能、催化、水处理、能量转换等领域展现出巨大的优势。因此,开发简单、可靠的软化学法控制合成多级微纳结构、探索其新的功能将具有重要的理论和实际意义。本论文遵循以设计合成为基础,功能为导向的基本理念。通过反应体系的选择和反应条件的调控,设计合成了一系列SnS_2(SnO_2)及其复合物多级微纳结构,探究了制备多级微纳结构的关键问题;并对这些多级微纳结构的电化学储锂、光学和气敏等性能及其构效关系进行了较为系统和全面的研究。具体内容包括:
     (1) L-半胱氨酸辅助水热法合成SnS_2多级微纳结构及性能研究。通过简单地调节L-半胱氨酸的浓度成功合成了三种不同结构的SnS_2多级微球。研究表明反应初期体系中S~(2-)离子的浓度是影响SnS_2多级微纳结构的关键因素,并对SnS_2多级微纳结构的化学成分、结晶性、组装单元、组装形式、比表面积和孔隙结构等具有重要的影响。同时,SnS_2多级微纳结构基本性质也极大地影响了材料的电化学储锂性能、光吸收、光电响应和光降解性能。
     (2) SnS_2插层化合物的水热合成及性能研究。采用水热法合成了以CTAB、SDBS、PEG和PVP等为客体,SnS_2为主体的插层化合物。插层化合物的形成是反应体系趋于热力学稳定的过程,同时温度、时间、S~(2-)的释放速度、酸度、插层剂的浓度和分子大小对插层化合物的形成具有重要的影响。进一步采用超声法,通过超声剥离PEG-SnS_2插层化合物,获得具有很强荧光性能的PEG-SnS_2插层化合物量子点,其量子产率最高可达65%。而且PEG的分子量和前驱体的浓度对量子产率和激发波长有十分明显的影响。
     (3) SnO_xS_(2-x)/石墨烯复合物的超声法合成及储锂性能。采用超声法成功制备了两种锡基氧化物与硫化物不同比例的SnO_xS_(2-x)/石墨烯的复合物(SnO_(0.6)S_(1.4)/GNS和SnOS/GNS)。由于复合物以SnO_2与SnS_2的微观混合相(S掺杂SnO_2和O掺杂SnS_2)替代纯相的SnO_2或SnS_2与石墨烯复合,电化学性能表明两种复合物都能实现从SnO_2(SnS_2)到锡单质和氧化锂(硫化锂)、最后到锡锂合金电化学储锂过程的全程可逆,并且复合物中SnO_2与SnS_2的比例对于电化学过程的可逆性和稳定性有决定性的影响,如SnOS/GNS复合物具有优良的循环稳定性(40次循环后仍有1066mAh g-1)和倍率性能(2Ag-1时比容量为402mAh g-1)。
     (4) SnO_2多级微纳结构及其石墨烯复合物的水热合成和性能。采用硫代乙醇酸辅助水热法成功合成了SnO_2空心微球,并通过碱源的调控合成了SnO_2单晶纳米粒子、纳米短棒和海胆状多级微纳结构,其中基于SnO_2空心微球和海胆状多级微纳结构的气敏元件对于乙醇具有很高的响应,尤其是海胆状结构的SnO_2对100ppm乙醇的灵敏度达到73.7。成功制备了SnO_2纳米棒阵列/石墨烯复合物,这一特殊结构赋予复合物优良的电化学储锂性能(0.2Ag-1循环63次后仍有1154.1mAh g-1的比容量)。
SnS_2and SnO_2are important tin based componds with excellent optical, catalytic,magnetic and gas sensitive properties and have wide applications in gas sensor,resistor, photodevice, photoconductor, luminescent materials, photocatalyst, lithiumion batteries, etc. Recently, inorganic fuctional materials with hierarchicalmicro-/nanostructures have attracted intensive interest for the structure joined theintrinsic effect of bulk materials with the nano-effect of nanomaterials and producedmany combinatory effects. Hierarchical micro-/nanostructures have been showattractive superiority in energy conversion, such as solar cells and photocatalytichydrogen generation, energy storage, such as lithium ion batteries and supercapacitor,sensor, catalysis, water treatment and so on. A solution-phase chemical method wasone of the most promising routes in these reports, due to its low cost and potentialadvantage for large-scale production. Exploration of reasonable synthetic methods forcontrolled construction of hierarchical micro-/nanostructures of tin basedchalcogenide via a chemical self-assembly route is still an intensive and hot researchtopic. In this thesis, we attempted to synthesize hierarchical SnS_2(SnO_2)micro-/nanostructures by new chemical method. The lithium strage, optical and gassensitivity properties of the obtained structures as well as the ralations between theirstructures and performances have been studied. Detailed rerearch contents aresummarized as following:
     (1) Controlled synthesis and applications of hierarchical SnS_2micro/nano-structures.
     Different hierarchical SnS_2micro-/nanostructures were successfully synthesizedthrough an one-pot hydrothermal method by controlling the ratio of SnCl4andL-cysteine. The concentration of S~(2-)in the early stage is very important to thesysnthesis of hierarchical SnS_2micro/nano-structures. The chemical composition,crystalline property, building blocks, assembling format and porous structure ofthe hierarchical SnS_2micro/nano-structures can be affected by the concentration of L-cys. And they have great effects on the lithium storage, optical, photoelectricresponse, photocatalysis and adsorption properties of these hierarchical SnS_2structures.
     (2) Hydrothermal synthesis and optical properties of SnS_2intercalationcompounds.
     It is general, facilate and economic that introducing hydrothermal method to thedirect synthesis of SnS_2intercalation compounds. The intercalated objects can besurfactants or polymers, such as CTAB, SDBS, PVP and PEG. The formation ofSnS_2intercalation compounds can be controlled by thermodynamics and affectedby the molecue weight and concentration of intercalated objects, reactiontemperature, reaction time and the release rate of S~(2-). The PEG intercalated SnS_2can be easily exfoliated to single layer of PEG-SnS_2QDs by solvent underultrasonication. These QDs have strong fluorescence with a quantum yield of65%and can be affected by the molecule weight of PEG and the concentrationsof precursors.
     (3) Synthesis and lithium storage properties of SnO_xS_(2-x)/GNS composites.
     Two types of composite with different ratios between SnO_2and SnS_2(SnO_(0.6)S_(1.4)/GNS and SnOS/GNS) have been synthesized by ultrasonication.Electrochemical measurements show both composite can realize the fullyreversible lithium storage of tin based chalcogenide. The key reasons may beattribute to the GNS composite and mixed phase of SnO_2and SnS_2, which dopedwith each other in the nano-level. The ratios between SnO_2and SnS_2can greatlyaffect the lithium storage performances and SnOS/GNS exhibited respectivelygood cycling performance (0.2A g-1,1066mAh g-1after40cycles) and ratecapability (2A g-1,402mAh g-1).
     (4) Hydrothermal synthesis of hierarchical SnO_2micro-/nanostructures.
     Divers SnO_2structures, such as hollow microspheres, nanoparticles, nanorodsand urchin-like hierarchical micro-/nanostructures are synthesized though amercaptoacetic acid assisted hydrothermal method by controlling alkali types.Gas sensors based on hollow microspheres and urchin like structures haveextremely high sensitivity to alcohol, and the sensitivity of100ppm ethanol ofurchin like structures can reach to73.7. SnO_2nanorods array/GNS composite canbe synthesize by adding graphene oxide to the reaction system of urchin likestructures. And the composite show superior lithium storage properties (0.2A g-1,63cycles,1154.1mAh g-1). The high performance can put down to the layered porous structure of graphene nanosheets with in-situ growth SnO_2nanorodsarray。
引文
[1]. Wang Z. L.; Liu Y.; Zhang Z., Handbook of nanophase and nanostructured materials[M].Plenum Pub Corp:2002.
    [2]. Mahamuni N. N.; Adewuyi Y. G., Advanced oxidation processes (AOPs) involvingultrasound for waste water treatment: A review with emphasis on cost estimation[J].Ultrasonics Sonochemistry,2010,17(6), pp990-1003.
    [3].李玲;向航,功能材料与纳米技术[M].北京:化学工业出版社:2002.
    [4].张立德;牟季美,开拓原子和物质的中间领域—纳米微粒与纳米固体[J].物理,1992,21(3), pp167-173.
    [5].张立德;牟季美,纳米材料和纳米结构[M].科学出版社:2001.
    [6].杨剑;滕凤恩,纳米材料综述[J].材料导报,1997,11(002), pp6-10.
    [7].王湘艳;王治强;田汉民, et al.,分级微纳结构ZnO空心球的制备及其光电转换性能[J].无机化学学报,2009,25(11), pp1893-1897.
    [8].刘良,含铋微纳材料的合成及其物性研究[D].江南大学2008.
    [9].李本侠;谢毅,金属氧化物和硒化物的三维多级微纳结构的化学合成与组装[D].中国科学技术大学2008.
    [10].吴正翠;谢毅,配位化学原理调控无机多级和空心微纳结构的合成及物性研究[D].中国科学技术大学2008.
    [11].孙奉玉;吴鸣;李文钊, et al.,二氧化钛的尺寸与光催化活性的关系[J].催化学报,1998,19(3), pp229-233.
    [12].陈德文;王素华,纳米级CdS粒子尺寸量子化的化学效应研究[J].中国科学(B辑),1996,26(3), pp262-268.
    [13].江龙,量子化尺寸纳米颗粒及其在生物体系中的作用[J].无机化学学报,2000,16(2), pp185-194.
    [14].柳闽生;杨迈之,半导体纳米粒子的基本性质及光电化学特性[J].化学通报,1997,(001), pp20-24.
    [15].陈勇,金属钌,钴纳米颗粒的制备及其粒径控制的研究[D].中南民族大学2008.
    [16].吴长锋,硅及稀土材料低维纳米结构的组装和光物理性质[D].中国科学院研究生院(长春光学精密机械与物理研究所)2004.
    [17].常方高;孙震兴;付鹤鹏; et al.,粒径对Ni/硅橡胶复合材料压敏性及介电性质的影响[J].复合材料学报,2011,28(4),pp52-57.
    [18].张玲, ZnO纳米材料的制备及其微波介电性能的研究[D].西北工业大学2007.
    [19].阚世海;张岩;彭笑刚; et al.,沸腾回流强迫水解法制备均分散α-Fe2O3超微粒水溶胶[J].高等学校化学学报,1993,14(7), pp1013-1014.
    [20].杨秀培;周在德;钟辉,从氧化锌矿制备高纯超细ZnO粉体[J].化学研究与应用,2002,14(3), pp366-368.
    [21].彭小兰,纳米物理学效应及其应用[J].东莞理工学院学报,2006,13(3), pp11-15.
    [22].王兵;鲁山;杨金龙; et al.,纳米隧道结的量子电容现象[J].物理,2002,31(4),pp200-202.
    [23]. Nazeeruddin M. K.; Kay A.; Rodicio I.; et al., Conversion of light to electricity bycis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl-,Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of theAmerican Chemical Society,1993,115(14), pp6382-6390.
    [24]. Bruchez M.; Moronne M.; Gin P.; et al., Semiconductor nanocrystals as fluorescentbiological labels[J]. Science, Sep25,1998,281(5385), pp2013-2016.
    [25]. Chan W. C. W.; Nie S. M., Quantum dot bioconjugates for ultrasensitive nonisotopicdetection[J]. Science, Sep25,1998,281(5385), pp2016-2018.
    [26]. Huang M. H.; Mao S.; Feick H.; et al., Room-temperature ultraviolet nanowirenanolasers[J]. Science, Jun8,2001,292(5523), pp1897-1899.
    [27]. Nakamura S.; Kitamura K.; Umeya H.; et al., Bright electroluminescence from CdSquantum dot LED structures[J]. Electronics Letters, Dec10,1998,34(25), pp2435-2436.
    [28]. Greenham N. C.; Peng X. G.; Alivisatos A. P., Charge separation and transport inconjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescencequenching and photoconductivity[J]. Physical Review B, Dec15,1996,54(24), pp17628-17637.
    [29]. Li N.; Liu G.; Zhen C.; et al., Battery Performance and Photocatalytic Activity ofMesoporous Anatase TiO2Nanospheres/Graphene Composites by Template-FreeSelf-Assembly[J]. Advanced Functional Materials, May10,2011,21(9), pp1717-1722.
    [30]. Liqiang J.; Honggang F.; Baiqi W.; et al., Effects of Sn dopant on the photoinducedcharge property and photocatalytic activity of TiO2nanoparticles[J]. Applied Catalysis B:Environmental,2006,62(3–4), pp282-291.
    [31]. Xiang Q.; Yu J., Photocatalytic activity of hierarchical flower-like TiO2superstructures with dominant {001} facets[J]. Cuihua Xuebao/Chinese Journal of Catalysis,2011,32(4), pp525-531.
    [32]. Xu H.; Zheng Z.; Zhang L.; et al., Hierarchical chlorine-doped rutile TiO2sphericalclusters of nanorods: Large-scale synthesis and high photocatalytic activity[J]. Journal ofSolid State Chemistry,2008,181(9), pp2516-2522.
    [33]. Kim Y. J.; Lee M. H.; Kim H. J.; et al., Formation of highly efficient dye-sensitizedsolar cells by hierarchical pore generation with nanoporous TiO2spheres[J]. AdvancedMaterials,2009,21(36), pp3668-3673.
