用户名: 密码: 验证码:
油酰海藻酸纳米粒口服运送载体的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米载体系统能够改善营养物质的溶解性、稳定性、生物利用度等性质。海藻酸钠具有良好的生物可降解性和生物相容性,在食品医药领域都得到了广泛应用。本论文首先制备得到了油酰海藻酸,并且分别用超声辅助分子自组装法和乳化法构建了油酰海藻酸纳米粒,在纳米粒中分别包埋了维生素D_3和维生素E,并研究了包埋效率和缓释效果。最后以Caco-2细胞模型和外翻肠模型,考察了生物相容性、吸收和跨膜转运作用。
     首先,在无有机溶剂的条件下,将油酰基团接枝到海藻酸分子上,制备得到油酰海藻酸(OAE),利用红外光谱和核磁共振的方法检测酯化产物的形成。然后用响应面分析的方法对合成过程进行了优化,经优化得到的最佳试验参数为:4.95ml甲酸,11.27ml油酰氯,反应时间20min,反应温度50℃。此时取代度为5%,产率93.99%。经实验验证,在以上最优条件下,所得产品的取代度为4.93%,产率92.27%,与软件优化结果基本相符。
     通过超声辅助分子自组装法制备得到OAE纳米粒,利用荧光光谱技术、透射电子显微镜、动态激光散射粒度仪对纳米粒的理化性质进行了测定,并且研究了OAE纳米粒在模拟胃肠液中的稳定性。结果表明得到了球形规则、形态完整、粒径较小的纳米粒。随着OAE取代度增加,OAE纳米粒的粒径由559.3±9.5nm降到305.3±6.3nm,临界聚集浓度(CAC)由0.38mg/ml降到0.25mg/ml。与蒸馏水中相比,OAE纳米粒在模拟胃液中仍然保持完整球形结构,在模拟肠液中的形状变得不规则。OAE纳米粒在模拟胃液中的粒径变小,模拟肠液中的粒径变大。OAE纳米粒在模拟胃液中,具有较高的热力学稳定性,在模拟肠液中具有较低的热力学稳定性。
     以VD_3为模式营养物,利用超声辅助分子自组装法将其包埋到纳米粒中。随着加入VD_3量的增多,OAE纳米粒的包封率从67.6±2.76%降低到45.8±1.55%,负载率从0.33±0.02升高至0.91±0.03%。并且研究了在模拟胃肠液中的缓释,结果表明纳米粒具有缓释作用。
     以VE为模式营养物,分别利用超声法和乳化法制备得到了载VE的OAE纳米粒,两者都能制备得到纳米粒,但纳米乳剂具有比较高的载VE的能力。
     通过离心的方法将纳米粒进行分级分离,些过程受到纳米粒Zeta电位、离心速度的影响,zeta电位的绝对值越小,离心速度越快,纳米粒的沉降越快。本章还通过差速离心的方法将一组纳米粒按照大小分成了四组组米粒。随着离心速度升高,粒径从707.2±32.3nm降到78.2±19.9nm,负载率从12.35±1.92%降低至4.94±0.46%,它们的PDI值均小于0.47±0.03。
     通过离心的方法成功分离出四组粒径大小不同的纳米粒,它们具有相似的zeta电位,粒径大的纳米粒具有较高的载VE的能力。并且研究了粒径对VE的稳定性、纳米粒的分散稳定性的影响。随着粒径降低,VE的稳定性升高,纳米粒的分散稳定性提高。
     利用MTT法检测了OAE纳米粒的粒径对细胞毒性的影响,结果表明四组纳米粒对细胞均无毒。Transwell的跨膜转运实验表明,OAE纳米粒能够提高VE的透过性。随着粒米粒的粒径从80nm升高到700nm,表观渗透系数从2.72±0.66×10~(-4)降到0.94±0.43×10~(-4)cm/s。
     利用wistar大鼠肠环外翻法研究了OAE纳米粒的细胞吸收和胞吞机制。4℃的吸收远低于37℃,此结果表明纳米粒主要通过主动运输吸收。NP80和NP130主要通过网格蛋白介导的内吞作用吸收,NP370主要通过小凹蛋白介导的内吞作用吸收,NP700主要通过巨胞饮作用进入细胞。
Nanoparticle systems can improve the properties of nutritions, such as solubility,stability and bioavailability. Sodium alginate with good biodegradability andbiocompatibility has been widely applied in food and medicine areas. In this paper,the oleoyl alginate ester (OAE) was synthesized at first. OAE nanoparticles wereprepared through self-aggregate and emulsification method separately. The vitamin D_3and vitamin E were loaded into nanoparticles separately. The loading efficiency andrelease properties were also evaluated. Finally, the biocompatibility, uptake andtransport properties were evaluated using human Caco-2model and everted intestinalring model.
