用户名: 密码: 验证码:
芦笋老茎栽培食用菌和培养料堆制过程中微生物多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芦笋(Asparagus officinalis L.)为百合科天门冬属多年生草本植物。在每年的芦笋收获季节过后,大量的芦笋老茎没有加以充分利用,只是任其自然腐败,或直接焚烧,既造成资源的极大浪费,也带来了严重的环境污染问题。因此,如何合理利用芦笋老茎这种农业废弃物,是一个亟待解决的问题。由于多种农业废弃物可以用来栽培食用菌,所以作为食用菌培养料是利用芦笋老茎的有效途径之一。本论文计划进行利用芦笋老茎栽培鲍鱼菇、黄白侧耳和巴西蘑菇的实验研究。重点针对芦笋老茎培养料堆制发酵期间的微生物多样性展开研究。蘑菇堆料是一个复杂而又独特的微生态系统,内部栖息着多种多样的微生物。依靠微生物在适宜条件下的代谢作用,堆料中的生物大分子物质被分解、转化,堆料的腐熟速度和大分子物质的降解程度都与堆料内的微生物种类和数量直接相关。由于芦笋老茎是一种不同于稻草、麦秆等秸秆的原料,所以其堆制发酵期间的微生物群落及其演替变化规律也必然不同于其他原料的堆料。如果要建立和完善针对芦笋老茎的堆制发酵工艺,进而得到一种高质量的蘑菇培养料,关于芦笋老茎堆制发酵期间微生物多样性的研究是非常必要的。在研究方法上,本论文计划应用16S rDNA文库技术分析芦笋老茎堆料微生物的多样性,应用实时荧光定量PCR技术对堆料发酵期间微生物的菌群演替进行定量分析。本论文利用芦笋老茎这种农业废弃物栽培食用菌和对芦笋老茎堆料发酵过程中的微生物多样性进行研究,是一个全新的尝试,一方面可以填补关于芦笋老茎栽培食用菌和芦笋老茎堆料微生物多样性的研究空白,为下一步利用芦笋老茎栽培食用菌、制备芦笋老茎堆料发酵菌剂以及调控堆料过程提供理论依据,另一方面对于探讨一条规模化利用芦笋老茎资源的新途径,促进农村生态循环经济发展具有重要意义。
     首先进行了用芦笋老茎栽培鲍鱼菇和黄白侧耳的初步研究,分析了芦笋老茎培养料对鲍鱼菇和黄白侧耳多糖含量和抗氧化性的影响。在没有添加其他辅料的芦笋老茎培养料上,黄白侧耳的产量(199g/袋)比鲍鱼菇的产量(140g/袋)更高;在芦笋老茎培养料中添加适量的葡萄糖、MgSO4和K2HPO4有利于黄白侧耳子实体的发育,能导致黄白侧耳产量的增加;而对于鲍鱼菇来说,在芦笋老茎培养料中添加辅助性碳源和无机盐反而会导致产量的降低。在没有添加其他辅料的芦笋老茎培养料上,鲍鱼菇子实体多糖含量明显比黄白侧耳高。与对照相比,在芦笋老茎培养料中添加辅助性碳源和无机盐对黄白侧耳子实体多糖含量没有明显的影响,但却能导致鲍鱼菇子实体多糖含量的显著降低。从DPPH自由基清除能力的ECso值和还原能力的ECso值可以看出,在没有添加其他辅料的芦笋老茎培养料上,鲍鱼菇的抗氧化性强于黄白侧耳;添加蔗糖和MgSO4有利于提高两种蘑菇的抗氧化性。
     设计了以芦笋老茎为主料,棉籽壳、玉米芯、干牛粪和杂木屑为辅料的4种培养料来栽培巴西蘑菇,采用二次发酵法制各培养料,玉米秸秆培养料作为对照。结果表明巴西蘑菇在芦笋老茎和玉米秸秆培养料上的产量没有明显差别;添加棉籽壳或干牛粪的芦笋老茎培养料其巴西蘑菇产量明显高于添加杂木屑或玉米芯的芦笋老茎培养料。芦笋老茎培养料上栽培得到的巴西蘑菇子实体的抗氧化性明显高于对照培养料上栽培得到的子实体的抗氧化性,但多糖含量却明显低于对照;4种辅料相比较,棉籽壳和玉米芯比干牛粪和杂木屑更有利于提高巴西蘑菇子实体的多糖含量,棉籽壳比玉米芯、干牛粪和杂木屑更有利于提高巴西蘑菇的抗氧化性。
     采用稀释涂布法对芦笋老茎堆料不同发酵阶段6个样品中的嗜热可培养微生物进行了分离,共分离到菌落形态有明显区别的26个细菌菌株、23个放线菌菌株和27个真菌菌株。根据16S rDNA序列分析结果,26株细菌中13株为芽孢杆菌属(Bacillus),4株为假黄色单胞菌属(Pseudoxanthomonas),1株为短芽孢杆菌属(Brevibacillus),1株为肠杆菌属(Enterobacter),1株为Paenibacillus属,1株为短波单胞菌属(Brevundimonas),1株为不动杆菌属(Acinetobacter),1株为Amaricoccus属,1株为副球菌属(Paracoccus),2个菌株在GenBank数据库中未找到与其相似的已知细菌属的序列,分类地位待定。根据16SrDNA序列分析结果,23株放线菌中,4株的序列与白浅灰链霉菌(Streptomyces albogriseolus)同源性最高,5株的序列与热普通链霉菌(Streptomyces thermovulgaris)同源性最高,2株的序列与Streptomyces pseudogriseolus同源性最高,1株的序列与Streptomyces espinosus同源性最高,有11株在GenBank数据库中未找到与其相似的已知链霉菌种的序列,分类地位待定。根据菌落形态和个体形态特征观察结果,27株真菌中12株为腐质霉属(Humicola),8株为青霉属(Penicillium),2株为链格孢霉属(Alternaria),1株为拟青霉属(Paecilomyces),4株为毛霉属(Mucor)。从这些结果可以看出,芦笋老茎堆料中的优势的嗜热可培养微生物主要是芽孢杆菌(Bacillus spp.)、假黄色单胞菌(Pseudoxanthomonas spp.)、白浅灰链霉菌(Streptomyces albogriseolus)、热普通链霉菌(Streptomyces thermovulgaris)、腐质霉(Humicola spp.)、青霉(Penicillium spp.)和毛霉(Mucor spp.)。
     为了能高效提取芦笋老茎堆料样品中微生物的总基因组DNA,从DNA提取和PCR扩增效果等方面对4种DNA提取方法(即溶菌酶法、蛋白酶K-CTAB法、试剂盒法和改进的试剂盒法)进行了比较研究。琼脂糖凝胶电泳显示,溶菌酶法可以提取到样品中的基因组DNA,有一定程度的弥散,且基因组的含量较低,对蛋白质的去除率不高。蛋白酶K-CTAB法对于基因组DNA的损伤较小,提高了蛋白质的去除率,较好地提取到条带单一的基因组DNA,但是浓度仍然很低。试剂盒法成功地提取到了浓度很高的基因组DNA,稍有弥散。改进的试剂盒法也较好地提取到了基因组DNA,但是弥散得很厉害。用溶菌酶法提取的基因组DNA为模板对16S rDNA片段进行了PCR扩增,结果均无目的产物。用蛋白酶K-CTAB法得到的基因组DNA为模板进行PCR扩增后,在约1600bp处得到了目的产物,但是浓度却很低。用试剂盒法提取的DNA为模板进行PCR扩增时,在约1600bp处扩增到了较浓的单一条带,并且大小符合16SrDNA片段的理论值。用改进的试剂盒法提取的基因组DNA为模板进行PCR扩增时没有得到任何产物。这些实验结果表明4种方法均可以提取到芦笋老茎堆料样品中微生物的总基因组DNA,试剂盒法效果最好,其次是蛋白酶K-CTAB法,另外两种方法提取效果无明显差异;用试剂盒法提取到的总基因组DNA进行的16S rDNA片段的PCR扩增效果最好。