    [34]. Kumar P. S.; Nizar S. A. S.; Sundaramurthy J.; et al., Tunable hierarchical TiO2nanostructures by controlled annealing of electrospun fibers: Formation mechanism,morphology, crystallographic phase and photoelectrochemical performance analysis[J].Journal of Materials Chemistry,2011,21(26), pp9784-9790.
    [35]. Liao J. Y.; Lei B. X.; Kuang D. B.; et al., Tri-functional hierarchical TiO2spheresconsisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solarcells[J]. Energy and Environmental Science,2011,4(10), pp4079-4085.
    [36]. Sauvage F.; Di Fonzo F.; Li Bassi A.; et al., Hierarchical TiO2photoanode fordye-sensitized solar cells[J]. Nano Letters,2010,10(7), pp2562-2567.
    [37]. Stafford U.; Gray K. A.; Kamat P. V., Radiolytic and TiO2-Assisted PhotocatalyticDegradation of4-Chlorophenol. A Comparative Study[J]. Journal of Physical Chemistry,1994,98(25), pp6343-6351.
    [38]. Pooarporn Y.; Worayingyong A.; Worner M.; et al., A comparative study of dopedand un-doped sol-gel TiO2and P25TiO2(photo)electrodes[J]. Water Science and Technology,2007,55(12), pp153-160.
    [39]. Zhang Y. C.; Li J.; Zhang M.; et al., Size-Tunable Hydrothermal Synthesis of SnS2Nanocrystals with High Performance in Visible Light-Driven Photocatalytic Reduction ofAqueous Cr(VI)[J]. Environmental Science&Technology, Nov1,2011,45(21), pp9324-9331.
    [40]. Lei Y. Q.; Song S. Y.; Fan W. Q.; et al., Facile Synthesis and Assemblies ofFlowerlike SnS2and In3+-Doped SnS2: Hierarchical Structures and Their EnhancedPhotocatalytic Property[J]. Journal of Physical Chemistry C,2009,113(4), pp1280-1285.
    [41]. He H. Y.; Huang J. F.; Cao L. Y.; et al., Photocatalytic activity of mixture of SnS2and TiO2powders in destruction of metyhyl orange in water[J]. Journal of Optoelectronicsand Advanced Materials,2007,9(12), pp3781-3784.
    [42]. Zhang Y. C.; Du Z. N.; Li K. W.; et al., Size-controlled hydrothermal synthesis ofSnS2nanoparticles with high performance in visible light-driven photocatalytic degradation ofaqueous methyl orange[J]. Separation and Purification Technology, Sep5,2011,81(1), pp101-107.
    [43]. Du W.; Deng D.; Han Z.; et al., Hexagonal tin disulfide nanoplatelets: A newphotocatalyst driven by solar light[J]. CrystEngComm,2011,13(6), pp2071-2076.
    [44]. Wahnon P.; Conesa J. C.; Palacios P.; et al., V-doped SnS2: a new intermediate bandmaterial for a better use of the solar spectrum[J]. Physical Chemistry Chemical Physics,2011,2011,13(45), pp20401-20407.
    [45]. Zhang Z.; Zou R.; Song G.; et al., Highly aligned SnO2nanorods on graphene sheetsfor gas sensors[J]. Journal of Materials Chemistry,2011,21(43), pp17360-17365.
    [46]. Wang Q.; Wang D.; Wu M.; et al., Porous SnO2nanoflakes with loose-packedstructure: Morphology conserved transformation from SnS2precursor and application inlithium ion batteries and gas sensors[J]. Journal of Physics and Chemistry of Solids,2011,72(6), pp630-636.
    [47]. Pearton S. J.; Norton D. P.; Ip K.; et al., Recent progress in processing andproperties of ZnO[J]. Progress In Materials Science,2005,50(3), pp293-340.
    [48]. Fu Q.; Lu C.; Liu J.; Selective Coating of Single Wall Carbon Nanotubes with ThinSiO2Layer[J]. Nano Letters,2002,2(4), pp329-332.
    [49]. Wang C.; Yin L.; Zhang L.; et al., Large scale synthesis and gas-sensing propertiesof anatase TiO2Three-dimensional hierarchical nanostructures[J]. Langmuir,2010,26(15),pp12841-12848.
    [50]. Wu C.; Yin P.; Zhu X.; et al., Synthesis of Hematite (α-Fe2O3) Nanorods:Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery,and Gas Sensors[J]. The Journal of Physical Chemistry B,2006,110(36), pp17806-17812.
    [51]. Chen J.; Xu L.; Li W.; et al., α-Fe2O3nanotubes in gas sensor and lithium-ionbattery applications[J]. Advanced Materials,2005,17(5), pp582-586.
    [52]. Li X. L.; Lou T. J.; Sun X. M.; et al., Highly sensitive WO3hollow-sphere gassensors[J]. Inorganic Chemistry,2004,43(17), pp5442-5449.
    [53]. Kanai H.; Mizutani H.; Tanaka T.; et al., X-Ray absorption study on the localstructures of fine particles of Fe2O3–SnO2gas sensors[J]. Journal of Materials Chemistry,1992,2, pp703-707.
    [54]. Bruce P. G.; Scrosati B.; Tarascon J. M., Nanomaterials for rechargeable lithiumbatteries[J]. Angewandte Chemie International Edition,2008,47(16), pp2930-2946.
    [55]. Jiao F.; Bruce P. G.; Mesoporous crystalline β-MnO2-A reversible positive electrodefor rechargeable lithium batteries[J]. Advanced Materials,2007,19(5), pp657-660.
    [56].辛森;郭玉国;万立骏;高能量密度锂二次电池电极材料研究进展[J].中国科学:化学,2011,41(8), pp1229-1239.
    [57]. Wang J.; Du G.; Zeng R.; et al., Porous Co3O4nanoplatelets by self-supportedformation as electrode material for lithium-ion batteries[J]. Electrochimica Acta,2010,55(16), pp4805-4811.
    [58]. Park M. H.; Kim K.; Kim J.; et al., Flexible Dimensional Control of High-CapacityLi-Ion-Battery Anodes: From0D Hollow to3D Porous Germanium NanoparticleAssemblies[J]. Advanced Materials,2010,22(3), pp415-418.
    [59]. Liu L.; Li Y.; Yuan S.; et al., Nanosheet-based NiO microspheres: Controlledsolvothermal synthesis and Lithium storage performances[J]. Journal of Physical Chemistry C,2010,114(1), pp251-255.
    [60]. Esmanski A.; Ozin G. A., Silicon Inverse-Opal-Based Macroporous Materials asNegative Electrodes for Lithium Ion Batteries[J]. Advanced Functional Materials,2009,19(12), pp1999-2010.
    [61]. Sun S.; Wang W.; Xu H.; et al., Bi5FeTi3O15hierarchical microflowers:Hydrothermal synthesis, growth mechanism, and associated visible-light-drivenphotocatalysis[J]. Journal of Physical Chemistry C,2008,112(46), pp17835-17843.
    [62]. Zhong H.; Yang G.; Song H.; et al., Vertically aligned graphene-like SnS2ultrathinnanosheet arrays: Excellent energy storage, catalysis, photoconduction, and field-emittingperformances[J]. Journal of Physical Chemistry C,2012,116(16), pp9319-9326.
    [63]. Lao J. Y.; Wen J. G.; Ren Z. F., Hierarchical ZnO nanostructures[J]. Nano Letters,2002,2(11), pp1287-1291.
    [64]. Sun S.; Meng G.; Zhang G.; et al., Controlled growth of SnO2hierarchicalnanostructures by a multistep thermal vapor deposition process[J]. Chemistry-a EuropeanJournal,2007,13(32), pp9087-9092.
    [65]. Salgueiri o‐Maceira V.; Spasova M.; Farle M., Water‐Stable, Magnetic Silica–Cobalt/Cobalt Oxide–Silica Multishell Submicrometer Spheres[J]. Advanced FunctionalMaterials,2005,15(6), pp1036-1040.
    [66]. Kawahashi N.; Persson C.; Matijevi E., Zirconium compounds as coatings onpolystyrene latex and as hollow spheres[J]. Journal of Materials Chemistry,1991,1(4), pp577-582.
    [67]. Xia Y.; Mokaya R., Hollow spheres of crystalline porous metal oxides: Ageneralized synthesis route via nanocasting with mesoporous carbon hollow shells[J]. Journalof Materials Chemistry,2005,15(30), pp3126-3131.
    [68]. Hentze H. P.; Raghavan S. R.; McKelvey C. A.; et al., Silica hollow spheres bytemplating of catanionic vesicles[J]. Langmuir,2003,19(4), pp1069-1074.
    [69]. Fowler C. E.; Mann S., Interfacial synthesis of hollow microspheres ofmesostructured silica[J]. Chemical Communications,2001,(19), pp2028-2029.
    [70]. Huang J.; Xie Y.; Li B.; et al., In‐Situ Source–Template–Interface ReactionRoute to Semiconductor CdS Submicrometer Hollow Spheres[J]. Advanced Materials,2000,12(11), pp808-811.
    [71]. Yuan R.; Fu X.; Wang X.; et al., Template synthesis of hollow metal oxide fiberswith hierarchical architecture[J]. Chemistry of Materials,2006,18(19), pp4700-4705.
    [72]. Guo Z.; Liu J.; Jia Y.; et al., Template synthesis, organic gas-sensing and opticalproperties of hollow and porous In2O3nanospheres[J]. Nanotechnology,2008,19(34), pp3457041-9.
    [73]. Chen Z.; Gong Q.; Zhu J.; et al., Controllable synthesis of hierarchicalnanostructures of CaWO4and SrWO4via a facile low-temperature route[J]. MaterialsResearch Bulletin,2009,44(1), pp45-50.
    [74]. Gong Q.; Qian X.; Ma X.; et al., Large-scale fabrication of novel hierarchical3DCaMoO4and SrMoO4mesocrystals via a microemulsion-mediated route[J]. Crystal Growthand Design,2006,6(8), pp1821-1825.
    [75]. Gong Q.; Qian X.; Cao H.; et al., Novel shape evolution of BaMoO4microcrystals[J]. Journal of Physical Chemistry B,2006,110(39), pp19295-19299.
    [76]. Gong Q.; Li G.; Qian X.; et al., Synthesis of single crystal CdMoO4octahedralmicroparticles via microemulsion-mediated route[J]. Journal of Colloid and Interface Science,2006,304(2), pp408-412.
    [77]. Yang J.; Lin C.; Wang Z.; et al., In (OH)3and In2O3nanorod bundles and spheres:microemulsion-mediated hydrothermal synthesis and luminescence properties[J]. InorganicChemistry,2006,45(22), pp8973-8979.
    [78]. Ye L.; Wu C.; Guo W.; et al., MoS2hierarchical hollow cubic cages assembled bybilayers: one-step synthesis and their electrochemical hydrogen storage properties[J].Chemical Communications,2006,(45), pp4738-4740.
    [79]. Yin Y.; Rioux R. M.; Erdonmez C. K.; et al., Formation of hollow nanocrystalsthrough the nanoscale Kirkendall effect[J]. Science,2004,304(5671), pp711-714.
    [80]. Gong Q.; Qian X.; Zhou P.; et al., In situ sacrificial template approach to thesynthesis of octahedral CdS microcages[J]. The Journal of Physical Chemistry C,2007,111(5), pp1935-1940.
    [81]. Andres R. P.; Bielefeld J. D.; Henderson J. I.; et al., Self-assembly of atwo-dimensional superlattice of molecularly linked metal clusters[J]. Science,1996,273(5282), pp1690-1693.
    [82]. C lfen H.; Mann S., Higher‐Order Organization by Mesoscale Self‐Assemblyand Transformation of Hybrid Nanostructures[J]. Angewandte Chemie international Edition,2003,42(21), pp2350-2365.
    [83]. Zhang L.; Wang W.; Zhou L.; et al., Bi2WO6Nano-and Microstructures: ShapeControl and Associated Visible-Light-Driven Photocatalytic Activities[J]. Small,2007,3(9),pp1618-1625.
    [84]. Xing Y.; Zhang H.; Song S.; et al., Hydrothermal synthesis and photoluminescentproperties of stacked indium sulfide superstructures[J]. Chemical Communications,2008,(12), pp1476-1478.
    [85]. Yang J.; Li C.; Quan Z.; et al., Self-Assembled3D Flowerlike Lu2O3and Lu2O3:Ln3+(Ln=Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) Microarchitectures: Ethylene Glycol-MediatedHydrothermal Synthesis and Luminescent Properties[J]. The Journal of Physical Chemistry C,2008,112(33), pp12777-12785.
    [86]. Zhang N.; Bu W.; Xu Y.; et al., Self-assembled flowerlike europium-dopedlanthanide molybdate microarchitectures and their photoluminescence properties[J]. TheJournal of Physical Chemistry C,2007,111(13), pp5014-5019.
    [87]. Qian L.; Zhu J.; Chen Z.; et al., Self‐Assembled Heavy Lanthanide OrthovanadateArchitecture with Controlled Dimensionality and Morphology[J]. Chemistry-a EuropeanJournal,2009,15(5), pp1233-1240.
    [88]. Yin W.; Chen X.; Cao M.; et al., α-Fe2O3Nanocrystals: Controllable SSA-AssistedHydrothermal Synthesis, Growth Mechanism, and Magnetic Properties[J]. The Journal ofPhysical Chemistry C,2009,113(36), pp15897-15903.
    [89]. Zuo F.; Yan S.; Zhang B.; et al., L-cysteine-assisted synthesis of PbSnanocube-based pagoda-like hierarchical architectures[J]. The Journal of Physical ChemistryC,2008,112(8), pp2831-2835.