     First of all, oleoyl group was grafted to alginate without any organic solvents.Formation of an ester linkage between alginate and oleoyl was confirmed by FT-IRand1H NMR spectra. Response surface methodology (RSM) was employed tooptimize the process. The optimum synthesis conditions of OAE were found to bealginate amount of0.5g, formic acid amount of4.95mL, oleoyl chloride amount of11.27mL, reaction temperature of50℃and reaction time of20min. Under theseconditions, the maximum degree of substitution (DS) and yield of OAE wereobserved to be4.93%and92.27%respectively, which were in accordance with thecorresponding predicted values.
     The physicochemical properties of the OAE nanoparticals were investigatedusing fluorescence spectroscopy, dynamic light scattering (DLS) and transmissionelectron microscopy. Stability of Nanoparticles in SGF and SIF was also evaluated.The results indicated the prepared nanoparticles had spherical shape and goodstructural integrity with small size. As the DS of OAE increased, the size of OAEnanopartiles decreased from559.3±9.5nm to305.3±6.3nm, whereas the CACdecreased from0.38mg/ml to0.25mg/ml. Compared to the nanoparticles in distilledwater, nanoparticles in SGF still had spherical shape and good structural integrity, whereas nanoparticles in SGF were in big irregular shape. The size decreased in SGFwhile increased in SIF. The CAC values of nanoparticles indicating higherthermodynamic stability but lower thermodynamic stability
     VD_3was chosen as a model nutrient and entrapped into the OAE nanoparticlesthrough self-aggreagation. As the concentration of vitamin D_3increased, the loadingefficiency decreased from67.6±2.76to45.8±1.55%, whereas the loading capacityincreased from0.33±0.02to0.91±0.03%. In vitro vitaminD_3release studyindicated controlled release in gastrointestinal fluid.
     VE was chosen as a model nutrient and entrapped into the OAE nanoparticlesthrough emulsification method. Both methods were able to prepare nanoparticles, butemulsion had greater ability to encapsulate VE.
     The size separation by centrifugation was affected by zeta potential and speed ofcentrifugation.The smaller the absolute value of zeta potentioal and the faster thecentrifugation speed was, the higher the sedimentation velocity of nanoparticles.Fourbatches of nanoparticles were also separated by differential centrifugation from theinitial batch of nanoparticles. The size of nanoparticles decreased from707.2±32.3nm to78.2±19.9nm with increasing speed of centrifugation. The loading capacitydecreased from12.35±1.92%to4.94±0.46%. The PDI of four batches ofnanoparticles was below0.47±0.03.
     Four batches of nanoparticles with similar zeta potential were separated from theinitial batch of nanoparticles by means of centrifugation. The bigger nanoparticles hadhigher ability to encapsulated VE. In vitro release, stability of vitamin E innanoparticles and the dispersion stability of nanoparticles was also evalutated. As theparticle size decreased, the in vitro release slowed, stability of vitamin E increased,dispersion stability of nanoparticles enhanced.
     The cytotoxicity of OAE nanoparticles with different sizes was analyzed by theMTT assay, which indicated limited damage to the epithelial cells. All of thenanoparticles demonstrated a higher Papp values for vitamin E-loaded nanoparticlesthan for the free vitamin E solution. As the particle sizes increased from80nm to700nm, the Papp values decreased from (2.72±0.66)×10~(-4)to (0.94±0.43)×10~(-4)cm/s.