     分别构建了芦笋老茎堆料不同发酵阶段6个样品的细菌16SrDNA克隆文库,并进行了文库中细菌多样性及其系统发育关系的分析。共获得228个细菌16SrDNA克隆,运用微生物分类学和生物信息学的方法对16SrDNA克隆文库进行了分析,结果表明:228个细菌16SrDNA克隆可分为5大类群,即变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)和未确定分类地位(Unidentified)的类群。第一优势类群——放线菌门的16SrDNA克隆在堆料发酵的全部阶段都能够被检出,并且占到总数的33%,表明放线菌在芦笋老茎堆料发酵过程中起着重要的作用。第二优势类群——变形菌门又分为a、p、γ-变形菌亚群,其中γ-变形菌亚群具有支配地位。拟杆菌16SrDNA序列在发酵中期(建堆后第11天)并没有被克隆出来。文库覆盖率(Coverage C)、稀疏曲线(Rarefaction curve)、香侬指数(Shannon-Wiener index)、物种多样性指数(Schaol)和文库相似度指数(Cs)等文库评价指数表明,除个别文库之外,所建文库能较好地反映芦笋老茎堆料中绝大部分细菌的多样性。
     与传统方法及其它微生物定量方法相比,实时荧光定量PCR可以对样品中的DNA进行直接分析,从而达到对微生物定量的目的。该方法不仅减少了培养计数各个环节中的误差,同时还具有特异性强、定量准确、重复性好、无PCR后处理的污染等优点。本实验利用实时荧光PCR技术对芦笋老茎堆料不同发酵阶段的3种嗜热放线菌进行了定量分析。结果表明,Thermobifida fusca、白浅灰链霉菌(Streptomyces albogriseolus)和热普通链霉菌(Streptomyces thermovulgaris)在整个堆料发酵过程中始终存在。其中,Thermobifida fusca和热普通链霉菌在发酵过程中的数量变化近似一条钟形曲线,即发酵初期递增,发酵中后期逐渐降低,它们的动态变化非常符合一般堆料发酵中嗜热放线菌的菌群演替过程。特别是Thermobifida fusca表现得尤为明显,顶峰时期(发酵中期)的菌群数量达到3.45×107/g堆料,约为发酵初期和后期的103~104倍,在所考察的3种菌中是优势菌群。作为秸秆腐熟剂常用的菌种,白浅灰链霉菌也体现出其在芦笋老茎堆料发酵中的价值,该菌不仅贯穿于整个发酵过程,而且数量一直稳定,只是是在发酵末期,数量稍微有所上升,达到2.40×105/g堆料。
Asparagus officinalis L. is a well known healthy vegetable, and now widely cultivated as an important economic crop all over the temperate world. In Shanxi Province of China, approximately100,000tons per year of asparagus is produced, therewith, large amounts of asparagus old stem are also produced every year, and generally, these asparagus old stem are considered as useless residue and discarded, which not only causes environmental pollution but also is a waste of this resource. The asparagus old stem could be a basic component of the substratum formulation used to grow edible mushrooms in this region. Therefore, one aim of this work is about how to assess the potential of asparagus old stem as a major material for mushrooms production. The other aim of this work is to study the microbial diversity of the mushroom compost made from asparagus old stem. Composting is not only a way to reduce agricultural waste and recycle nutrients, but can also to produce useful components, e.g. compost for mushroom production, soil conditioners, or growth media for horticultural plants. Since bacteria, actinomycetes and fungi are the main organisms responsible for the decomposition, much effect has been put into understanding the changes in the microbial biomass, community structure and activity during the composting process. A variety of methods including16S rDNA cloning library technology have been used to investigate the microorganisms during composting. Real-time fluorescent quantitative PCR (qRT-PCR) is seldom used to analyze the flora succession in the mushroom compost, and is a new application in the study on microbial developments of the asparagus old stem compost. It is significant that qRT-PCR not only facilitates us to exlpore dynamically the fermentation of asparagus old stem, but also improves plenty of data to further develop the decomposing inoculants of asparagus old stem. This work is a new exploration on the utilization of asparagus old stem and the analysis of microbial diversity of the mushroom compost made from asparagus old stem.