    [90]. Pan J.; Xiong S.; Xi B.; et al., Tartatric Acid and L‐Cysteine Synergistic‐AssistedSynthesis of Antimony Trisulfide Hierarchical Structures in Aqueous Solution[J]. EuropeanJournal of Inorganic Chemistry,2009(35), pp5302-5306.
    [91]. Kim M. H.; Lim B.; Lee E. P.; et al., Polyol synthesis of Cu2O nanoparticles: use ofchloride to promote the formation of a cubic morphology[J]. Journal of Materials Chemistry,2008,18(34), pp4069-4073.
    [92]. Yu P.; Zhang X.; Wang D.; et al., Shape-controlled synthesis of3D hierarchicalMnO2nanostructures for electrochemical supercapacitors[J]. Crystal Growth and Design,2008,9(1), pp528-533.
    [93]. Qian L.; Zai J.; Chen Z.; et al., Control of the morphology and composition ofyttrium fluoride via a salt-assisted hydrothermal method[J]. CrystEngComm,2009,12(1), pp199-206.
    [94]. Aharon E.; Albo A.; Kalina M.; et al., Stable blue emission from apolyfluorene/layered-compound guest/host nanocomposite[J]. Advanced Functional Materials,2006,16(7), pp980-986.
    [95]. Aharon E.; Breuer S.; Jaiser F.; et al., Effect of the solvent on the conformation ofisolated MEH-PPV chains intercalated into SnS2[J]. Chemphyschem,2008,9(10), pp1430-1436.
    [96]. Thangaraju B.; Kaliannan P., Spray pyrolytic deposition and characterization of SnSand SnS2thin films[J]. Journal of Physics D-Applied Physics,2000,33(9), pp1054-1059.
    [97]. Tan F.; Qu S.; Zeng X.; et al., Photovoltaic effect of tin disulfide withnanocrystalline/amorphous blended phases[J]. Solid State Communications,2010,150(1-2),pp58-61.
    [98]. Aryal D. P.; Tsakmakidis K. L.; Jamois C.; et al., Complete and robust bandgapswitching in double-inverse-opal photonic crystals[J]. Applied Physics Letters,2008, pp011109-1-3.
    [99]. Zhang Y. C.; Du Z. N.; Li S. Y.; et al., Novel synthesis and high visible lightphotocatalytic activity of SnS2nanoflakes from SnCl2·2H2O and S powders[J]. AppliedCatalysis B: Environmental,2010,95(1-2), pp153-159.
    [100]. Seo J. W.; Jang J. T.; Park S. W.; et al., Two-Dimensional SnS2Nanoplates withExtraordinary High Discharge Capacity for Lithium Ion Batteries[J]. Advanced Materials,2008,20(22), pp4269-4273.
    [101]. Balaz P.; Ohtani T.; Bastl Z.; et al., Properties and reactivity of mechanochemicallysynthesized tin sulfides[J]. Journal of Solid State Chemistry,1999,144(1), pp1-7.
    [102]. Liu S. A.; Yin X. M.; Chen L. B.; et al., Synthesis of self-assembled3D flowerlikeSnS2nanostructures with enhanced lithium ion storage property[J]. Solid State Sciences,2010,12(5), pp712-718.
    [103]. Peng J.; Xu Y.; Wu H.; et al., Self-assembly of SnS2submicron-sized flakes to formmicrospheres under template-free hydrothermal conditions[J]. Journal of Alloys andCompounds,2010,490(1-2),pp L20-23.
    [104]. Nam H. S.; Seo J. W., Preparation of tin sulfide nanoparticles used formanufacturing lithium ion battery, involves mixing tin sulfide precursor with surfactant andheating mixture[P]. US2009029258-A1; KR2009011274-A; KR896656-B1,2009.
    [105]. Yella A.; Mugnaioli E.; Therese H. A.; et al., Synthesis of fullerene-andnanotube-like SnS2nanoparticles and Sn/S/carbon nanocomposites[J]. Chemistry of Materials,2009,21(12), pp2474-2481.
    [106]. Yella A.; Mugnaioli E.; Panth fer M.; et al., Bismuth-catalyzed growth of SnS2nanotubes and their stability[J]. Angewandte Chemie International Edition,2009,48(35), pp6426-6430.
    [107]. Dai G. Z.; Zou B. S.; Wang Z. L., Preparation and Periodic Emission of SuperlatticeCdS/CdS:SnS2Microwires[J]. Journal of the American Chemical Society,2010,132(35), pp12174-12175.
    [108]. Ma D. K.; Zhang W.; Tang Q.; et al., Large-scale hydrothermal synthesis of SnS2nanobelts[J]. Journal of Nanoscience and Nanotechnology,2005,5(5), pp806-809.
    [109].孙责磊;纳米石墨的制备方法及机理与应用研究进展[J].材料开发与应用,2011,26(4), pp77-81.
    [110].林坚;柴文祥;杨芸芸, et al.,有机-无机杂化光致变色材料的研究进展[J].中南大学学报(自然科学版),2011,42(10),pp2977-2983.
    [111].郭建刚;金士锋;王刚; et al.,新型铁基超导体材料的研究进展[J].物理,2011,40(8), pp510-515.
    [112]. Dresselhaus M. S.; Dresselhaus G., Intercalation compounds of graphite[J].Advances In Physics, March-April,1981,30(2), pp139-326.
    [113]. Whittingham M. S., Chemistry of intercalation compounds: metal guests inchalcogenide hosts[J]. Progress In Solid State Chemistry,1978,12(1),pp41-99.
    [114]. Parkinson P.; Aharon E.; Chang M. H.; et al., Dimensionality-dependent energytransfer in polymer-intercalated SnS2nanocomposites[J]. Physical Review B-CondensedMatter and Materials Physics,2007,75(16),pp165206-1-6.
    [115]. Kirmayer S.; Aharon E.; Dovgolevsky E.; et al., Self-assembled lamellar MoS2,SnS2and SiO2semiconducting polymer nanocomposites[J]. Philosophical Transactions of theRoyal Society a-Mathematical Physical and Engineering Sciences,2007,365(1855), pp1489-1508.
    [116]. Coleman J. N.; Lotya M.; O'Neill A.; et al., Two-dimensional nanosheets producedby liquid exfoliation of layered materials[J]. Science,2011,331(6017), pp568-571.
    [117]. Pumera M., Graphene-based nanomaterials for energy storage[J]. Energy&Environmental Science,2011,4(3), pp668-674.
    [118]. Zhou K. G.; Mao N. N.; Wang H. X.; et al., A mixed-solvent strategy for efficientexfoliation of inorganic graphene analogues[J]. Angewandte Chemie International Edition,2011,50(46), pp10839-10842.
    [119]. Feng J.; Sun X.; Wu C.; et al., Metallic few-layered VS2ultrathin nanosheets: Hightwo-dimensional conductivity for in-plane supercapacitors[J]. Journal of The AmericanChemical Society,2011,133(44), pp17832-17838.
    [120]. Yin Z.; Li H.; Jiang L.; et al., Single-layer MoS2phototransistors[J]. ACS Nano,2012,6(1), pp74-80.
    [121]. Whittingham M. S.; Gamble Jr F. R., The lithium intercalates of the transition metaldichalcogenides[J]. Materials Research Bulletin,1975,10(5), pp363-371.
    [122]. Espinos J. P.; Gonzalez-Elipe A. R.; Hernan L.; et al., Ultra-high vacuum depositionof Na on SnS2in single crystal and powder forms: evidence of a decomposition reaction[J].Surface Science,1999,426(2), pp259-267.
    [123]. O'Hare D.; Jaegermann W.; Williamson D. L.; et al., X-ray photoelectron M ssbauer,magnetic, and electrical conductivity study of SnS2{CoCp2}0.31[J]. Inorganic Chemistry,1988,27(9), pp1537-1542.
    [124]. Hernán L.; Morales J.; Sánchez L.; et al., Study of in situ adsorption andintercalation of cobaltocene into SnS2single crystals by photoelectron spectroscopy[J].Surface Science,2001,477(2-3), pp L295-L300.
    [125]. Hernan L.; Morales J.; Sanchez L.; et al., Electrochemical cointercalation ofpropylene carbonate with alkali metals in SnS2single crystals[J]. Journal of theElectrochemical Society,1999,146(2), pp657-662.
    [126]. Morales J.; Santos J.; Barrado J. R. R.; et al., Synthesis and characterization ofdiamine intercalation compounds of SnS2single crystals[J]. Journal of Solid State Chemistry,2000,150(2), pp391-398.
    [127]. Bissessur R.; Schipper D., Exfoliation and reconstruction of SnS2layers: A syntheticroute for the preparation of polymer-SnS2nanomaterials[J]. Materials Letters,2008,62(10-11), pp1638-1641.
    [128]. Shibata T.; Muranushi Y.; Miura T.; et al., Chemical analysis of photoassistedintercalation reaction of SnS2single crystal under cathodic polarization[J]. ElectrochimicaActa,1991,36(7), pp1197-1202.
    [129]. Zhao H. Y.; Zhao Z. Z.; Zhao Y. F.; et al., The Redox Properties of SnO2Nanorods[J]. Chinese Journal of Catalysis,2010,31(1), pp44-48.
    [130]. Nawrocki J.; Kasprzyk-Hordern B., The efficiency and mechanisms of catalyticozonation[J]. Applied Catalysis B-Environmental,2010,99(1-2), pp27-42.
    [131]. Jiang H. Y.; Dai H. X.; Xia Y. S.; et al., Synthesis and Characterization ofWormhole-Like Mesoporous SnO2with High Surface Area[J]. Chinese Journal of Catalysis,2010,31(3), pp295-301.
    [132]. Wang C. A.; Qiu J. S.; Liang C. H., Synthesis of Carbon Nanotubes-SupportedPd/SnO2for the Hydrogenation of ortho-Chloronitrobenzene[J]. Chinese Journal of Catalysis,2009,30(3), pp259-264.
    [133]. Senthilkumar V.; Vickraman P.; Jayachandran M.; et al., Synthesis andCharacterization of SnO2Nanopowder Prepared by Precipitation Method[J]. Journal ofDispersion Science and Technology,2010,31(9), pp1178-1181.
    [134]. Gondal M. A.; Drmosh Q. A.; Saleh T. A., Preparation and characterization of SnO2nanoparticles using high power pulsed laser[J]. Applied Surface Science,2010,256(23), pp7067-7070.
    [135]. Wang H. X.; Yan Y.; Mohammed Y. S.; et al., First-principle study of magnetism inCo-doped SnO2[J]. Journal of Magnetism and Magnetic Materials, Mar,2009,321(5), pp337-342.
    [136]. Coey J. M. D.; Douvalis A. P.; Fitzgerald C. B.; et al., Ferromagnetism in Fe-dopedSnO2thin films[J]. Applied Physics Letters, Feb,2004,84(8), pp1332-1334.
    [137]. Wu S. S.; Yuan S. A.; Shi L. Y.; et al., Preparation, characterization and electricalproperties of fluorine-doped tin dioxide nanocrystals[J]. Journal of Colloid and InterfaceScience,2010,346(1), pp12-16.
    [138]. Lei Z.; Sun J.; Tang Q., Multilayer transparent conductive film structure comprisessubstrate, silicon dioxide transition layer, fluorine-doped tin oxide (FTO) layer, and zincoxide-based thin film layer[P]. CN101582461-A,2009.
    [139]. Ge Y.; Jiang J.; Wang C.; et al., Preparing tin dioxide nanostructural material for useas cathode material of lithium ion battery, includes adding tin dioxide powder to mixedsolvent of ethanol and water to prepare tin ion-bearing solution reaction system[P].CN101693552-A,2010.
    [140]. Du G. D.; Zhong C.; Zhang P.; et al., Tin dioxide/carbon nanotube composites withhigh uniform SnO2loading as anode materials for lithium ion batteries[J]. ElectrochimicaActa,2010,55(7), pp2582-2586.
    [141]. Chang K.; Chen W.; Li H., Tin dioxide/tin sulphide nano composite electrodematerial preparing method for lithium ion battery, involves obtaining precipitate bycentrifugal separation process, and cleaning precipitate by water and alcohol by vacuumdrying process[P]. CN101609886-A,2010.
    [142]. Ayoub K.; van Hullebusch E. D.; Cassir M.; et al., Application of advancedoxidation processes for TNT removal: A review[J]. Journal of Hazardous Materials,2010,178(1-3), pp10-28.
    [143]. Cossu R.; Polcaro A. M.; Lavagnolo M. C.; et al., Electrochemical treatment oflandfill leachate: Oxidation at Ti/PbO2and Ti/SnO2anodes[J]. Environmental Science&Technology,1998,32(22), pp3570-3573.
    [144]. Wang A. R.; Xiao H., Controllable preparation of SnO2nanoplates and nanoparticlesvia hydrothermal oxidation of SnS2nanoplates[J]. Materials Letters,2009,63(13-14), pp1221-1223.
    [145]. Acarbas O.; Suvaci E.; Dogan A., Preparation of nanosized tin oxide (SnO2) powderby homogeneous precipitation[J]. Ceramics International,2007,33(4), pp537-542.
    [146]. Li H.; Xu J. Q.; Zhu Y. H.; et al., Enhanced gas sensing by assembling Pdnanoparticles onto the surface of SnO2nanowires[J]. Talanta,2010,82(2), pp458-463.