     The uptake and machanism of OAE nanoparticles was analyzed by the evertedrings of wistar rats. The uptake at4℃was very low compared to37℃. Endocytosisof NP80and NP130occurs mainly via clathrin-mediated endocytosis. NP370wasinternalized by caveolae-mediated endocytosis. NP700was internalized bymacropinocytosis.
引文
Aburto J, Alric I, Borredon E, et a1.Preparation of longchain esters of starch using fatty acidchlorides in the absence of an organic solvent. Starch/Staerke,1999,51:132~135.
    Adair BM. Nanoparticle vaccines against respiratory viruses. Wiley Interdiscip RevNanomed Nanobiotechnol.2009;1:405-414.
    Adinarayana K, Ellaiahp, Srinivasulu B, et al. Response surface methodological approach tooptimize the nutritional parameters for neomycin production by Streptomyces marinensisunder solid-state fermentation. Process Biochem,2003,38(11):1565~1572.
    Brigelius F R, Traber M G.. Vitamin E: function and metabolism. FASEB J.1999,13,1145~55.
    Broderick E, Lyons H, Pembroke T, et a1.The characterisation of a novel, covalently modified,amphiphilic alginate derivative, which retains gelling and non~toxic properties. J. ColloidInterface Sci.,2006,298,154~161.
    Bu H, Nguyen G T M, Kj niksen A L. Effects of the quantity and structure of hydrophobes on theproperties of hydrophobically modified alginates in aqueous solutions. Polym. Bull.,2006,57,563~574.
    Cai X, Lin Y, Ou G, Luo E, et a1. Ectopic osteogenesis and chondrogenesis of bone marrowstromal stem cells in alginate system. Cell Biol. Int.2007,31,776~783.
    Cha′vez-Serv′n J L, Castellote A I, Lo′pez~Sabater M C. Vitamins A and E content in infantmilk~based powdered formulae after opening the packet. Food Chem.,2008,106:299~309.
    Chan Y H, Chen B H, Chiu C P, et a1. The influence of phytosterols on the encapsulationeficiency of cholesterol liposomes. Inter. J. Food Sci. Techno1.,2004,39(9):985~995.
    Chen C C, Wagner G. Vitamin E nanoparticle for beverage applications. Chem. Eng. Res. Des.,2004,82:1432~1437.
    Chen L, Subirade M. Chitosan/β~lactoglobulin core-shell nanoparticles as nutraceutical carriers.Biomaterials,2005,26:6041~6053.
    Chen S, Singh J. Controlled delivery of testosterone from smart polymer solution based systems:In vitro evaluation. Int. J. Pharm.,2005,295:183~190.
    Chiang C P, He Y Y, Lee E. Sedimentation velocity and potential in a concentrated suspension ofcharged liquid drops. Langmuir,2008,24:11361~11369.
    Cho I H, Zou K D. Photocatalytic degradation of azo dye (Reactive Red120) in TiO2/UV system:Optimization and modeling using a response surface methodology (RSM) based on thecentral composite design. Dyes Pigments,2007,75(3):533~543.
    Colinet I, Dulong V, Hamaide T, et a1. New amphiphilic modified polysaccharides with originalsolution behaviour in salt media. Carbohydr. Polym.,2009,75,454~462.
    Colinet I, Dulong V, Mocanu G, et a1. New amphiphilic and pH sensitive hydrogel for controlledrelease of a model poorly water-soluble drug. Eur. J. Pharm. Biopharm.2009,73,345~350.
    Douglas K L, Tabrizian M. Effect of experimental parameters on the formation ofalginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. J.Biomater. Sci.,2005,16:43~56.
    Eitenmiller R R, Landen Jr W O. Vitamin D. In Vitamin analysis for the health and food science,CRC Press: Boca Raton, FL,1999; p77~82.
    Elomaa M, Asplund T, Soininen P, et a1. Determination of the degree of substitution of acetylatedstarch by hydrolysis,1H NMR and TGA/IR. Carbohydr. Polym.,2004,57:261~267.