     The potential of asparagus old stem as a raw material for cultivating Pleurotus abalonus and Pleurotus geesteranus was evaluated. The effects of asparagus old stem substrate on yield, polysaccharides content and antioxidant properties of these two mushrooms were studied. On non-supplemented asparagus old stem substrate, the yield of P. geesteranus (199g/bag) was significantly higher than that of P. abalones (140g/bag) while the polysaccharides content of P. abalones was significantly higher than that of P. geesteranus. Addition of appropriate amounts of glucose, MgSO4and K2HPO4to the substrate increased the mushroom yield of P. geesteranus significantly. Addition of saccharides and inorganic salts to the substrate had no remarkable effect on the polysaccharides content of P. geesteranus fruit bodies, whereas caused the significant decrease of the polysaccharides content of P. abalones fruit bodies compared with the control. According to the scavenging effect on1,1-diphenyl-2-picrylhydrazyl radicals and reducing power of ethanolic extracts from two mushrooms, it was shown that the antioxidant properties of P. abalones was superior to that of P. geesteranus on non-supplemented asparagus old stem substrate, and the supplementation of sucrose and MgSO4to the substrate was favorable to the enhancement of antioxidant activity of two mushrooms.
     Influences of different asparagus old stem composts on yield, polysaccharide content and antioxidant activity of Agaricus blazei Murill (ABM) fruit bodies were analyzed. The result showed that no significant differences were found in mushroom yields between asparagus old stem compost and maize straw compost. Addition of appropriate amounts of cottonseed hull or dried cow dung increased the mushroom yield significantly higher as compared with sawdust and corncob. These results manifested that the asparagus old stem was suitable for cultivating ABM. The antioxidant activity of fruit bodies cultivated on asparagus old stem compost was significantly stronger than that on maize straw compost. But the polysaccharide content of fruit bodies cultivated on maize straw compost was significantly higher. Among four auxiliary materials, cottonseed hull and corncob were favorable to the synthesis of polysaccharide, and cottonseed hull was more helpful to improve the antioxidant activity of ABM fruit bodies than dried cow dung, sawdust and corncob.
     The culturable thermophiles (including bacteria, actinomycetes and fungi) in the asparagus old stem compost samples were investigated. By dilution-plate method, twenty-six strains of bacteria, twenty-three stains of actinomycetes and twenty-seven strains of fungi were isolated from the samples. According to16S rDNA sequence analysis, preliminary identification of these strains of both bacteria and actinomycetes was done. Among twenty-six strains of bacteria, thirteen strains were identified as Bacillus spp., four strains as Pseudoxanthomonas spp., one strain as Brevibacillus sp., one strain as Enterobacter sp., one strain as Paenibacillus sp., one strain as Brevundimonas sp., one strain as Acinetobacter sp., one strain as Amaricoccus sp., one strain as Paracoccus sp. Two strains of bacteria could not be identified because there were no matched gene sequences of bacterial species to be found in the GenBank. Among twenty-three stains of actinomycetes, four strains showed highest similarity to Streptomyces albogriseolus, five strains to Streptomyces thermovulgaris, two strains to Streptomyces pseudogriseolus, one strain to Streptomyces espinosus. By observing the morphological characteristics, twelve strains of fungi were identified as Humicola spp., eight strains as Penicillium spp., two strains as Alternaria spp., one strain as Paecilomyces sp., four strains as Mucor spp. The results indicated that Bacillus spp., Pseudoxanthomonas spp., Streptomyces albogriseolus, Streptomyces thermovulgaris, Humicola spp., Penicillium spp. and Mucor spp. were the most frequently isolated thermophilic microorganisms from the asparagus old stem compost.
     Experiments were performed to determine the influence of four DNA extraction methods (i.e. lysozyme, protease K-CTAB, commercial reagent box and modified commercial reagent box methods) on microbial genomic DNA in asparagus old stem compost samples. The results of agarose gel electrophoresis of microbial genomic DNA showed that the four methods could all be used to extract the microbial DNA from asparagus old stem compost samples. But, the band of DNA extracts using the commercial reagent box method was clearer than those using other methods. In addition, the yield of DNA extracted using the commercial reagent box method was the highest. The results from the experiments indicated that the commercial reagent box method was the most efficient for DNA extraction from asparagus old stem compost, followed by the protease K-CTAB method. There were no distinct differences between the lysozyme method and the modified commercial reagent box method. The profiles of PCR products of16S rDNA, amplified from genomic DNA using the four DNA extraction methods were analyzed. The results of agarose gel electrophoresis showed that the PCR amplification based on the commercial reagent box method achieved the best result. We draw a conclusion that the DNA extraction method was an important factor affecting the extraction of genomic DNA and the PCR amplification of16S rDNA.
     With protocols in molecular biology, six libraries of16S rDNA were constructed respectively on the basis of the total microbial DNA in six samples of asparagus old stem compost at different fermentation stages, and the microbial diversities and their phylogenesis were analyzed.228clones of bacterial16S rDNA were obtained in this study. Analysis of microbial bioinformatics showed that these clones could be divided into five groups (i.e. Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and unidentified bacteria). The16S rDNA clones of Actinobacteria were possessed of33%, and detected at all of stages of fermentation, suggesting that strains of Actinobacteria play an important role in the composting process of asparagus old stem. Proteobacteria includes α,β and γ-type, in which y-type was dominant one, and accounted for90%of all colonies of this group. In the five groups of bacteria, the proteobacterial colonies at the early and middle stages of fermentation (from4th to11th day) accounted for82%of all colonies.16S rDNA sequence of Bacteroidetes was not cloned at the middle stage of fermentation (on11th day). Evaluation indexes of library, such as Coverage C, Rarefaction Curve, Shannon-Wiener index, Schaoi and Sorensen similarity index, indicated that the libraries constructed were able to reflect the diversity of most of bacteria in asparagus old stem compost except for a few ones.