    [1]. Wu Y. P.; Rahm E.; Holze R., Carbon anode materials for lithium ion batteries[J]. Journalof Power Sources,2003,114(2), pp228-236
    [2]. Bruce P. G.; Scrosati B.; Tarascon J. M., Nanomaterials for rechargeable lithiumbatteries[J]. Angewandte Chemie International Edition,2008,47(16), pp2930-2946.
    [3]. Guo Y. G.; Hu J. S.; Wan L. J., Nanostructured Materials for Electrochemical EnergyConversion and Storage Devices[J]. Advanced Materials,2008,20(23), pp2878-2887.
    [4].辛森;郭玉国;万立骏,高能量密度锂二次电池电极材料研究进展[J].中国科学:化学,2011,41(8), pp1229-1239.
    [5]. Wang J.; Du G.; Zeng R.; et al., Porous Co3O4nanoplatelets by self-supported formationas electrode material for lithium-ion batteries[J]. Electrochimica Acta,2010,55(16), pp4805-4811.
    [6]. Park M. H.; Kim K.; Kim J.; et al., Flexible Dimensional Control of High-CapacityLi-Ion-Battery Anodes: From0D Hollow to3D Porous Germanium NanoparticleAssemblies[J]. Advanced Materials,2010,22(3), pp415-418.
    [7]. Liu L.; Li Y.; Yuan S.; et al., Nanosheet-based NiO microspheres: Controlledsolvothermal synthesis and Lithium storage performances[J]. Journal of Physical Chemistry C,2010,114(1), pp251-255.
    [8]. Esmanski, A.; Ozin G. A., Silicon Inverse-Opal-Based Macroporous Materials asNegative Electrodes for Lithium Ion Batteries[J]. Advanced Functional Materials,2009,19(12), pp1999-2010.
    [9]. Hu H.; Wang X.; Liu F.; et al., Rapid microwave-assisted synthesis of graphenenanosheets-zinc sulfide nanocomposites: Optical and photocatalytic properties[J]. SyntheticMetals,2011,161(5-6), pp404-410.
    [10]. Sun S.; Wang W.; Xu H.; et al., Bi5FeTi3O15hierarchical microflowers: Hydrothermalsynthesis, growth mechanism, and associated visible-light-driven photocatalysis[J]. Journal ofPhysical Chemistry C,2008,112(46), pp17835-17843.
    [11]. Zhao G.; Cui X.; Liu M.; et al., Electrochemical degradation of refractory pollutant usinga novel microstructured TiO2nanotubes/Sb-doped SnO2electrode[J]. Environmental Scienceand Technology,2009,43(5), pp1480-1486.
    [12]. Li Y.; Chen G.; Wang Q.; et al., Hierarchical ZnS-In2S3-CuS nanospheres withnanoporous structure: Facile synthesis, growth mechanism, and excellent photocatalyticactivity[J]. Advanced Functional Materials,2010,20(19), pp3390-3398.
    [13]. Zhuge F.; Qiu J.; Li X.; et al., Toward hierarchical TiO2nanotube arrays for efficientdye-sensitized solar cells[J]. Advanced Materials,2011,23(11), pp1330-1334.
    [14]. Zhou Y. L.; Zhou W. H.; Li M.; et al., Hierarchical Cu2ZnSnS4particles for a low-costsolar cell: Morphology control and growth mechanism[J]. Journal of Physical Chemistry C,2011,115(40), pp19632-19639.
    [15]. Zheng Q.; Kang H.; Yun J.; et al., Hierarchical construction of self-standing anodizedtitania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminateddye-sensitized solar cells[J]. Acs Nano,2011,5(6), pp5088-5093.
    [16]. Yang W.; Li J.; Wang Y.; et al., A facile synthesis of anatase TiO2nanosheets-basedhierarchical spheres with over90%{001} facets for dye-sensitized solar cells[J]. ChemicalCommunications,2011,47(6), pp1809-1811.
    [17]. Wang G.; Huang C.; Xing W.; et al., Micro-meso hierarchical porous carbon as low-costcounter electrode for dye-sensitized solar cells[J]. Electrochimica Acta,2011,56(16), pp5459-5463.
    [18]. Chen W.; Xu T.; He F.; et al., Hierarchical nanomorphologies promote excitondissociation in polymer/fullerene bulk heterojunction solar cells[J]. Nano Letters,2011,11(9),pp3707-3713.
    [19]. Pileni, M. P., Control of the size and shape of inorganic nanocrystals at various scalesfrom nano to macrodomains[J]. Journal of Physical Chemistry C,2007,111(26), pp9019-9038.
    [20]. Sokolov I. A., Adaptive photodetectors: novel approach for vibration measurements[J].Measurement,2000,27(1), pp13-19.
    [21]. Shibata T.; Kambe N.; Muranushi Y.; et al., Optical Characterization of Single-Crystal2h-SnS2Synthesized by the Chemical Vapor Transport Method at Low-Temperatures[J].Journal of Physics D-Applied Physics,1990,23(6), pp719-723.
    [22]. Deshpande N. G.; Sagade A. A.; Gudage Y. G.; et al., Growth and characterization of tindisulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR)technique[J]. Journal of Alloys and Compounds,2007,436(1-2), pp421-426.
    [23]. Lei Y. Q.; Song S. Y.; Fan W. Q.; et al., Facile Synthesis and Assemblies of FlowerlikeSnS2and In3+-Doped SnS2: Hierarchical Structures and Their Enhanced PhotocatalyticProperty[J]. Journal of Physical Chemistry C,2009,113(4), pp1280-1285.
    [24]. Brousse T.; Lee S. M.; Pasquereau, L.; et al., Composite negative electrodes for lithiumion cells[J]. Solid State Ionics,1998,113-115, pp51-56.
    [25]. Lefebvre-Devos I.; Olivier-Fourcade J.; Jumas J. C.; et al., Lithium insertion mechanismin SnS2[J]. Physical Review B,2000,61(4), pp3110-3116.
    [26]. Li Y.; Tu J. P.; Huang X. H.; et al., Nanoscale SnS with and without carbon-coatings asan anode material for lithium ion batteries[J]. Electrochimica Acta,2006,52(3), pp1383-1389.
    [27]. Mukaibo H.; Yoshizawa A.; Momma T.; et al., Particle size and performance of SnS2anodes for rechargeable lithium batteries[J]. Journal of Power Sources,2003,119-121, pp60-63.
    [28]. Kim T. J.; Kirn C.; Son D.; et al., Novel SnS2nanosheet anodes for lithium-ionbatteries[J]. Journal of Power Sources,2007,167(2), pp529-535.
    [29]. Patra C. R.; Odani A.; Pol V. G.; et al., Microwave-assisted synthesis of tin sulfidenanoflakes and their electrochemical performance as Li-inserting materials[J]. Journal ofSolid State Electrochemistry,2007,11(2), pp186-194.
    [30]. Seo J. W.; Jang J. T.; Park S. W.; et al., Two-Dimensional SnS2Nanoplates withExtraordinary High Discharge Capacity for Lithium Ion Batteries[J]. Advanced Materials,2008,20(22), pp4269-4273.
    [31]. Kim H. S.; Chung Y. H.; Kang S. H.; et al., Electrochemical behavior of carbon-coatedSnS2for use as the anode in lithium-ion batteries[J]. Electrochimica Acta,2009,54(13), pp3606-3610.
    [32]. Liu S.; Yin X.; Chen L.; et al., Synthesis of self-assembled3D flowerlike SnS2nanostructures with enhanced lithium ion storage property[J]. Solid State Sciences,2010,12(5), pp712-718.
    [33]. Yella A.; Mugnaioli E.; Therese H. A.; et al., Synthesis of fullerene-and nanotube-likeSnS2nanoparticles and Sn/S/carbon nanocomposites[J]. Chemistry of Materials,2009,21(12), pp2474-2481.
    [34]. Lin Y. T.; Shi J. B.; Chen Y. C.; et al., Synthesis and Characterization of Tin Disulfide(SnS2) Nanowires[J]. Nanoscale Research Letters,2009,4(7), pp694-698.
    [35]. Ke H.; Luo W.; Cheng G.; et al., Synthesis of flower-like SnS2nanostructuredmicrospheres using PEG200as solvent[J]. Micro and Nano Letters,2009,4(3), pp177-180.
    [36]. Ma D. K.; Zhang W.; Tang Q.; et al., Large-scale hydrothermal synthesis of SnS2nanobelts[J]. Journal of Nanoscience and Nanotechnology,2005,5(5), pp806-809.
    [37]. Wang C.; Zhou Y.; Ge M.; et al., Large-Scale Synthesis of SnO2Nanosheets with HighLithium Storage Capacity[J]. Journal of The American Chemical Society,2010,132(1), pp46-47.
    [38]. Zhao P.; Huang K., Preparation and Characterization of Netted Sphere-like CdSNanostructures1[J]. Crystal Growth&Design,2008,8(2), pp717-722.
    [39]. Li B.; Xie Y.; Xue Y., Controllable Synthesis of CuS Nanostructures fromSelf-Assembled Precursors with Biomolecule Assistance[J]. Journal of Physical Chemistry C,2007,111(33), pp12181-12187.
    [40]. Zhang H.; Yang D. R.; Ma X. Y.; et al., A versatile solution route for oxide/sulfidecore-shell nanostructures and nonlayered sulfide nanotubes[J]. Nanotechnology,2005,16(11),pp2721-2725.
    [41]. Nakanishi T.; Ariga K.; Michinobu T.; et al., Flower-shaped supramolecular assemblies:Hierarchical organization of a fullerene bearing long aliphatic chains[J]. Small,2007,3(12),pp2019-2023.
    [42]. Yang L. X.; Zhu Y. J.; Li L.; et al., A facile hydrothermal route to flower-like cobalthydroxide and oxide[J]. European Journal of Inorganic Chemistry,2006,(23), pp4787-4792.
    [43]. Kruk M.; Jaroniec M., Gas adsorption characterization of ordered organic-inorganicnanocomposite materials[J]. Chemistry of Materials,2001,13(10), pp3169-3183.
    [44]. Idota Y.; Kubota T.; Matsufuji A.; et al., Tin-based amorphous oxide: A high-capacitylithium-ion-storage material[J]. Science,1997,276(5317), pp1395-1397.
    [45]. Winter M.; Besenhard J. O., Electrochemical lithiation of tin and tin-based intermetallicsand composites[J]. Electrochimica Acta,1999,45(1–2), pp31-50.
    [46]. Scrosati B.; Hassoun J.; Sun, Y. K., Lithium-ion batteries. A look into the future[J].Energy and Environmental Science,2011,4(9), pp3287-3295.
    [47]. Kamali A. R.; Fray D. J., Tin-based materials as advanced anode materials for lithiumion batteries: A review[J]. Reviews on Advanced Materials Science,2011,27(1), pp14-24.
    [48]. Lou X. W.; Wang Y.; Yuan C.; et al., Template-free synthesis of SnO2hollownanostructures with high lithium storage capacity[J]. Advanced Materials,2006,18(17), pp2325-2329.
    [49]. Kim C.; Noh M.; Choi M.; et al., Critical size of a nano SnO2electrode for Li-secondarybattery[J]. Chemistry of Materials,2005,17(12), pp3297-3301.
    [50]. Kaskhedikar N. A.; Maier J., Lithium Storage in Carbon Nanostructures[J]. AdvancedMaterials,2009,21(25), pp2664-2680.
    [51]. Ogihara N.; Igarashi Y.; Kamakura A.; et al., Disordered carbon negative electrode forelectrochemical capacitors and high-rate batteries[J]. Electrochimica Acta,2006,52(4), pp1713-1720.
    [52]. Zheng T.; Liu Y.; Fuller E. W.; et al., Lithium Insertion in High Capacity CarbonaceousMaterials[J]. Journal of Electroanalytical Chemistry,1995,142(8), pp2581-2590.
    [53]. Yu Y.; Gu L.; Zhu C.; et al., Tin nanoparticles encapsulated in porous multichannelcarbon microtubes: Preparation by single-nozzle electrospinning and application as anodematerial for high-performance Li-based batteries[J]. Journal of the American ChemicalSociety,2009,131(44), pp15984-15985.
    [54]. Li N.; Liu G.; Zhen C.; et al., Battery Performance and Photocatalytic Activity ofMesoporous Anatase TiO2Nanospheres/Graphene Composites by Template-FreeSelf-Assembly[J]. Advanced Functional Materials,2011,21(9), pp1717-1722.
    [55]. Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; et al., TiO2Nanocrystals Grown onGraphene as Advanced Photocatalytic Hybrid Materials[J]. Nano Research,2010,3(10), pp701-705.
    [56]. Lima M. D.; Fang S.; Lepro X.; et al., Biscrolling Nanotube Sheets and FunctionalGuests into Yarns[J]. Science,2011,331(6013), pp51-55.
    [57]. Yu J.; Su Y.; Cheng B., Template-free fabrication and enhanced photocatalytic activity ofhierarchical macro-/mesoporous titania[J]. Advanced Functional Materials,2007,17(12), pp1984-1990.
    [58]. Liqiang J.; Honggang F.; Baiqi W.; et al., Effects of Sn dopant on the photoinducedcharge property and photocatalytic activity of TiO2nanoparticles[J]. Applied Catalysis B:Environmental,2006,62(3-4), pp282-291.
    [59]. Xiang Q.; Yu J., Photocatalytic activity of hierarchical flower-like TiO2superstructureswith dominant {001} facets[J]. Cuihua Xuebao/Chinese Journal of Catalysis,2011,32(4), pp525-531.