    Fenandez A, Cavaa D, Ocio M J, et a1. Perspectives for biocatalysts in food packaging. TrendsFood Sci. Techno1.,2008,19(4):198~206.
    Gaumet M, Gurny R, Delie F. Fluorescent biodegradable PLGA particles with narrow sizedistributions: Preparation by means of selective centrifugation. Int. J. Pharm.,2007,342:222~230.
    Gaumet M, Gurny R, Delie F. Localization and quantification of biodegradable particles in anintestinal cell model: The influence of particle size. Eur J Pharm Sci.,2009,36(4~5):465~473.
    George M, Abraham T E. Polyionic hydrocolloids for the intestinal delivery of protein drugs:Alginate and chitosan. J. Controlled Release,2006,114:1~14.
    Gombotz W R, Wee S F. Protein release from alginate matrices. Adv. Drug Deliv. Rev.,1998,31:267~285.
    Goncalves C, Martins J A, Gama F M. Self Assembled nanoparticles of dextrin substituted withhexadecanethiol. Biomacromolecules,2007,8:392~398.
    Hsieh Y F, Chen T T, Wang Y T, et a1. Properties of liposomes prepared with various lipids.FoodSci.,2002,67(8):2808~2813.
    Hu B, Fuchs A, Huseyin S, et a1. Atom transfer radical polymerized MR fluids. Polymer,2006,47:7653~7663.
    Huang Y Y, Chung T W, Tzeng T W. Drug release from PLA/PEG microparticulates. Int. J. Pharm.,1997,156:9~15.
    Hwang Y, Lee J K, Lee J K, et a1. Production and dispersion stability of nanoparticles innanofluids. Powder Technol.,2008,186:145~153.
    Isacsson U. A compilation of laboratory methods for studying stability of bitumen emulsions.Mater. Struct.1985,18:228~236.
    Klaypradit W, Huang Y W. Fish oil encapsulation with chitosan using ultrasonic atomizer. FoodSci. Techno1.,2008,41(6):1133~1139.
    Leon F, Boven M V, Witte P D, et a1. Isolation and identification of molecular species ofphosphatidylcholine and lysophosphatidylcholine from jojoba seed meal (Simmondsiachinensis). J. Agric. Food Chem.,2004,52:1207~1211.
    Leonarda M, Boissesona M R D, Huberta P, et a1. Hydrophobically modified alginate hydrogelsas protein carriers with specific controlled release properties. J. Controlled Release,2004,98:395~405.
    Lertsutthiwong P, Noomun K, Jongaroonngamsang N, et a1. Preparation of alginate nanocapsulescontaining turmeric oil. Carbohydr. Polym.,2008,74:209~214.
    Li Q, Liu C G, Huang Z H, et a1. Preparation and characterization of nanoparticles based onhydrophobic alginate derivative as carriers for sustained release of vitamin D3. J. Agric. FoodChem.,2011,59:1962~1967.
    Li Y Y, Chen X G, Liu C S, et a1. Effect of the molecular mass and degree of substitution ofoleoylchitosan on the structure, rheological properties, and formation of nanoparticles. J.Agric. Food Chem.,2007,55:4842~4847.
    Liggins RT, Burt HM. Polyether—polyester diblock copolymers for the preparation of paclitaxelloaded polymeric micelles formations. Adv Drug Delivery Reviews,2002,54:191~202.
    Lin C Z, Guan H S, Li H H, et a1. The influence of molecular mass of sulfated propylene glycolester of low-molecular-weight alginate. Eur. Polym. J.,2007,43:3009~3015.
    Liu C G, Chen X G, Park H J. Self-assembled nanoparticles based on linoleic-acid modifiedchitosan: Stability and absorption of trypsin. Carbohydr. Polym.,2005,62,293~298.
    Liu C G, Desai K G H, Chen X G, et a1. Linolenic acid-modified chitosan for formation ofself-assembled nanoparticles. J. Agric. Food Chem.,2005,53:437~441.