     Compared with the traditional and other methods of quantitative determination of microbes, qRT-PCR is used to analyze directly DNA in the samples to measure the numbers of microbes. Use of qRT-PCR not only reduces the errors produced during the plate count, but also has lots of advantages, such as more specificity, accurate quantitative determination, good repeatability and no pollution like the dispose related with PCR. In this experiment, qRT-PCR was utilized to analyze quantitatively the numbers of three strains of thermophilic actinomycetes during the fermentation of asparagus old stem compost. The results showed that three strains of actinomycetes presented all the time during the fermentation, among which the change in number of Thermobifida fusca and Streptomyces thermovulgaris was close to a bell curve, namely, their number increased with time in early days of fermentation, and fell in the later period. Their dynamic variation accorded with the flora succession of thermophilic actinomycetes in the general fermentation of compost. Especially, the most value of Thermobifida fusca achieved3.45×107/g compost which was103to104times higher than that in early or later days of fermentation, and was the dominant population among the three strains of actinomycetes tested. As a common microbe used in the decomposing inoculants, Streptomyces albogriseolus existed in the whole fermentation, whose number was invariable, merely increased by2.40×105/g compost in the later stage of the fermentation.
引文
[1]胡立勇,余德谦.芦笋栽培与加工[M].北京:科学技术文献出版社,1998.
    [2]Kartnig T, Gruber A, Stachel J. Flavonoid pattern from Asparagus officinalis[J]. Planta Medica,1985,51:288.
    [3]刘升一,王雪耘,李丽莉,等.芦笋中氨基酸和微量元素锌、铜、铁、锰、硒含量测定[J].营养学报,1990,12(3):328-329.
    [4]吴细丕.芦笋对小鼠的抗疲劳作用[J].北京实验动物科学,1993,10(1):28-30.
    [5]李永琴,杨勤.黔园九号芦笋抗小鼠肿瘤作用及毒性研究[J].贵阳医学院报,1995,20(1):21-23.
    [6]Makris D P, Rossiter J T. Domestic processing of onion bulbs (Allium cepa) and asparagus spears(Asparagus officinalis):effect on flavonol content and antioxidant status[J]. Journal of Agricultural and Food Chemistry,2001,49:3216-3222.
    [7]刘树兴,魏丽娜,王维.芦笋老茎中芦丁的提取工艺[J].食品与发酵工业,2005,31(12):143-145.
    [8]刘树兴,魏丽娜,李红.超声法提取芦笋老茎中黄酮类物质的研究[J].食品科学,2006,27(11):360-363.
    [9]马玉胜,朱国生,张照熙,等.芦笋茎叶青贮料饲喂绵羔羊增重试验[J].饲料博览,1992,(1):32-33.
    [10]韩光亮,马玉胜,杨继成.芦笋茎叶青贮料饲喂奶牛对提高泌乳量的试验[J].畜牧与兽医,1991,23(1):28-29.
    [11]Chang S T. World production of cultivated edible and medicinal mushrooms in 1997 with emphasis on Lentinua edodes (Berk.) Sing. in China[J]. International Journal of Medicinal Mushrooms,1999,1:291-300.
    [12]Matilla P, Konko K, Merja E, et al. Content of vitamine, mineral elements, and some phenolic compounds in cultivated mushrooms [J]. Journal of Agricultural and Food Chemistry,2001,49:2343-2348.
    [13]Morais M H, Ramos A C, Matos N, et al. Note:production of shiitake mushroom (Lentinus edodes) on ligninocellulosic residues[J]. Food Science and Technology International,2000,6:123-128.
    [14]Sanchez C. Cultivation of Pleurotus ostreatus and other edible mushrooms[J]. Applied Microbiology and Biotechnology,2010,85:1321-1337.
    [15]杨新美.中国食用菌栽培学[M].北京:农业出版社,1988.
    [16]Nycochembeng L M, Beyl C A, Pacumbaba R P 1. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods[J]. Bioresource Technology,2008,99:5645-5649.
    [17]Royse D J, Rhodes T W, Ohga S, et al. Yield, mushroom size and time to production of Pleurotus cornucopiae (oyster mushroom) grown on switch grass substrate spawned and supplemented at various rates[J]. Bioresource Technology,2004,91: 85-91.
    [18]Mantovani T R D, Linde G A, Colauto N B. Effect of the addtion of nitrogen sources to cassava fiber and carbon-to nitrogen ratios on Agaricus brasiliensis growth[J]. Canadian Journal of Microbiology,2007,53:139-143.
    [19]Matute R G, Figlas D, Curvetto N. Sunflower seed hull based compost for Agaricus blazei Murrill cultivation[J]. International Biodeterioration& Biodegradation,2010, 64:742-747.
    [20]Akavia E, Beharav A, Wasser S P, et al. Disposal of agro-industrial by-products by organic cultivation of the culinary and medicinal mushroom Hypsizygus marmoreus [J]. Waste Management,2009,29:1622-1627.
    [21]黄年来,吴经纶,陈忠纯,等.18种珍稀美味食用菌栽培[M].北京:中国农业出版社,1997:27-31.
    [22]张建和,李尚德,符伟玉,等.鲍鱼菇微量元素含量的分析[J].广东微量元素科学,2004,11(1):51-53.
    [23]Li L, Ng T B, Song M, et al. A polysaccharide-peptide complex from abalone mushroom(Pleurotus abalonus) fruiting bodies increases activities and gene expression of antioxidant enzymes and reduces lipid peroxidation in senescence-accelerated mice[J]. Applied Microbiology and Biotechnology,2007,75: 863-869.
    [24]Wang C R, Ng T B, Li L, et al. Isolation of a polysaccharide with antiproliferative, hypoglycemic, antioxidant and HIV-1 reverse transcriptase inhibitory activities from the fruiting bodies of the abalone mushroom Pleurotus abalones[J]. Journal of Pharmacy and Pharmacology,2011,63:825-832.
    [25]刘跃钧,王思贵,郑文彪,等.秀珍菇生物学特性及高产栽培技术[J].食用菌,2003,(4):37-38.
    [26]张金霞,黄晨阳,郑素月.平菇新品种-秀珍菇的特征特性[J].中国食用菌,2005,24(4):25-26.
    [27]李志生.秀珍菇栽培技术[J].食用菌,2006,(6):63-64.
    [28]Zhang M, Zhu L, Cui S W, et al. Fractionation, partial characterization and bioactivity of water-soluble polysaccharides and polysaccharide-protein complexes from Pleurotus geesteranus[J]. International Journal of Biological Macromolecules, 2011,48:5-12.