    [60]. Xu H.; Zheng Z.; Zhang L.; et al., Hierarchical chlorine-doped rutile TiO2sphericalclusters of nanorods: Large-scale synthesis and high photocatalytic activity[J]. Journal ofSolid State Chemistry,2008,181(9), pp2516-2522.
    [61]. Kim Y. J.; Lee M. H.; Kim H. J.; et al., Formation of highly efficient dye-sensitized solarcells by hierarchical pore generation with nanoporous TiO2spheres[J]. Advanced Materials,2009,21(36), pp3668-3673.
    [62]. Kumar P. S.; Nizar S. A. S.; Sundaramurthy J.; et al., Tunable hierarchical TiO2nanostructures by controlled annealing of electrospun fibers: Formation mechanism,morphology, crystallographic phase and photoelectrochemical performance analysis[J].Journal of Materials Chemistry,2011,21(26), pp9784-9790.
    [63]. Liao J. Y.; Lei B. X.; Kuang D. B.; et al., Tri-functional hierarchical TiO2spheresconsisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solarcells[J]. Energy and Environmental Science,2011,4(10), pp4079-4085.
    [64]. Sauvage F.; Di Fonzo F.; Li Bassi A.; et al., Hierarchical TiO2photoanode fordye-sensitized solar cells[J]. Nano Letters,2010,10(7), pp2562-2567.
    [65]. Pooarporn Y.; Worayingyong A.; Worner M.; et al., A comparative study of doped andun-doped sol-gel TiO2and P25TiO2(photo)electrodes[J]. Water Science and Technology,2007,55(12), pp153-160.
    [66]. Zhang Y. C.; Li J.; Zhang M.; et al., Size-Tunable Hydrothermal Synthesis of SnS2Nanocrystals with High Performance in Visible Light-Driven Photocatalytic Reduction ofAqueous Cr(VI)[J]. Environmental Science&Technology,2011,45(21), pp9324-9331.
    [67]. He H. Y.; Huang J. F.; Cao L. Y.; et al., Photocatalytic activity of mixture of SnS2andTiO2powders in destruction of metyhyl orange in water[J]. Journal of Optoelectronics andAdvanced Materials,2007,9(12), pp3781-3784.
    [68]. Zhang Y. C.; Du Z. N.; Li K. W.; et al., Size-controlled hydrothermal synthesis of SnS2nanoparticles with high performance in visible light-driven photocatalytic degradation ofaqueous methyl orange[J]. Separation and Purification Technology,2011,81(1), pp101-107.
    [69]. Du W.; Deng D.; Han Z.; et al., Hexagonal tin disulfide nanoplatelets: A newphotocatalyst driven by solar light[J]. CrystEngComm,2011,13(6), pp2071-2076.
    [70]. Wahnon P.; Conesa J. C.; Palacios P.; et al., V-doped SnS2: a new intermediate bandmaterial for a better use of the solar spectrum[J]. Physical Chemistry Chemical Physics,2011,13(45), pp20401-20407.
    [71]. Yongli Y.; Shuying C.; Songlin L., Effect of Ag doping on structural, optical andelectrical properties of SnS:Ag thin films prepared by pulse electroposition[J]. AdvancedMaterials Research,2009,60-61, pp105-109.
    [72]. Yang C. Y.; Wang W. D.; Shan Z. C.; et al., Preparation and photocatalytic activity ofhigh-efficiency visible-light-responsive photocatalyst SnSx/TiO2[J]. Journal of Solid StateChemistry,2009,182(4), pp807-812.
    [73]. Thangaraju B.; Kaliannan P., Spray pyrolytic deposition and characterization of SnS andSnS2thin films[J]. Journal of Physics D-Applied Physics,2000,33(9), pp1054-1059.
    [74]. Panda S. K.; Antonakos A.; Liarokapis E.; et al., Optical properties of nanocrystallineSnS2thin films[J]. Materials Research Bulletin,2007,42(3), pp576-583.
    [75]. Amalraj L.; Sanjeeviraja C.; Jayachandran M., Spray pyrolysised tin disulphide thinfilmand characterisation[J]. Journal of Crystal Growth,2002,234(4), pp683-689.
    [76]. Kronik L.; Shapira Y., Surface photovoltage phenomena: theory, experiment, andapplications[J]. Surface Science Reports,1999,37(1-5), pp1-206.
    [77]. Ferrere S.; Zaban A.; Gregg B. A., Dye sensitization of nanocrystalline tin oxide byperylene derivatives[J]. Journal of Physical Chemistry B,1997,101(23), pp4490-4493.
    [78]. Li X. Z.; Li F. B.; Yang C. L.; et al., Photocatalytic activity of WOx-TiO2under visiblelight irradiation[J]. Journal of Photochemistry and Photobiology A-chemistry,2001,141(2-3),pp209-217.
    [79]. Bard A. J.; Fan F. F.; Bocarsly A. B.; et al., The concept of Fermi level pinning atsemiconductor/liquid junctions. Consequences for energy conversion efficiency and selectionof useful solution redox couples in solar devices[J]. Journal of The American ChemicalSociety,1980,102(11), pp3671-3677.
    [80]. Park N. G.; van de Lagemaat, J.; Frank A. J., Comparison of dye-sensitized rutile-andanatase-based TiO2solar cells[J]. Journal of Physical Chemistry B,2000,104(38), pp8989-8994.
    [81]. Schlichthorl G.; Huang S. Y.; Sprague J.; et al., Band edge movement and recombinationkinetics in dye-sensitized nanocrystalline TiO2solar cells: A study by intensity modulatedphotovoltage spectroscopy[J]. Journal of Physical Chemistry B,1997,101(41), pp8141-8155.
    [82]. Li Z. H.; Wang D. J.; Wang P.; et al., Research on characteristics of photogeneratedcharge in Nano-TiO2[J]. Acta Physico-Chimica Sinica,2005,21(3), pp310-314.
    [83]. Li Z. H.; Wang D. J.; Wang P.; et al., Study of mechanism of photogenerated chargetransfer in nano-TiO2[J]. Chemical Physics Letters,2005,411(4-6), pp511-515.
    [84]. Yanhong L.; Dejun W.; Qidong Z.; et al., A Study of Quantum Confinement Propertiesof Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy[J].Journal of Physical Chemistry B,2004,108(10), pp3202-3206.
    [85]. Zhang X.; Zhang L.; Xie T.; et al., Low-temperature synthesis and highvisible-light-induced photocatalytic activity of BiOI/TiO2heterostructures[J]. Journal ofPhysical Chemistry C,2009,113(17), pp7371-7378.
    [86]. Li K. Y.; Liu T.; Zhou B. J.; et al., Transient photovoltaic and surface photoacousticcharacteristics of mesoporous crystalline La-doped TiO2nanoparticles[J]. Wuli HuaxueXuebao/Acta Physico-Chimica Sinica,2010,26(2), pp403-408.
    [1]. Chen X. G.; Zhang X.; Yang C. L.; et al., The layered transition metal thiophosphates andtheir intercalation compounds[J]. Chinese Journal of Inorganic Chemistry,2003,19(5), pp449-458.
    [2]. Matsuo Y., Synthesis, structure and properties of intercalation compounds containingperfluoroalkyl groups[J]. Journal of Fluorine Chemistry,2007,128(4), pp336-343.
    [3]. Page T. R.; Hayamizu Y.; So C. R.; et al., Electrical detection of biomolecular adsorptionon sprayed graphene sheets[J]. Biosensors and Bioelectronics,2012,33(1), pp304-308.
    [4]. Feng J.; Sun X.; Wu C.; et al., Metallic few-layered VS2ultrathin nanosheets: Hightwo-dimensional conductivity for in-plane supercapacitors[J]. Journal of The AmericanChemical Society,2011,133(44), pp17832-17838.
    [5]. Leone G.; Giovanella U.; Porzio W.; et al., In situ synthesis of fluorescentpoly(norbornene)/oxazine-1dye loaded fluoromica hybrids: Supramolecular control over dyearrangement[J]. Journal of Materials Chemistry,2011,21(34), pp12901-12909.
    [6]. Yamada H.; Tamura K.; Watanabe Y.; et al., Geomaterials: Their application toenvironmental remediation[J]. Science and Technology of Advanced Materials,2011,12(6),pp064705-1-5.
    [7]. Yamada M.; Nakayama E., Preparation of DNA-cyclodextrin-silica composite by sol-gelmethod and its utilization as an environmental material[J]. Materials Chemistry and Physics,2012,133(1), pp278-283.
    [8]. Eda G.; Yamaguchi H.; Voiry, D.; et al., Photoluminescence from chemically exfoliatedMoS2[J]. Nano Letters,2011,11(12), pp5111-5116.
    [9]. Jaafar J.; Ismail A. F.; Matsuura T., Effect of dispersion state of Cloisite15A on theperformance of SPEEK/Cloisite15A nanocomposite membrane for DMFC application[J].Journal of Applied Polymer Science,2012,124(2), pp969-977.
    [10]. Son J. S.; Choi M. K.; Han M. K.; et al., N-type nanostructured thermoelectric materialsprepared from chemically synthesized ultrathin Bi2Te3nanoplates[J]. Nano Letters,2012,12(2), pp640-647.
    [11]. Yin Z.; Li H.; Jiang L.; et al., Single-layer MoS2phototransistors[J]. ACS Nano,2012,6(1), pp74-80.
    [12]. Li H.; Yin Z.; He Q.; et al., Fabrication of single-and multilayer MoS2film-basedfield-effect transistors for sensing NO at room temperature[J]. Small,2012,8(1), pp63-67.
    [13]. Laursen A. B.; Kegn s S.; Dahl S.; et al., Molybdenum sulfides-Efficient and viablematerials for electro-And photoelectrocatalytic hydrogen evolution[J]. Energy andEnvironmental Science,2012,5(2), pp5577-5591.
    [14]. Li D.; Kaner R., Graphene-based materials[J]. Science,2008,320(5880), pp1170-1171.
    [15]. Eda G.; Chhowalla M., Chemically Derived Graphene Oxide: Towards Large-AreaThin-Film Electronics and Optoelectronics[J]. Advanced Materials,2010,22(22), pp2392-2415.
    [16]. Bai H.; Li C.; Shi G., Functional Composite Materials Based on Chemically ConvertedGraphene[J]. Advanced Materials,2011,23(9), pp1089-1115.
    [17]. Poudel B.; Hao Q.; Ma Y.; et al., High-thermoelectric performance of nanostructuredbismuth antimony telluride bulk alloys[J]. Science,2008,320(5876), pp634-638.
    [18]. Wang M. X.; Liu C.; Xu J. P.; et al., The Coexistence of Superconductivity andTopological Order in the Bi2Se3Thin Films[J]. Science,2012,336(6077), pp52-55.
    [19]. Peng H.; Dang W.; Cao J.; et al., Topological insulator nanostructures for near-infraredtransparent flexible electrodes[J]. Nature Chemistry,2012,4(4), pp281-286.
    [20]. Ramasubramaniam A.; Naveh D.; Towe E., Tunable band gaps in bilayertransition-metal dichalcogenides[J]. Physical Review B-Condensed Matter and MaterialsPhysics,2011,84(20), pp205325-1-10.
    [21]. Splendiani A.; Sun L.; Zhang Y.; et al., Emerging photoluminescence in monolayerMoS2[J]. Nano Letters,2010,10(4), pp1271-1275.
    [22]. Ayari A.; Cobas E.; Ogundadegbe O.; et al., Realization and electrical characterizationof ultrathin crystals of layered transition-metal dichalcogenides[J]. Journal of Applied Physics,2007,101(1),pp014507-1-5.
    [23]. Novoselov K. S.; Jiang D.; Schedin F.; et al., Two-dimensional atomic crystals[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(30), pp10451-10453.
    [24]. Xie L.; Ling X.; Fang Y.; et al., Graphene as a substrate to suppress fluorescence inresonance raman spectroscopy[J]. Journal of The American Chemical Society,2009,131(29),pp9890-9891.
    [25]. Geim A. K.; Novoselov K. S., The rise of graphene[J]. Nature Materials,2007,6(3), pp183-191.
    [26]. Rao C. N. R.; Nag A., Inorganic analogues of graphene[J]. European Journal ofInorganic Chemistry,2010,(27), pp4244-4250.
    [27]. Bissessur R.; Schipper D., Exfoliation and reconstruction of SnS2layers: A syntheticroute for the preparation of polymer-SnS2nanomaterials[J]. Materials Letters,2008,62(10-11), pp1638-1641.
    [28]. Aharon E.; Breuer S.; Jaiser F.; et al., Effect of the solvent on the conformation ofisolated MEH-PPV chains intercalated into SnS2[J]. Chemphyschem,2008,9(10), pp1430-1436.
    [29]. Parkinson P.; Aharon E.; Chang M. H.; et al., Dimensionality-dependent energy transferin polymer-intercalated SnS2nanocomposites[J]. Physical Review B-Condensed Matter andMaterials Physics,2007,75(16),pp165206-1-5.
    [30]. Aharon E.; Albo A.; Kalina M.; et al., Stable blue emission from apolyfluorene/layered-compound guest/host nanocomposite[J]. Advanced Functional Materials,2006,16(7), pp980-986.
    [31]. Kirmayer S.; Aharon E.; Dovgolevsky E.; et al., Self-assembled lamellar MoS2, SnS2and SiO2semiconducting polymer nanocomposites[J]. Philosophical Transactions of theRoyal Society a-Mathematical Physical and Engineering Sciences,2007,365(1855), pp1489-1508.