    Liu L, Li C, Li X, et a1. Biodegradable polylactide/poly(ethylene glycol)/polylactide triblockcopolymer micelles as anticancer drug carriers. J. Appl. Polym. Sci.,2001,80:1976~1982.
    Liu Y, Hu C Q. Establishment of a knowledge base for identification of residual solvents inpharmaceuticals. Anal. Chim. Acta.,2006,575:246~254.
    Maestrelli F, Gonz′alez~Rodr′guez M L, Rabasco A M, et a1. Preparation and characterisation ofliposomes encapsulating ketoprofen–cyclodextrin complexes for transdermal drug delivery.Int. J. Pharm.,2005,298:55~67.
    Mangiacapra P,Gon'asi G,Sorrentino A,et a1..Biodegradable nanoeomposites obtained by ballmilling of pectin and nlontmorillonites.Carbohydr.Polym.,2005,64(4):516~523.
    Maysinger D. Nanoparticles and cells: good companions and doomed partnerships. Org. Biomol.Chem.,2007,5:2335~2342.
    Medina-Kauwe L K, Xie J, Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. GeneTherapy,2005,12:1734–1751.
    Mirhosseini H, Tan C P, Hamid N S A, et a1. Optimization of the contents of Arabic gum, xanthangum and orange oil affecting turbidity, average particle size, polydispersity index and densityin orange beverage emulsion. Food Hydrocolloids,2008,22:1212~1223.
    Mohanraj V J, Chen Y. Nanoparticles–a review. Trop. J. Pharm. Res.,2006,5:561~573.
    Op de Beeck J, De Malsche W, Vangelooven J, Gardeniers H, et a1. Hydrodynamicchromatography of polystyrene microparticles in micropillar array columns. J. Chromatogr.A.,2010,1217:6077~6084.
    Pelletier S, Hubert P, Lapicque F, et a1. Amphiphilic derivatives of sodium alginate andhyaluronate: synthesis and physico~chemical properties of aqueous dilute solutions.Carbohydr. Polym.,2000,43:343~349.
    Raman B, Ramakrishna T, Rao C M. Refolding of denatured and denatured/reduced lysozyme athigh concentrations. J. Biol. Chem.,1996,271:17067~17072.
    Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization ofparticles via the pathways of clathrin and caveolae-mediated endocytosis.Biochem J2004;377:159–169. Biochem J.2004;377:159-69.
    Rheinlander T, Roessner D, Weitschies W et al. Comparison of size-selective techniques for thefractionation of magnetic fluids. J. Magn. Magn. Mater.,2000,214(3):269~275.
    Riu J, Maroto A, Rius F X. Nanosensors in environmentalanalysis. Talanta,2006,69(2):288~301.
    Roger E, Lagarce F, Garcion E, Benoit JP. Lipid nanocarriers improve paclitaxeltransport throughout human intestinal epithelial cells by using vesicle-mediatedtranscytosis. J Control Release2009;140:174-181.
    Rsler A, Vandermeulen G W M, Klok H. Advanced drug delivery devices via self-assembly ofamphiphilic block copolymers. Adv Drug Delivery Reviews,2011,53(1):95~108.
    Sandri G, Bonferoni MC, Rossi S, Ferrari F, Boselli C, Caramella C. Insulin-loadednanoparticles based on N-trimethyl chitosan: in vitro (Caco-2model) and ex vivo(excised rat jejunum, duodenum, and ileum) evaluation of penetrationenhancement properties. AAPS Pharm Sci Tech2010;11:362-371.
    Sanguansri P,Augustin M A.Nanoscale materials development-a food industry perspective.Trends Food Sci. Technol.,2006,17(10):547~556.
    Sejersen M T, Salomonsen T, Ipsen R, et a1. Zeta potential of pectin-stabilised casein aggregatesin acidified milk drinks. Int. Dairy J.,2007,17:302~307.
    Semo E, Kesselman E, Danino D, Livney Y D. Casein micelle as a natural nano~capsular vehiclefor nutraceuticals. Food Hydrocolloid.,2007,21:936~942.