    [29]Chen X X, Jiang Z H, Chen X, et al. Use of biogas fluid-soaked water hyacinth for cultivating Pleurotus geesteranus[J]. Bioresource Technology,2010,101: 2397-2400.
    [30]Mizuno T. Kawariharatake, Agaricus blazei Murill:medicinal and dietary effects [J]. Food Reviews International,1995,11(1):167-172.
    [31]Kawaghishi H, Nomura A, Yumen T, et al. Isolation and properties of a lectin from the fruiting bodies of Agaricus blazei[J]. Carbohydrate Research,1988,183: 150-154.
    [32]Chen L, Shao H J, Su Y B. Coimmunization of Agaricus blazei Murill extract with hepatitis B virus coreprotein through DNA vaccine enhances cellular and humoral immune responses [J]. International Immunopharmacology,2004,4(3):403-409.
    [33]沈爱英,孙震,刘平,等.姬松茸多糖的分离纯化及其对白血病细胞的抑制作用[J].无锡轻工大学学报,2001,20(4):380-383.
    [34]Soares A A, Souza C G M, Daniel F M, et al. Antioxidant activity and total phenolic content of Agaricus brasiliensis(Agaricus blazei Murril) in two stages of maturity [J]. Food Chemistry,2009,112:775-781.
    [35]Sorimachi K, Akimoto K, Ikehara Y, et al. Secretion of TNF-α, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murill fractions in vitro[J]. Cell Structure and Function,2001,26(2):103-108.
    [36]郭向华,王海旺,王永庄,等.姬松茸的碳氮营养源研究[J].食用菌,2002,(6): 20-21.
    [37]郭倩,凌霞芬.利用双孢蘑菇工厂化设施栽培姬松茸初探[J].中国食用菌,2003,22(1):11-12.
    [38]Wuest P J. Compost and the composting-process[J]. Mushroom News,1978,11: 25-29.
    [39]池致念,王泽生,廖剑华,等.蘑菇培养料集中二次发酵初步研究[J].中国食用菌,2002,21(1):30-32.
    [40]Schisler L C, Sinden J W. Nutrient supplementation of mushroom compost at spawning[C]. Mushroom Science,1962,5:267-273.
    [41]Noble R, Hobbs P J, Mead A, et al. Influence of straw types and nitrogen sources on mushroom composting emissions and compost productivity [J]. Journal of Industrial Microbiology& Biotechnology,2002,29:99-110.
    [42]Sparling G P, Fermor T R, Wood D A. Measurement of the microbial biomass in composted wheat straw and the possible contribution of the biomass to the nutrition of Agaricus bisporus[J]. Soil Biology and Biochemistry,1982,14:609-611.
    [43]Hayes W A. Microbiological changes in composting wheat straw/horse manure mixture[J]. Mushroom Science,1968,7:173-186.
    [44]Fergus C L. Thermophilic and thermotolerant molds and antinomycetes of mushroom compost during Peak-heating [J]. Mycologia,1964,56:267-284.
    [45]Adams J D W, Frostick L E. Investigating microbial activities in compost using mushroom(Agaricus bisporus) cultivation as an experimental system[J]. Bioresource Technology,2008,99:1097-1102.
    [46]Strom P F. Effect of temperature on bacterial diversity in thermophilic solid waste composting[J]. Applied and Environmental Microbiology,1985,50:899-905.
    [47]Eicker A. The occurrence and nature of sulphur crystals in phase I mushroom compost[C]. Mushroom Science,1981,11:27-34.
    [48]Chang Y. The fungus of wheat straw compost II biochemical & physiological studies[J]. Transaction of the British Mycological Society,1967,50:667-677.
    [49]Chang Y, Hudson H J. The fungus of wheat straw compost I. ecological studies[J]. Transaction of the British Mycological Society,1967,50:649-666.
    [50]Straatsma G, Gerrits J P G, Augustijn M P A M, et al. Population dynamics of Scytalidium thermophilum in mushroom compost and stimulatory effects on growth rate and yield of Agaricus bisporus[J]. Journal of General Microbiology,1989, 135:751-759.
    [51]Klamer M, Sechting U. The fungi in a controlled compost system—with special emphasis on thermophilic fungi[J]. Acta Horticultuare,1998,469:405-413.
    [52]江枝和,朱丹,洪立钦,等.蘑菇培养料加入864菌液发酵与二次发酵效果的比较[J].中国食用菌,1998,17(3):38-39.
    [53]姜成,寥剑华.助堆剂对双孢蘑菇培养料堆制的影响[J].中国食用菌,2001,20(3):31-33.
    [54]肖勇16S rRNA-rDNA序列分析技术应用于环境微生物群落的初步研究[D].湖南大学硕士学位论文,2007.
    [55]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiology Reviews, 1995,59(1):143-169.
    [56]Torsvik V, Sorheim R, Goksoyr J. Total bacterial diversity in soil and sediment communities-A review[J]. Journal of Industrial Microbiology& Biotechnology,1996, 17(3):170-178.
    [57]Ward D M, Bateson M M, Weller R, et al. Ribosomal rRNA analysis of microorganisms as they occur in nature[J]. Advances in Microbial Ecology,1992,12: 219-287.
    [58]Wayne L G, Brenner D J, Colwell R R, et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematic[J]. International Journal of Systematic Bacteriology,1987,37:463-464.
    [59]White D C, Davis W M, Nickels J S. Determination of the sedimentary microbial biomass by extractible lipid phosphate[J]. Oecologia,1979,40:51-62.
    [60]Tunlid A, Baird B H, Trexler M B. Determination of phospholipids ester inked fatty acid and poly β-hydroxybutyrate for the stimulation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L)[J]. Canadian Journal of Microbiology,1985,31:1113-1119.
    [61]Tunlid A, White D C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil [M]// Stotzky G, Bollag J M. Soil biochemistry. New York:Marcel Dekker,1992,229-262.
    [62]Wilson K J. Molecular techniques for the study of rhizoidal ecology in the field[J]. Soil Biology& Biochemistry,1995,27:501-514.