    [32]. Ollivier P. J.; Kovtyukhova N. I.; Keller S. W.; et al., Self-assembled thin films fromlamellar metal disulfides and organic polymers[J]. Chemical Communications,1998,(15), pp1563-1564.
    [33]. Ramakrishna Matte H. S. S.; Gomathi A.; Manna A. K.; et al., MoS2and WS2analoguesof graphene[J]. Angewandte Chemie International Edition,2010,49(24), pp4059-4062.
    [34]. Joensen P.; Frindt R. F.; Morrison S. R., Single-layer MoS2[J]. Materials ResearchBulletin,1986,21(4), pp457-461.
    [35]. Liu C.; Singh O.; Joensen P.; et al., X-ray and electron microscopy studies ofsingle-layer TaS2and NbS2[J]. Thin Solid Films,1984,113(2), pp165-172.
    [36]. Zhou K. G.; Mao N. N.; Wang H. X.; et al., A mixed-solvent strategy for efficientexfoliation of inorganic graphene analogues[J]. Angewandte Chemie International Edition,2011,50(46), pp10839-10842.
    [37]. Smith R. J.; King P. J.; Lotya M.; et al., Large-scale exfoliation of inorganic layeredcompounds in aqueous surfactant solutions[J]. Advanced Materials,2011,23(34), pp3944-3948.
    [38]. Golberg D., Nanomaterials: Exfoliating the inorganics[J]. Nature Nanotechnology,2011,6(4), pp200-201.
    [39]. Coleman J. N.; Lotya M.; O'Neill A.; et al., Two-dimensional nanosheets produced byliquid exfoliation of layered materials[J]. Science,2011,331(6017), pp568-571.
    [40]. Ruoff R., Graphene: Calling all chemists[J]. Nature Nanotechnology,2008,3(1), pp10-11.
    [41]. Whittingham M. S.; Gamble Jr F. R., The lithium intercalates of the transition metaldichalcogenides[J]. Materials Research Bulletin,1975,10(5), pp363-371.
    [42]. Herber R. H.; Davis R. F., Lattice dynamics of alkali metal intercalated tin compoundsfrom temperature dependent M ssbauer studies[J]. Journal of Inorganic and NuclearChemistry,1980,42(11), pp1577-1581.
    [43]. Morales J.; Perez-Vicente C.; Tirado J. L., Chemical and electrochemical lithiumintercalation and staging in2HSnS2[J]. Solid State Ionics,1992,51(3-4), pp133-138.
    [44]. Julien C.; Pérez-Vicente C., Vibrational studies of lithium-intercalated SnS2[J]. SolidState Ionics,1996,89(3-4), pp337-343.
    [45]. O'Hare D.; Jaegermann W.; Williamson D. L.; et al., X-ray photoelectron M ssbauer,magnetic, and electrical conductivity study of SnS2{CoCp2}0.31[J]. Inorganic Chemistry,1988,27(9), pp1537-1542.
    [46]. Clerc D. G.; Cleary D. A., Lithium intercalation into SnS2{CoCp2}x[J]. Chemistry ofMaterials,1994,6(1), pp13-14.
    [47]. Ibarz A.; Ruiz, E.; Alvarez S., Theoretical study of the intercalation of cobaltocene inmetal chalcogenides[J]. Journal of Materials Chemistry,1998,8(8), pp1893-1900.
    [48]. Hernán L.; Morales J.; Sánchez L.; et al., Study of in situ adsorption and intercalation ofcobaltocene into SnS2single crystals by photoelectron spectroscopy[J]. Surface Science,2001,477(2-3), pp L295-L300.
    [49]. Formstone C. A.; Fitzgerald E. T.; Cox P. A.; et al., Photoelectron spectroscopy of the tindichalcogenides SnS2-xSexintercalated with cobaltocene[J]. Inorganic Chemistry,1990,29(19), pp3860-3866.
    [50]. Hernan L.; Morales J.; Sanchez L.; et al., Electrochemical cointercalation of propylenecarbonate with alkali metals in SnS2single crystals[J]. Journal of the Electrochemical Society,1999,146(2), pp657-662.
    [51]. Morales J.; Santos J.; Barrado J. R. R.; et al., Synthesis and characterization of diamineintercalation compounds of SnS2single crystals[J]. Journal of Solid State Chemistry,2000,150(2), pp391-398.
    [52]. Shibata T.; Muranushi Y.; Miura T.; et al., Chemical analysis of photoassistedintercalation reaction of SnS2single crystal under cathodic polarization[J]. ElectrochimicaActa,1991,36(7), pp1197-1202.
    [53]. Brouwer A. M., Standards for photoluminescence quantum yield measurements insolution (IUPAC Technical Report)[J]. Pure and Applied Chemistry,2011,83(12), pp2213-2228.
    [54]. Demas J. N.; Crosby G. A., The measurement of photoluminescence quantum yields. Areview[J]. Journal of Physical Chemistry,1971,75(8),pp991-1024.
    [55]. Wei C., Nanoparticle fluorescence based technology for biological applications[J].Journal of Nanoscience and Nanotechnology,2008,8(3),pp1019-1051.
    [56].刘宏生;高芒来;韩翻珍,烷基季铵盐二次改性膨润土的防膨性能[J].石油化工高等学校学报,2006,19(4), pp31-35.
    [57]. Kanatzidis M. G.; Bissessur R.; DeGroot D. C.; et al., New intercalation compounds ofconjugated polymers. Encapsulation of polyaniline in MoS2[J]. Chemistry of Materials,1993,5(5), pp595-596.
    [58].林宝辉;高芒来,一种二价季铵盐在粘土矿物上的吸附[J].物理化学学报,2005,21(7), pp808-812.
    [59]. Vahedl-Faridi A.; Guggenheim S., Crystal structure of tetramethylammonium-exchangedvermiculite[J]. Clays and Clay Minerals,1997,45(6), pp859-866.
    [60]. Vahedi-Faridi A.; Guggenheim S., Structural study of monomethylammonium anddimethylammonium-exchanged vermiculites[J]. Clays and Clay Minerals,1999,47(3), pp338-347.
    [61]. Xiao J.; Choi D.; Cosimbescu, L.; et al., Exfoliated MoS2Nanocomposite as an AnodeMaterial for Lithium Ion Batteries[J]. Chemistry Of Materials,2010,22(16), pp4522-4524.
    [62]. Xiao J.; Wang X.; Yang X.-Q.; et al., Electrochemically Induced High CapacityDisplacement Reaction of PEO/MoS2/Graphene Nanocomposites with Lithium[J]. AdvancedFunctional Materials,2011,21(15), pp2840-2846.
    [63]. Harris D. J.; Bonagamba T. J.; Schmidt-Rohr K., Conformation of poly(ethylene oxide)intercalated in clay and MoS2studied by two-dimensional double-quantum NMR[J].Macromolecules,1999,32(20), pp6718-6724.
    [64]. Lemmon J. P.; Lerner M. M., Preparation and characterization of nanocomposites ofpolyethers and molybdenum disulfide[J]. Chemistry of Materials,1994,6(2), pp207-210.
    [65]. Mirabal N.; Aguirre P.; Santa Ana M. A.; et al., Thermal stability and electricalconductivity in polyethers-molybdenum disulfide nanocomposites[J]. Electrochimica Acta,2003,48(14-16), pp2123-2127.
    [66]. Santa Ana M. A.; Benavente E.; Gómez-Romero P.; et al.,Poly(acrylonitrile)-molybdenum disulfide polymer electrolyte nanocomposite[J]. Journal ofMaterials Chemistry,2006,16(30), pp3107-3113.
    [67]. Santa Ana M. A.; Mirabal N.; Benavente, E.; et al., Electrochemical behavior of lithiumintercalated in a molybdenum disulfide-crown ether nanocomposite[J]. Electrochimica Acta,2007,53(4), pp1432-1438.
    [68]. Zhu Y.; Chen Y.; Liu L., Effect of ethylene glycol on the growth of hexagonal SnS2nanoplates and their optical properties[J]. Journal of Crystal Growth,2011,328(1), pp70-73.
    [1]. Idota Y.; Kubota T.; Matsufuji A.; et al., Tin-based amorphous oxide: A high-capacitylithium-ion-storage material[J]. Science,1997,276(5317), pp1395-1397.
    [2]. Wang C.; Zhou Y.; Ge M.; et al., Large-Scale Synthesis of SnO2Nanosheets with High LithiumStorage Capacity[J]. Journal of The American Chemical Society,2010,132(1), pp46-47.
    [3]. Winter M.; Besenhard J. O., Electrochemical lithiation of tin and tin-based intermetallics andcomposites[J]. Electrochimica Acta,1999,45(1–2), pp31-50.
    [4]. Scrosati B.; Hassoun J.; Sun Y. K., Lithium-ion batteries. A look into the future[J]. Energy andEnvironmental Science,2011,4(9), pp3287-3295.
    [5]. Kamali A. R.; Fray D. J., Tin-based materials as advanced anode materials for lithium ionbatteries: A review[J]. Reviews on Advanced Materials Science,2011,27(1), pp14-24.
    [6]. Kim H. S.; Chung Y. H.; Kang S. H.; et al., Electrochemical behavior of carbon-coated SnS2foruse as the anode in lithium-ion batteries[J]. Electrochimica Acta,2009,54(13) p3606.
    [7]. Seo J. W.; Jang J. T.; Park S. W.; et al., Two-Dimensional SnS2Nanoplates with ExtraordinaryHigh Discharge Capacity for Lithium Ion Batteries[J]. Advanced Materials,2008,20(22), pp4269-4273.
    [8]. Kim T. J.; Kirn C.; Son D.; et al., Novel SnS2nanosheet anodes for lithium-ion batteries[J].Journal of Power Sources,2007,167(2), pp529-535.
    [9]. Lefebvre-Devos I.; Olivier-Fourcade J.; Jumas J. C.; et al., Lithium insertion mechanism inSnS2[J]. Physical Review B,2000,61(4), pp3110-3116.
    [10]. Zai J.; Qian X.; Wang K.; et al.,3D-hierarchical SnS2micro/nano-structures: controlled synthesis,formation mechanism and lithium ion storage performances[J]. CrystEngComm,2012,14(4), pp1364-1375.
    [11]. Zai J.; Wang K.; Su Y.; et al., High stability and superior rate capability of three-dimensionalhierarchical SnS2microspheres as anode material in lithium ion batteries[J]. Journal of Power Sources,2011,196(7), pp3650-3654.
    [12]. Li D.; Kaner R., Graphene-based materials[J]. Science,2008,320(5880), pp1170-1171.
    [13]. Singh V.; Joung D.; Zhai L.; et al., Graphene based materials: Past, present and future[J]. Progressin Materials Science,2011,56(8), pp1178-1271.
    [14]. Zhang Y.; Tan Y. W.; Stormer H. L.; et al., Experimental observation of the quantum Hall effectand Berry's phase in graphene[J]. Nature,2005,438(7065), pp201-204.
    [15]. Li D.; Mueller M. B.; Gilje S.; et al., Processable aqueous dispersions of graphene nanosheets[J].Nature Nanotechnology,2008,3(2), pp101-105.
    [16]. Choucair M.; Thordarson P.; Stride J. A., Gram-scale production of graphene based onsolvothermal synthesis and sonication[J]. Nature Nanotechnology,2008,4(1), pp30-33.
    [17]. Zhang M.; Lei D.; Du Z.; et al., Fast synthesis of SnO2/graphene composites by reducinggraphene oxide with stannous ions[J]. Journal of Materials Chemistry,2011,21(6), pp1673-1676.
    [18]. Wang X. Y.; Zhou X. F.; Yao K.; et al., A SnO2/graphene composite as a high stability electrodefor lithium ion batteries[J]. Carbon,2011,49(1), pp133-139.
    [19]. Song H.; Zhang L.; He C.; et al., Graphene sheets decorated with SnO2nanoparticles: in situsynthesis and highly efficient materials for cataluminescence gas sensors[J]. Journal of MaterialsChemistry,2011,21(16), pp5972-5977.
    [20]. Lian P.; Zhu X.; Liang S.; et al., High reversible capacity of SnO2/graphene nanocomposite as ananode material for lithium-ion batteries[J]. Electrochimica Acta,2011,56(12), pp4532-4539.
    [21]. Huang X.; Zhou X.; Zhou L.; et al., A Facile One-Step Solvothermal Synthesis of SnO2/GrapheneNanocomposite and Its Application as an Anode Material for Lithium-Ion Batteries[J]. Chemphyschem,2011,12(2), pp278-281.
    [22]. Ding S.; Luan D.; Boey F. Y. C.; et al., SnO(2) nanosheets grown on graphene sheets withenhanced lithium storage properties[J]. Chemical Communications,2011,47(25), pp7155-7157.
    [23]. Shen C.; Ma L.; Zheng M.; et al., Synthesis and electrochemical properties of graphene-SnS2nanocomposites for lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2012,16(5), pp1999-2004.
    [24]. Jiang Z.; Wang C.; Du G.; et al., In situ synthesis of SnS2@graphene nanocomposites forrechargeable lithium batteries[J]. Journal of Materials Chemistry,2012,22(19), pp9494-9496.
    [25]. Ji L.; Xin H. L.; Kuykendall T. R.; et al., SnS2nanoparticle loaded graphene nanocomposites forsuperior energy storage[J]. Physical Chemistry Chemical Physics,2012,14(19), pp6981-6986.
    [26]. Chang K.; Wang Z.; Huang G.; et al., Few-layer SnS2/graphene hybrid with exceptionalelectrochemical performance as lithium-ion battery anode[J]. Journal of Power Sources,2012,201pp259-266.