    Shi M, Shoichet M S. Furan~functionalized co~polymers for targeted drug delivery:characterization, self~assembly and drug encapsulation. J. Biomater. Sci. Polymer Edn.,2008,19:1143~1157.
    Shi X Y, Tan T W. Preparation of chitosan/ethylcellulose complex microcapsule and its applicationin controlled release of Vitamin D2. Biomaterials,2002,23:4469~4473.
    Silva D S, Rosa F N, Ferreira E A, et al. Rapid Determination of α-Tocopherol in Vegetable Oilsby Fourier Transform Infrared Spectroscopy. Food Anal. Methods,2009,2:120~127.
    Sivamohan R,Takahashi H, Kasuya A, et al. Liquid chromatography used to size-separate theamphiphilic-molecules stabilized nano-particles of CdS in the1-10nm range. NanoStructuredMaterials,1999,12:89~94.
    Soma C E, Dubernet C, Baratt G, et al. Ability of doxorubicin-loaded nanoparticles to overcomemultidrug resist ance of tumor cells after their capture by macrophages. Pharm Research,1999,16(11):1710-1716.
    Sozer N, Kokini J L. Nanotechnology and its applications in the food sector. Trends Biotechnol.2009,27,82~89.
    Swaminathan S, Pastero L, Serpe L, et al. Cyclodextrin-based nanosponges encapsulatingcamptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm.Biopharm.,2010,74:193~201.
    Taherian A R, Britten M, Sabik H, et al. Ability of whey protein isolate and/or fish gelatin toinhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion. FoodHydrocolloids,25(5):868-878.
    Takka S, Acarturk F. Calcium alginate microparticles for oral administration: I: effect of sodiumalginate type on drug release and drug entrapment efficiency. J. Microencapsulation,1999,16:275~290.
    Tan Y L, Liu C G. Self-aggregated nanoparticles from linoleic acid modified carboxymethylchitosan: Synthesis, characterization and application in vitro. Colloid. Surface. B,2008,69:178~182.
    Tana Q Y, Wang N, Yang H, et al. Characterization, stabilization and activity of uricase loaded inlipid vesicles. Int. J. Pharm.,2010,384:165~172.
    Thanos C G, Bintz B E, Bell W J, et al. Intraperitoneal stability of alginate-polyornithinemicrocapsules in rats: an FTIR and SEM analysis. Biomaterials,2006,27:3570~3579.
    Tonnesen H H, Karlsen J. Alginate in drug delivery systems.Drug Dev lnd Pharm,2002,28(6):621~630.
    Troy D B. Pharmaceutics. In Remington: the Science and Practice of Pharmacy. LippincottWilliams&Wilkins: Baltimore, Maryland,2005; p297.
    Vaseashla A,Malinovska D D. Nanostructured and nanoscale device. sensors and detectors. Sci.Fechno1. Adv. Mat.,2005,6(3~4):312~318.
    Wang Q Z, Chen X G, Liu N, et al. Protonation constants of chitosan with different molecularweight and degree of deacetylation. Carbohydr. Polym.,2006,65,194~201.
    Wang W, Tetley L, Uchegbu I F. New class of amphiphilic poly-l-lysine based polymers forms.Langmuir,2000,16:7859~7866.
    Weiss J, Takhisiov P, McClements D J.Functional materials in food nanotechnology.Food Sci.,2006,71(9):107~116.
    Wu S, Yu X, Hu Z, et al. Optimizing aerobic biodegradation of dichloromethane using responsesurface methodology. J Environ Sci,2009,21(9):1276~1283.
    Yamamoto Y, Yasugi K, Harada A, et al. Temperature-related change in the properties relevant todrug delivery of poly(ethylene glycol)–poly(-lactide) block copolymer micelles in aqueousmilieu. J. Controlled Release,2002,82:359~71.
    Yang L Q, Zhang B F, Wen L Q, et al. Amphiphili cholesteryl grafted sodium alginate derivative:Synthesis and self-assembly in aqueous solution. Carbohydrate Polymers,2007,68(2):218~225.