    [63]Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations [J]. Proceedings of the National Academy of Sciences of the United States of America,1969,63(2):378-383.
    [64]Amann R, Krumholz L, Stahl D. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology [J]. Journal of Bacteriology,1990,172(2):762-770.
    [65]Schema M, Shalom D, Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science,1995,270(5235): 467-470.
    [66]Small J, Call D R, Brockman R T. Direct detection of 16SrRNA in soil extracts by using oligonucleotide microarrys[J]. Applied and Environmental Microbiology,2001, 67:4708-4716.
    [67]Loy A, Lehner A, Lee N, et al. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment [J]. Applied and Environmental Microbiology,2002,68(10):5064-5081.
    [68]Wilson K H, Wilson W J, Radosevich J L, et al. High-density microarray of small-subunit ribosomal DNA probes[J]. Applied and Environmental Microbiology, 2002,68(5):2535-2541.
    [69]El Fantroussi S, Urakawa H, Bernhard A E, et al. Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays[J]. Applied and Environmental Microbiology,2003, 69(4):2377-2382.
    [70]Leser T, Amenuvor J, Jensen T, et al. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited[J]. Applied and Environmental Microbiology,2002,68(2):673-690.
    [71]Wintzingerode F, Goel U B, Stackerandt E. Determination of microbial diversity in environmental samples:pitfalls of PCR-based rRNA analysis[J]. FEMS Microbiology Reviews,1997,21(3):213-229.
    [72]Gong J, Si W, Forster R, et al.16S rRNA gene-based analysis of mucbsa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts:from crops to ceca[J]. FEMS Microbiology Ecology,2006,59(1):147-157.
    [73]Schule S, Bahnweg G, Tesche M, et al. Identification of European Armillaria species by restriction fragment length polymophisms of ribosomal DNA[J]. European Journal of Pathology,1995,25:217-223.
    [74]Schule S, Bahnweg G, Moller E M, et al. Identification of the genes Armillaria by specific amplification of and rDNA-ITS fragment and evaluation of genetic variation with A. ostoyae by rDNA-RFLP and RAPD analysis[J]. European Journal of Pathology,1997,27:225-239.
    [75]陈永青,姜子德,戚佩坤RAPD分析与ITS序列分析在拟茎点霉分类鉴定上的应用[J].菌物学报,2002,21(1):39-46.
    [76]叶光斌,余盛明,何宇峰,等.散斑壳属部分种内及近似种间的RAPD分析[J].菌物研究,2005,3(2):27-32.
    [77]何宇峰,桂先群,叶光斌,等.悬钩子皮下盘菌种内遗传多样性的RAPD分子标记[J].菌物研究,2006,4(4):1-4.
    [78]Fischer S G, Lerman L S. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis[J]. Cell,1979,16(1):191-200.
    [79]Myers R M, Fischer S G, Lerman L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis[J]. Nucleic Acids Research,1985,13(9):3131-3145.
    [80]Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology,1993,59(3):695-700.
    [81]刑来君,李春明.普通真菌学[M].北京:高等教育出版社,1999,367-368.
    [82]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiology Reviews, 1995,59:143-169.
    [83]Baker G C, Gaffar S, Cowan D A, et al. Bacterial community analysis of Indonesian hot springs[J]. FEMS Microbiology Letters,2001,200:103-109.
    [84]White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for pylogenetics[M]//Innis M H, Gelfand D H, Sninsky J J, et al. PCR Procotols:a guide to method and applications. San Diego, Calif.:Academic Press,1990,315-322.
    [85]Gardes M, Bruns T D. ITS primerswith enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts [J]. Molecular Ecology,1993,2:113-118.
    [86]Gardes M, Bruns T D. ITS-RFLP matching for identification of fungi[J]. Methods in Molecular Biology,1996,50:177-186.
    [87]Cullings K W, Vogler D R. A 5.85 nuclear ribosomal RNA gene sequence database: applications to ecology and evolution[J]. Molecular Ecology,1998,7:919-923.
    [88]Wiegant W M. Growth characteristics of the thermophilic fungus Scytalidium thermophilum in relation to production of mushroom compost[J]. Applied and Environmental Microbiology,1992,58:1301-1307.
    [89]Straatsma G, Olijnsma T W, Gerrits J P, et al. Inoculation of Scytalidium thermophilum in button mushroom compost and its effect on yield [J]. Applied and Environmental Microbiology,1994,60(9):3049-3054.
    [90]Song J, Weon H Y, Yoon S H, et al. Phylogenetic diversity of thermophilic actinomycetes and Thermoactinomyces spp. isolated from mushroom composts in Korea based on 16S rRNA gene sequence analysis[J]. FEMS Microbiology Letters, 2001,202:97-102.
    [91]Yang H, Hang X M, Li D T, et al. Analysis of fungi in the mushroom compost using PCR and TGGE of ribosomal DNA[J]. Journal of Shanghai Jiaotong University, 2002, E-7(1):119-122.
    [92]Tajima K, Aminov R I, Nagamine T, et al. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR[J]. Applied and Environmental Microbiology,2001,67:2766-2774.
    [93]Sylvester J T, Karnati S K, Yu Z, et al. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR[J]. Journal of Nutrition,2004, 134:3378-3384.
    [94]Bergen W G. Quantitative determination of rumen ciliate protozoal biomass with real-time PCR[J]. Journal of Nutrition,2004,134:3223-3224.
    [95]徐淼锋,尹浩,莫义武,等.实时荧光PCR定性检测菜籽粕中转基因成分的研究[J].植物检疫,2009,23(1):4-6.
    [96]熊国华,于莉,杨海龙,等.实时荧光PCR定量检测食品中单增李斯特菌[J].中国食品卫生杂志,2007,19(3):248-251.
    [97]徐德顺,沈月华,程平庆.大肠杆菌0157:H7实时荧光PCR快速检测方法的建立[J].上海预防医学杂志,2009,21(4):174-177.
    [98]邱杨,唐丽霞,赵丽,等.志贺氏菌实时荧光PCR检测试剂的研制[J].现代食品科技,2008,24(11):1151-1154.