    [27]. Tang L.; Wang Y.; Li Y.; et al., Preparation, structure, and electrochemical properties of reducedgraphene sheet films[J]. Advanced Functional Materials,2009,19(17), pp2782-2789.
    [28]. Cingolani A.; Lugara M.; Scamarcio G.;2nd-Order Raman-Scattering and Infrared-Absorption inSnS2[J]. Nuovo Cimento Della Societa Italiana Di Fisica D-Condensed Matter Atomic Molecular andChemical Physics Fluids Plasmas Biophysics,1988,10(5), pp519-528.
    [29]. Scamarcio G.; Cingolani A.; Sibilano M.; Determination of the Critical-Points in thePhonon-Dispersion Curves of SnS2by Means of the Simultaneous Analysis of1r and Raman2-PhononSpectra[J]. Solid State Communications,1989,72(10), pp1039-1042.
    [30]. Wang C.; Tang K.; Aa Q. Y.; et al., Raman scattering, far infrared spectrum andphotoluminescence of SnS2nanocrystallites[J]. Chemical Physics Letters,2002,357(5-6), pp371-375.
    [31]. Julien C.; Marvi H. S.; Jain K. P.; et al., Resonant Raman-Scattering Studies of SnS2Crystals[J].Materials Science and Engineering B-Solid State Materials for Advanced Technology,1994,23(2), pp98-104.
    [32]. Ma D. K.; Zhou H. Y.; Zhang J. H.; et al., Controlled synthesis and possible formation mechanismof leaf-shaped SnS2nanocrystals[J]. Materials Chemistry and Physics,2008,111(2-3), pp391-395.
    [33]. Diéguez A.; Romano-Rodr g uez A.; Vilà A.; et al., The complete Raman spectrum of nanometricSnO2particles[J]. Journal of Applied Physics,2001,90(3), pp1550.
    [34]. Wang G. X.; Shen X. P.; Yao J.; et al., Graphene nanosheets for enhanced lithium storage inlithium ion batteries[J]. Carbon,2009,47(8), pp2049-2053.
    [35]. Stankovich S.; Dikin D. A.; Piner R. D.; et al., Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7), pp1558-1565.
    [36]. Lian P. C.; Zhu X. F.; Liang S. Z.; et al., Large reversible capacity of high quality graphene sheetsas an anode material for lithium-ion batteries[J]. Electrochimica Acta,2010,55(12), pp3909-3914.
    [37]. Li B.; Cao H.; Shao J.; et al., Superparamagnetic Fe3O4nanocrystals@graphene composites forenergy storage devices[J]. Journal of Materials Chemistry,2011,21(13), pp5069-5075.
    [38]. Fan X.; Peng W.; Li Y.; et al., Deoxygenation of exfoliated graphite oxide under alkalineconditions: a green route to graphene preparation[J]. Advanced Materials,2008,20(23), pp4490-4493.
    [39]. Hao X. Z.; Zhai Y. C.; Jiang K. L; et al., Cross-Stacked Carbon Nanotube Sheets UniformlyLoaded with SnO2Nanoparticles: A Novel Binder-Free and High-Capacity Anode Material forLithium-Ion Batteries[J]. Advanced Materials,2009,21(22), pp2299-2304.
    [40]. Lou X. W.; Li C. M.; Archer L. A.; Designed Synthesis of Coaxial SnO2@carbon HollowNanospheres for Highly Reversible Lithium Storage[J]. Advanced Materials,2009,21(24), pp2536-2539.
    [41]. Paek S.-M.; Yoo E.; Honma I.; Enhanced Cyclic Performance and Lithium Storage Capacity ofSnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure[J].Nano Letters,2009,9(1), pp72-75.
    [42]. Yao J.; Shen X. P.; Wang B.; et al., In situ chemical synthesis of SnO2-graphene nanocomposite asanode materials for lithium-ion batteries[J]. Electrochemistry Communications,2009,11(10), pp1849-1852.
    [43]. Ye J. F.; Zhang H. J.; Yang R.; et al., Morphology-Controlled Synthesis of SnO2Nanotubes byUsing1D Silica Mesostructures as Sacrificial Templates and Their Applications in Lithium-IonBatteries[J]. Small,2010,6(2), pp296-306.
    [44]. Li Y. M.; Lv X. J.; Lu J.; et al., Preparation of SnO2-Nanocrystal/Graphene-NanosheetsComposites and Their Lithium Storage Ability[J]. Journal of Physical Chemistry C,2010,114(49), pp21770-21774.
    [45]. Lou X. W.; Wang Y.; Yuan C.; et al., Template-free synthesis of SnO2hollow nanostructures withhigh lithium storage capacity[J]. Advanced Materials,2006,18(17), pp2325-2329.
    [46]. Wang Z.; Zhang H.; Li N.; et al., Laterally confined graphene nanosheets and graphene/SnO2composites as high-rate anode materials for lithium-ion batteries[J]. Nano Research,2010,3(10), pp748-756.
    [47]. Kim H.; Kim S. W.; Park Y. U.; et al., SnO2/Graphene Composite with High Lithium StorageCapability for Lithium Rechargeable Batteries[J]. Nano Research,2010,3(11), pp813-821.
    [48]. Tong X.; Wang H.; Wang G.; et al., Controllable synthesis of graphene sheets with differentnumbers of layers and effect of the number of graphene layers on the specific capacity of anodematerial in lithium-ion batteries[J]. Journal of Solid State Chemistry,2011,184(5), pp982-989.
    [49]. Yoo E.; Kim J.; Hosono E.; et al., Large reversible Li storage of graphene nanosheet families foruse in rechargeable lithium ion batteries[J]. Nano Letters,2008,8(8), pp2277-2282.
    [50]. Yin S.; Zhang Y.; Kong J.; et al., Assembly of Graphene Sheets into Hierarchical Structures forHigh-Performance Energy Storage[J]. Acs Nano,2011,5(5), pp3831-3838.
    [51]. Fan Z.-J.; Yan J.; Wei T.; et al., Nanographene-Constructed Carbon Nanofibers Grown onGraphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium IonBatteries[J]. Acs Nano,2011,5(4), pp2787-2794.
    [52]. Wang F.; Graetz J.; Sergio Moreno M.; et al., Chemical Distribution and Bonding of Lithium inIntercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy[J]. Acs Nano,2011,5(2), pp1190-1197.
    [53]. Naoi K.; Ogihara N.; Igarashi Y.; et al., Disordered carbon anode for lithium-ion battery I. Aninterfacial reversible redox action and anomalous topology changes[J]. Journal of the ElectrochemicalSociety,2005,152(6), pp A1047-A1053.
    [54]. Ogihara N.; Igarashi Y.; Kamakura A.; et al., Disordered carbon negative electrode forelectrochemical capacitors and high-rate batteries[J]. Electrochimica Acta,2006,52(4), pp1713-1720.
    [55]. Zheng H. H.; Jiang K.; Abe T.; et al., Electrochemical intercalation of lithium into a naturalgraphite anode in quaternary ammonium-based ionic liquid electrolytes[J]. Carbon,2006,44(2), pp203-210.
    [56]. Stournara M. E.; Shenoy V. B.; Enhanced Li capacity at high lithiation potentials in grapheneoxide[J]. Journal of Power Sources,2011, pp5697-703.
    [57]. Zheng H. H.; Liu G.; Battaglia V.; Film-Forming Properties of Propylene Carbonate in thePresence of a Quaternary Ammonium Ionic Liquid on Natural Graphite Anode[J]. Journal of PhysicalChemistry C,2010,114(13), pp6182-6189.
    [58]. Xu K.; Zhang S. S.; Jow T. R.; Formation of the graphite electrolyte interface by lithiumbis(oxalato)borate[J]. Electrochemical and Solid State Letters,2003,6(6), pp A117-A120.
    [59]. Xu K.; Lee U.; Zhang S. S.; et al., Graphite/electrolyte interface formed in LiBOB-basedelectrolytes-II. Potential dependence of surface chemistry on graphitic anodes[J]. Journal of theElectrochemical Society,2004,151(12), pp A2106-A2112.
    [60]. Li J.; Wan C.; Jiang C.; et al., Natural graphite-based anode active material coated with ironhydroxide for lithium ion battery[J]. Journal of Tsinghua University (Science and Technology),2001,41(6), pp67-70.
    [61]. Kohs W.; Santner H. J.; Hofer F.; et al., A study on electrolyte interactions with graphite anodesexhibiting structures with various amounts of rhombohedral phase[J]. Journal of Power Sources,2003,119-121, pp528-537.
    [62]. Sethuraman V. A.; Hardwick L. J.; Srinivasan V.; et al., Surface structural disordering in graphiteupon lithium intercalation/deintercalation[J]. Journal of Power Sources,2010,195(11), pp3655-3660.
    [63]. Pan Q.; Guo K.; Wang L.; et al., Novel modified graphite as anode material for lithium ionbatteries[J]. Journal of Materials Chemistry,2002,12(6), pp1833-1838.
    [64]. Lahiri I.; Oh S.-W.; Hwang J. Y.; et al., High Capacity and Excellent Stability of Lithium IonBattery Anode Using Interface-Controlled Binder-Free Multiwall Carbon Nanotubes Grown onCopper[J]. Acs Nano,2010,4(6), pp3440-3446.
    [65]. Yamin H.; Peled E.; Electrochemistry of a nonaqueous lithium/sulfur cell[J]. Journal of PowerSources,1983,9(3), pp281-287.
    [66]. Liang C.; Dudney N. J.; Howe J. Y.; Hierarchically structured sulfur/carbon nanocompositematerial for high-energy lithium battery[J]. Chemistry of Materials,2009,21(19), pp4724-4730.
    [67]. Ji X.; Lee K. T.; Nazar L. F.; A highly ordered nanostructured carbon-sulphur cathode forlithium-sulphur batteries[J]. Nature Materials,2009,8(6), pp500-506.
    [1]. Zvyagin A. A.; Shaposhnik A. V.; Ryabtsev S. V.; et al., Determination of Acetone andEthanol Vapors Using Semiconductor Sensors[J]. Journal of Analytical Chemistry,2010,65(1), pp94-98.
    [2]. Zima A.; Kock A.; Maier T., In-and Sb-doped tin oxide nanocrystalline films forselective gas sensing[J]. Microelectronic Engineering,2010,87(5-8), pp1467-1470.
    [3]. Zhang L. S.; Jiang L. Y.; Yan H. J.; et al., Mono dispersed SnO2nanoparticles on bothsides of single layer graphene sheets as anode materials in Li-ion batteries[J]. Journal ofMaterials Chemistry,2010,20(26), pp5462-5467.
    [4]. Zhao H. Y.; Zhao Z. Z.; Zhao Y. F.; et al., The Redox Properties of SnO2Nanorods[J].Chinese Journal of Catalysis,2010,31(1), pp44-48.
    [5]. Wang C. A.; Qiu J. S.; Liang C. H., Synthesis of Carbon Nanotubes-Supported Pd/SnO2for the Hydrogenation of ortho-Chloronitrobenzene[J]. Chinese Journal of Catalysis,2009,30(3), pp259-264.
    [6]. Senthilkumar V.; Vickraman P.; Jayachandran M.; et al., Synthesis and Characterizationof SnO2Nanopowder Prepared by Precipitation Method[J]. Journal of Dispersion Science andTechnology,2010,31(9), pp1178-1181.
    [7]. Gervaldo M.; Otero L.; Milanesio M. E.; et al., Photo sensitization of thin SnO2nanocrystalline semiconductor film electrodes with electron donor-acceptormetallodiporphyrin dyad[J]. Chemical Physics,2005,312(1-3), pp97-109.
    [8]. Fungo F.; Otero L.; Borsarelli C. D.; et al., Photocurrent generation in thin SnO2nanocrystalline semiconductor film electrodes from photoinduced charge-separation state inporphyrin-C-60dyad[J]. Journal of Physical Chemistry B,2002,106(16), pp4070-4078.
    [9]. Wang H. X.; Yan Y.; Mohammed Y. S.; et al., First-principle study of magnetism inCo-doped SnO2[J]. Journal of Magnetism and Magnetic Materials,2009,321(5), pp337-342.
    [10]. Sun Y.; Liu X. F.; Yu R. H., Microstructure and properties of Fe-doped SnO2nanocrystalline films[J]. Journal of Inorganic Materials,2008,23(2), pp346-350.
    [11]. Bouaine A.; Brihi N.; Schmerber G.; et al., Structural, optical, and magnetic properties ofCo-doped SnO2powders synthesized by the coprecipitation technique[J]. Journal of PhysicalChemistry C,2007,111(7), pp2924-2928.
    [12]. Coey J. M. D.; Venkatesan M.; Fitzgerald C. B., Donor impurity band exchange in diluteferromagnetic oxides[J]. Nature Materials,2005,4(2), pp173-179.
    [13]. Coey J. M. D.; Douvalis A. P.; Fitzgerald C. B.; et al., Ferromagnetism in Fe-dopedSnO2thin films[J]. Applied Physics Letters,2004,84(8), pp1332-1334.
    [14]. Wu S. S.; Yuan S. A.; Shi L. Y.; et al., Preparation, characterization and electricalproperties of fluorine-doped tin dioxide nanocrystals[J]. Journal of Colloid and InterfaceScience,2010,346(1), pp12-16.
    [15]. Lei Z.; Sun J.; Tang Q., Multilayer transparent conductive film structure comprisessubstrate, silicon dioxide transition layer, fluorine-doped tin oxide (FTO) layer, and zincoxide-based thin film layer[P]. CN101582461-A,2009.