    Yang L, Zhang B, Wen L, et al. Amphiphilic cholesteryl grafted sodium alginate derivative:Synthesis and self-assembly in aqueous solution. Carbohydr. Polym.,2007,68:218~225.
    Yao B, Ni C, Xiong C, et al. Hydrophobic modification of sodium alginate and its application indrug controlled release. Bioprocess Biosyst. Eng.,2010,33:457~463.
    Yin L J, Chu B S, Kobayashi I, et al. Performance of selected emulsifiers and their combinationsin the preparation of β-carotene nanodispersions. Food Hydrocolloid.,2009,23:1617~1622.
    Yue W, Yao P, Wei Y, et al. An innovative method for preparation of acid free water soluble lowmolecular weight chitosan. Food Chem.,2008,108(3):1082~1087.
    Zhang Y, Pardridge W M. Global nonviral gene transfer to the primate brain following intravenousadministration. Mol Ther,2003,7(11):11~18.
    Zhang Z, Bu H, Gao Z, Huang Y, Gao F, Li Y. The characteristics and mechanism ofsimvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int JPharm2010;394:147-153.
    樊华,张其清.海藻酸钠在药剂应用中的研究进展.中国药房,2006(6):465~467.
    付加雷,宋长征,张更林.壳聚糖-海藻酸钠微囊对干扰素-tau的控释作用.中国海洋药物杂志,2006,25(5):28~30.
    胡兴,邹国林.生物可降解聚合物纳米粒给药载体.氨基酸和生物资源,2003,25(2):52~54.
    贾云,戴传云,赵宏伟等.海藻酸钠微囊对蛋白质控制释放的分析.重庆大学学报,2005,28(10):108~110.
    蹇美云,汪超,陈文平,等.膳食纤维在面点加工中的应用研究进展.中国食物与营养,2010,7:29~32.
    蒋刚彪,黄志坚,徐晓鹏,等.聚合物纳米粒子作为药物载体的研究与应用.中国医院药学杂志.2007,12:1733~1735.
    陆彬.药物新剂型与新技术.北京:人民卫生出版社,2005,55~56
    马萍,祝立,孙淑英,等.海藻酸钙凝胶微球的制备和PH依赖性溶账.中国海洋杂志,2003,5:35~37
    聂淑芳,吴学明,刘宏飞,等.海藻酸钠骨架材料中药物释放的影响因素.药学学报,2004,39(7):561~565.
    钱倩,综述,王伯瑶,等.纳米药物载体在医药领域中的研究进展.济宁医学院学报.2006,29(2):82~84.
    尚青,郑和堂,闫丽,等.聚合物纳米粒子载药体系的研究进展.河北工业科技,2005,22(1):38~43.
    唐晓山.扫描电子显微镜在纳米材料研究中的应.哈尔滨职业技术学学报.2009,4:121~123.
    魏靖明,张志斌,冯华,等.海藻酸钠作为药物载体材料的研究进展.化工新型材料,2007,8:20~22.
    魏晓红,梁文权,潘远江. PEG化壳聚糖/DNA自组装复合物的制备、表征和体外HeLa细胞转染研究.高等学校化学学报,2003,24(11):1993~1996.
    吴秋惠,吴皓,王令充,等.中华中医药杂志,2011,26(8):1791~1794.
    徐晓娟.食品与药品包装中的纳米技术.包装工程,2008,29(2):191~194.
    杨琴,胡国华,马正智.海藻酸钠的复合特性及其在肉制品中的应用研究进展.中国食品添加剂开发应用,2010,1:164~168.
    叶凌,邬应龙.响应面法对漂白魔芋微粉制备工艺的优化研究.食品科学,2008,29(6):151~155.
    袁超,金征宇.响应面法优化羟丙基-β-环糊精制备工艺.食品科学,2007,28(3):147~151.
    赵士睿,刘晨光,方玉春,等.自组装海藻酸钠纳米粒的制备及作为鱼藤酮载体的研究.功能材料,2010,41(9):1543~1546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700