    [99]程琳琳,王芳,吴琼,等.微生物菌剂中5种芽孢杆菌实时荧光PCR鉴定[J].中国卫生检验杂志,2010,20(2):246-248,296.
    [1]Kues U, Liu Y. Fruiting body production in basidiomycetes[J]. Applied Microbiology and Biotechnology,2000,54:141-152.
    [2]Jose N, Janardhanan K K. Antioxidant and antitumor activity of Pleurotus florida[J]. Current Science,2000,79(7):941-943.
    [3]杨波,刘志刚,刘丹丹,等.鲍鱼菇菌丝体挥发油化学成分及抗菌活性分析[J].中国食用菌,2009,28:40-42.
    [4]Zhang M, Zhu L, Cui S W, et al. Fractionation, partial characterization and bioactivity of water-soluble polysaccharides and polysaccharide-protein complexes from Pleurotus geesteranus[J]. International Journal of Biological Macromolecules,2011,48:5-12.
    [5]Li L, Ng T B, Song M, et al. A polysaccharide-peptide complex from abalone mushroom (Pleurotus abalonus) fruiting bodies increases activities and gene expression of antioxidant enzymes and reduces lipid peroxidation in senescence-accelerated mice [J]. Applied Microbiology and Biotechnology,2007,75:863-869.
    [6]Wang C R, Ng T B, Li L, et al. Isolation of a polysaccharide with antiproliferative, hypoglycemic, antioxidant and HIV-1 reverse transcriptase inhibitory activities from the fruiting bodies of the abalone mushroom Pleurotus abalones[J].Journal of Pharmacy and Pharmacology,2011,63:825-832.
    [7]Wang Q, Li B B, Li H, et al. Yield, dry matter and polysaccharides content of the mushroom Agaricus blazei produced on asparagus straw substrate[J]. Scientia Horticulturae,2010,125:16-18.
    [8]杜荣骞.生物统计学[M].北京:高等教育出版社,1985.
    [9]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999:10-12.
    [10]李小飞,张伟,薛淑媛,等.两种测试方法对DPPH分光光度法测试结果的影响[J].生物技术,2007,17(4):51-53.
    [11]Soares A A, Souza C G M D, Daniel F M,et al. Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murri) in two stages of maturity [J]. Food Chemistry,2009,112:775-781.
    [12]黄海兰,徐波,李增新,等.崂山蘑菇抗氧化成分提取及其活性研究[J].食品科学,2005,26(9):61-66.
    [13]赵彦杰.不同碳、氮源对鲍鱼菇生长的影响研究[J].植物营养与肥料学报,2005,11(6):858-861.
    [14]林勇,翁伯琦,江枝和,等.864菌株对秀珍菇产量和氨基酸含量的影响[J].食用菌学报,2002,9(4):26-28.
    [15]Manzi P, Aguzzi A, Pizzoferrato L. Nutritional value of mushrooms widely consumed in Italy[J]. Food Chemistry,2001,73:321-325.
    [16]Mattila P, Konko K, Eurola M, et al. Contents of vitamins, mineral elements, and some polyphenolic compounds in cultivated mushrooms [J]. Journal of Agricultural and Food Chemistry,2001,49:2343-2348.
    [17]Kumari D, Achal V. Effect of different substrates on the production and non-enzymatic antioxidant activity of Pleurotus ostreatus (Oyster mushroom)[J]. Life Science Journal,2008,5:73-76.
    [18]Jayakumar T, Thomas P A, Sheu J R, et al. In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus[J]. Food Research International,2011,44: 851-861.
    [19]Kanagasabapathy G, Malek SNA, Kuppusamy U R,et al. Chemical composition and antioxidant properties of extracts of fresh fruiting bodies of Pleurotus sajor-caju (Fr.) Singer[J]. Journal of Agricultural and Food Chemistry,2011,59:2618-2626.
    [1]黄年来,吴经纶,陈忠纯,等.18种珍稀美味食用菌栽培[M].北京:中国农业出版社,1997:27-31.
    [2]张卉,刘长江.姬松茸生理活性物质的研究进展[J].沈阳农业大学学报,2003,34(1):59-62.
    [3]Sumiya T. Himematsutake [M]//Kinugawa K, Ogawa M. Kinoko-Handbook (in Japanese). Tokyo:Asakurashoten,2000:155-159.
    [4]郜春花,卢朝东.山西省芦笋生产现状及发展对策探讨[J].山西农业科学,2007,35(1):15-18.
    [5]杜荣骞.生物统计学[M].北京:高等教育出版社,1985.
    [6]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999:10-12.
    [7]李小飞,张伟,薛淑媛,等.两种测试方法对DPPH分光光度法测试结果的影响[J].生物技术,2007,17(4):51-53.
    [8]Soares A A, Souza C G M, Daniel F M, et al. Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity [J]. Food Chemistry,2009,112:775-781.
    [9]黄海兰,徐波,李增新,等.崂山蘑菇抗氧化成分提取及其活性研究[J].食品科学,2005,26(9):61-66.
    [10]Talaz O, Gulcin I, Goksu S, et al. Antioxidant activity of 5,10-dihydroindeno[1,2-b] indoles containing substituents on dihydroindeno part[J]. Bioorganic and Medicinal Chemistry,2009,17(18):6583-6589.
    [11]贾薇,郭倩,周昌艳,等.姬松茸多糖提取方法初探[J].食用菌学报,2001,(1):4345.
    [12]杨梅,周小兰,施巧琴.姬松茸多糖提取方法的研究[J].福建师范大学学报,1998,14(1):85-89.
    [13]孙培龙,杨开,赵培城,等.姬松茸子实体多糖提取方法的研究[J].食品科学,2003,24(6):71-76.
    [1]刘艳.几种食用菌发酵料中有益微生物的筛选及研究[D].华中农业大学硕士学位论文,2004.
    [2]Sparling G P, Fermor T R, Wood D A. Measurement of the microbial biomass in composted wheat straw and the possible contribution of the biomass to the nutrition of Agaricus bisporus[J]. Soil Biology and Biochemistry,1982,14:609-611.
    [3]Hayes W A. Microbiological changes in composting wheat straw/horse manure mixture [J]. Mushroom Science,1968,7:173-186.