    [16]. Ge Y.; Jiang J.; Wang C.; et al., Preparing tin dioxide nanostructural material for use ascathode material of lithium ion battery, includes adding tin dioxide powder to mixed solventof ethanol and water to prepare tin ion-bearing solution reaction system[P]. CN101693552-A,2010.
    [17]. Du G. D.; Zhong C.; Zhang P.; et al., Tin dioxide/carbon nanotube composites with highuniform SnO2loading as anode materials for lithium ion batteries[J]. Electrochimica Acta,2010,55(7), pp2582-2586.
    [18]. Chang K.; Chen W.; Li H., Tin dioxide/tin sulphide nano composite electrode materialpreparing method for lithium ion battery, involves obtaining precipitate by centrifugalseparation process, and cleaning precipitate by water and alcohol by vacuum dryingprocess[P]. CN101609886-A,2010.
    [19]. Ayoub K.; van Hullebusch E. D.; Cassir M.; et al., Application of advanced oxidationprocesses for TNT removal: A review[J]. Journal of Hazardous Materials,2010,178(1-3), pp10-28.
    [20]. Cossu R.; Polcaro A. M.; Lavagnolo M. C.; et al., Electrochemical treatment of landfillleachate: Oxidation at Ti/PbO2and Ti/SnO2anodes[J]. Environmental Science&Technology,1998,32(22), pp3570-3573.
    [21]. Acarbas O.; Suvaci E.; Dogan A., Preparation of nanosized tin oxide (SnO2) powder byhomogeneous precipitation[J]. Ceramics International,2007,33(4), pp537-542.
    [22]. Lysak G. V.; Lysak I. A.; Malinovskaya T. D.; et al., Microwave synthesis of SnO2nanocrystals on the surface of fine polymer fibers[J]. Inorganic Materials,2010,46(2), pp183-186.
    [23]. Seo M.; Akutsu Y.; Kagemoto H., Preparation and properties of Sb-doped SnO2/metalsubstrates by sol-gel and dip coating[J]. Ceramics International,2007,33(4), pp625-629.
    [24]. YanJun Z.; Min G.; Mei Z.; et al., Hydrothermal Preparation and Characterization ofNanocrystalline Porous Tin Dioxide Thin Films[J]. Journal of Nanoscience andNanotechnology,2009, pp5770-5775.
    [25]. Yan J. A.; Khoo E.; Sumboja A.; et al., Facile Coating of Manganese Oxide on TinOxide Nanowires with High-Performance Capacitive Behavior[J]. Acs Nano,2010,4(7), pp4247-4255.
    [26]. Li H.; Xu J. Q.; Zhu Y. H.; et al., Enhanced gas sensing by assembling Pd nanoparticlesonto the surface of SnO2nanowires[J]. Talanta,2010,82(2), pp458-463.
    [27]. Ye J. F.; Zhang H. J.; Yang R.; et al., Morphology-Controlled Synthesis of SnO2Nanotubes by Using1D Silica Mesostructures as Sacrificial Templates and Their Applicationsin Lithium-Ion Batteries[J]. Small,2010,6(2), pp296-306.
    [28]. Lou X. W.; Archer L. A.; Yang Z., Hollow Micro-/Nanostructures: Synthesis andApplications[J]. Advanced Materials,2008,20(21), pp3987-4019.
    [29]. Lou X. W.; Wang Y.; Yuan C.; et al., Template-free synthesis of SnO2hollownanostructures with high lithium storage capacity[J]. Advanced Materials,2006,18(17), pp2325-2329.
    [30]. Yang H. G.; Zeng H. C., Preparation of hollow anatase TiO2nanospheres via Ostwaldripening[J]. Journal of Physical Chemistry B,2004,108(11), pp3492-3495.
    [31]. Lin J.; Meng F.; Zhong Y.; et al., Assembly, formation mechanism, and enhancedgas-sensing properties of porous and hierarchical SnO2hollow nanostructures[J]. Journal ofMaterials Research,2010,25(10), pp1992-2000.
    [32]. Song H.; Zhang L.; He C.; et al., Graphene sheets decorated with SnO2nanoparticles: insitu synthesis and highly efficient materials for cataluminescence gas sensors[J]. Journal ofMaterials Chemistry,2011,21(16), pp5972-5977.
    [33]. Wang Q.; Wang D.; Wu M.; et al., Porous SnO2nanoflakes with loose-packed structure:Morphology conserved transformation from SnS2precursor and application in lithium ionbatteries and gas sensors[J]. Journal of Physics and Chemistry of Solids,2011,72(6), pp630-636.
    [34]. Kaur J.; Vankar V. D.; Bhatnagar M. C., Role of surface properties of MoO3-doped SnO2thin films on NO2gas sensing[J]. Thin Solid Films,2010,518(14), pp3982-3987.
    [35]. Ge J. P.; Wang J.; Zhang H. X.; et al., High ethanol sensitive SnO2microspheres[J].Sensors and Actuators B: Chemical,2006,113(2), pp937-943.
    [36]. Huang J.; Yu K.; Gu C.; et al., Preparation of porous flower-shaped SnO2nanostructuresand their gas-sensing property[J]. Sensors and Actuators, B: Chemical,2010,147(2), pp467-474.
    [37]. Huang X.; Zhou X.; Zhou L.; et al., A facile one-step solvothermal synthesis ofSnO2/graphene nanocomposite and its application as an anode material for lithium-ionbatteries[J]. Chemphyschem,2011,12(2), pp278-81.
    [38]. Zhang Z.; Zou R.; Song G.; et al., Highly aligned SnO2nanorods on graphene sheets forgas sensors[J]. Journal of Materials Chemistry,2011,21(43), pp17360-17365.
    [39]. Xu C.; Sun J.; Gao L., Direct growth of monodisperse SnO2nanorods on graphene ashigh capacity anode materials for lithium ion batteries[J]. Journal of Materials Chemistry,2012,22(3), pp975-979.
    [40]. Li B.; Cao H.; Shao J.; et al., Superparamagnetic Fe3O4nanocrystals@graphenecomposites for energy storage devices[J]. Journal of Materials Chemistry,2011,21(13), pp5069-5075.
    [41]. Fan X.; Peng W.; Li Y.; et al., Deoxygenation of exfoliated graphite oxide under alkalineconditions: a green route to graphene preparation[J]. Advanced Materials,2008,20(23), pp4490-4493.
    [42]. Pan D.; Zhang J.; Li Z.; et al., Hydrothermal Route for Cutting Graphene Sheets intoBlue-Luminescent Graphene Quantum Dots[J]. Advanced Materials,2010,22(6), pp734-738.
    [43]. Wang Q.; Zheng H.; Long Y.; et al., Microwave-hydrothermal synthesis of fluorescentcarbon dots from graphite oxide[J]. Carbon,2011,49(9), pp3134-3140.
    [44]. Xue L.; Shen C.; Zheng M.; et al., Hydrothermal synthesis of graphene-ZnS quantumdot nanocomposites[J]. Materials Letters,2011,65(2), pp198-200.
    [45]. Shen J.; Zhu Y.; Yang X.; et al., One-pot hydrothermal synthesis of graphene quantumdots surface-passivated by polyethylene glycol and their photoelectric conversion undernear-infrared light[J]. New Journal of Chemistry,2012,36(1), pp97-101.
    [46]. Hao X. Z.; Zhai Y. C.; Jiang K. L; et al., Cross-Stacked Carbon Nanotube SheetsUniformly Loaded with SnO2Nanoparticles: A Novel Binder-Free and High-Capacity AnodeMaterial for Lithium-Ion Batteries[J]. Advanced Materials,2009,21(22), pp2299-2304.
    [47]. Wang C.; Zhou Y.; Ge M.; et al., Large-Scale Synthesis of SnO2Nanosheets with HighLithium Storage Capacity[J]. Journal of The American Chemical Society,2010,132(1), pp46-47.
    [48]. Wang Z.; Zhang H.; Li N.; et al., Laterally confined graphene nanosheets andgraphene/SnO2composites as high-rate anode materials for lithium-ion batteries[J]. NanoResearch,2010,3(10), pp748-756.
    [49]. Li Y. M.; Lv X. J.; Lu J.; et al., Preparation of SnO2-Nanocrystal/Graphene-NanosheetsComposites and Their Lithium Storage Ability[J]. Journal of Physical Chemistry C,2010,114(49), pp21770-21774.
    [50]. Wang X. Y.; Zhou X. F.; Yao K.; et al., A SnO2/graphene composite as a high stabilityelectrode for lithium ion batteries[J]. Carbon,2011,49(1), pp133-139.
    [51]. Kim H.; Kim S. W.; Park Y. U.; et al., SnO2/Graphene Composite with High LithiumStorage Capability for Lithium Rechargeable Batteries[J]. Nano Research,2010,3(11), pp813-821.
    [52]. Tong X.; Wang H.; Wang G.; et al., Controllable synthesis of graphene sheets withdifferent numbers of layers and effect of the number of graphene layers on the specificcapacity of anode material in lithium-ion batteries[J]. Journal of Solid State Chemistry,2011,184(5), pp982-989.
    [53]. Yoo E.; Kim J.; Hosono E.; et al., Large reversible Li storage of graphene nanosheetfamilies for use in rechargeable lithium ion batteries[J]. Nano Letters,2008,8(8), pp2277-2282.
    [54]. Yin S.; Zhang Y.; Kong J.; et al., Assembly of Graphene Sheets into HierarchicalStructures for High-Performance Energy Storage[J]. Acs Nano,2011,5(5), pp3831-3838.
    [55]. Fan Z. J.; Yan J.; Wei T.; et al., Nanographene-Constructed Carbon Nanofibers Grownon Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials forLithium Ion Batteries[J]. Acs Nano,2011,5(4), pp2787-2794.
    [56]. Wang F.; Graetz J.; Sergio Moreno M.; et al., Chemical Distribution and Bonding ofLithium in Intercalated Graphite: Identification with Optimized Electron Energy LossSpectroscopy[J]. Acs Nano,2011,5(2), pp1190-1197.
    [57]. Naoi K.; Ogihara N.; Igarashi Y.; et al., Disordered carbon anode for lithium-ion batteryI. An interfacial reversible redox action and anomalous topology changes[J]. Journal of theElectrochemical Society,2005,152(6), pp A1047-A1053.
    [58]. Ogihara N.; Igarashi Y.; Kamakura A.; et al., Disordered carbon negative electrode forelectrochemical capacitors and high-rate batteries[J]. Electrochimica Acta,2006,52(4), pp1713-1720.
    [59]. Zheng H. H.; Jiang K.; Abe T.; et al., Electrochemical intercalation of lithium into anatural graphite anode in quaternary ammonium-based ionic liquid electrolytes[J]. Carbon,2006,44(2), pp203-210.
    [60]. Stournara M. E.; Shenoy V. B., Enhanced Li capacity at high lithiation potentials ingraphene oxide[J]. Journal of Power Sources,2011, pp5697-703.
    [61]. Zheng H. H.; Liu G.; Battaglia V., Film-Forming Properties of Propylene Carbonate inthe Presence of a Quaternary Ammonium Ionic Liquid on Natural Graphite Anode[J]. Journalof Physical Chemistry C,2010,114(13), pp6182-6189.
    [62]. Xu K.; Zhang S. S.; Jow, T. R., Formation of the graphite electrolyte interface by lithiumbis(oxalato)borate[J]. Electrochemical and Solid State Letters,2003,6(6), pp A117-A120.
    [63]. Xu K.; Lee U.; Zhang S. S.; et al., Graphite/electrolyte interface formed in LiBOB-basedelectrolytes-II. Potential dependence of surface chemistry on graphitic anodes[J]. Journal ofthe Electrochemical Society,2004,151(12), pp A2106-A2112.
    [64]. Li J.; Wan C.; Jiang C.; et al., Natural graphite-based anode active material coated withiron hydroxide for lithium ion battery[J]. Journal of Tsinghua University (Science andTechnology),2001,41(6), pp67-70.
    [65]. Kohs W.; Santner H. J.; Hofer F.; et al., A study on electrolyte interactions with graphiteanodes exhibiting structures with various amounts of rhombohedral phase[J]. Journal ofPower Sources,2003,119-121, pp528-537.
    [66]. Sethuraman V. A.; Hardwick L. J.; Srinivasan V.; et al., Surface structural disordering ingraphite upon lithium intercalation/deintercalation[J]. Journal of Power Sources,2010,195(11), pp3655-3660.
    [67]. Pan Q.; Guo K.; Wang L.; et al., Novel modified graphite as anode material for lithiumion batteries[J]. Journal of Materials Chemistry,2002,12(6), pp1833-1838.
    [68]. Lahiri I.; Oh S. W.; Hwang J. Y.; et al., High Capacity and Excellent Stability of LithiumIon Battery Anode Using Interface-Controlled Binder-Free Multiwall Carbon NanotubesGrown on Copper[J]. Acs Nano,2010,4(6), pp3440-3446.
    [69]. Paek S.-M.; Yoo E.; Honma I., Enhanced Cyclic Performance and Lithium StorageCapacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally DelaminatedFlexible Structure[J]. Nano Letters,2009,9(1), pp72-75.
    [70]. Wang D. H.; Kou R.; Choi D.; et al., Ternary Self-Assembly of Ordered MetalOxide-Graphene Nanocomposites for Electrochemical Energy Storage[J]. Acs Nano,2010,4(3), pp1587-1595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700