    [4]Fergus C L. Thermophilic and thermotolerant molds and antinomycetes of mushroom compost during peak-heating [J]. Mycologia,1964,56:267-284.
    [5]Adams J D W, Frostick L E.Investigating microbial activities in compost using mushroom (Agaricus bisporus) cultivation as an experimental system[J]. Bioresource Technology,2008,99:1097-1102.
    [6]范秀容,李广武,沈萍.微生物学实验[M].北京:高等教育出版社,1989.
    [7]Fergus C L. Thermophlic and thermotolerant molds and actinomycetes of mushroom compost during peak heating [J]. Mycologia,1964,56:267-284.
    [8]Gussow D, Clackson T. Direct clone characterization from plaques and colonies by the polymerase chain reaction[J]. Nucleic Acids Research,1989,17:4000.
    [9]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南(第二版)[M].北京:科学出版社,1999,19-30.
    [10]刘伏玲,倪晓燕,马咸成.基因DNA制备方法的探讨[J].中国现代医学杂志,2002,12(9):70-76.
    [11]唐晔盛,李英.菌落PCR在大规模基因组测序中的应用[J].生物化学与生物物理进展,2002,29(2):316-318.
    [12]万水霞,郭熙盛,朱宏赋,等.自然堆肥过程中微生物群落的动态变化[J].安徽农业科学,2009,37(28):23710-13711,13749.
    [1]Amann R I, Ludwig W, Sc hleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiology Reviews, 1995,59:143-169.
    [2]Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology,1993,59:695-700.
    [3]王啸波,唐玉秋,王金华,等.环境样品中DNA的分离纯化和文库构建[J].微生物学报,2001,41(2):133-140.
    [4]Head I M, Saunders J R, Pickup R W. Microbial evolution, diversity, and ecology:a decade of ribosomal RNA analysis of uncultivated microorganisms[J]. Microbial Ecology,1998,35:1-21.
    [5]Porteous L A, Armstrong J L. Recovery of bulk DNA from soil by a rapid, small-scale extraction method[J]. Current Microbiology,1991,22:345-348.
    [6]Tebbe C C, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast [J]. Applied and Environmental Microbiology,1993,59:2657-2665.
    [7]Tsai Y L, Olson B H. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction [J]. Applied and Environmental Microbiology,1992,58:2292-2295.
    [8]Howeler M, Ghiorse W C, Walker L P. A quantitative analysis of DNA extraction and purification from compost[J]. Journal of Microbiological Methods,2003,54:37-45.
    [9]LaMontagne M G, Michel F C J, Holden P A, et al. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis[J]. Journal of Microbiological Methods,2002,49:255-264.
    [10]Dar S A, Kuenen J G, Muyzer G. Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing baeteria in complex microbial communities [J]. Applied and Environmental Microbiology,2005,71:2325-2330.
    [11]杨朝晖,肖勇,曾光明,等.用于分子生态学研究的堆肥DNA提取方法[J].环境科学,2006,27(8):1613-1617.
    [12]李国媛,李俊,姜听,等.应用16S rDNA克隆文库法分析有机物料腐熟菌剂细菌组成[J].微生物学通报,2007,34(5):939-942.
    [13]Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition[J]. Applied and Environmental Microbiology,1996,62:316-322.
    [14]张瑞福,曹慧,崔中利,等.土壤微生物总DNA的提取和纯化[J].微生物学报,2003,43(2):276-282.
    [15]Torsvik V,(?)vreas L. Microbial diversity and function in soil:from genes to ecosystems[J]. Current Opinion in Microbiology,2002,5:240-245.
    [16]Cottrell M T, Moore J A, Kirchman D L. Chitinases from uncultured marine microorganisms[J]. Applied and Environmental Microbiology,1999,65:2553-2557.
    [17]Seow K T, Meurer G, Gerlitz M, et al. A study of iterative type Ⅱ polyketide synthases, using bacterial genes cloned from soil DNA:a means to access and use genes from uncultured microorganisms[J]. Journal of Bacteriology,1997,179: 7360-7368.
    [18]Leff L G, Dana J R, McArthur J V, et al. Comparison of methods of DNA extraction from stream sediments [J]. Applied and Environmental Microbiology,1995,61: 1141-1143.
    [19]Jacobsen C S, Rasmussen O F. Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin[J]. Applied and Environmental Microbiology,1992,58: 2458-2462.
    [20]Robe P, Nalin R, Capellano C, et al. Extraction of DNA from soil[J]. European Journal of Soil Biology,2003,39:183-190.
    [21]Liesack W, Stackebrandt E. Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment[J]. Journal of Bacteriology,1992,174:5072-5078.
    [22]Ogram A, Sayler G S, Barkay T. The extraction and purification of microbial DNA from sediments[J]. Journal of Microbiological Methods,1987,7:57-66.
    [23]何丽鸿,赵勇,陈明杰,等.堆肥中微生物总DNA的高效提取[J].微生物学报,2006,46(1):162-165.
    [24]阎冰.红树林土壤细菌和古菌的16SrDNA多样性研究[D].华中农业大学博士学位论文,2006.
    [25]龚世杰.鄱阳湖北湖细菌多样性研究[D].南昌大学硕士学位论文,2008.
    [1]Song J, Weon H Y, Yoon S H, et al. Phylogenetic diversity of thennophilic actinomycetes and Thermoactinomyces spp. isolated from mushroom composts in Korea based on 16S rRNA gene sequence analysis[J]. FEMS Microbiology Letters, 2001,202:97-102.
    [2]Yang H, Hang X M, Li D T, et al. Analysis of fungi in the mushroom compost using PCR and TGGE of ribosomal DNA[J]. Journal of Shanghai Jiaotong University,2002, E-7(1):119-122.
    [3]Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA[J]. Applied and Environmental Mierobiology,1993,59(3):695-700.
    [4]刘玮琦,茆振川,杨宇红,等.应用16S rRNA基因文库技术分析土壤细菌群落的多样性[J].微生物学报,2008,48(10):1344-1350.
    [5]Barns S M, Fundyga R E, Jeffries M W, et al. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment J]. Proceedings of the National Academy of Sciences of the United States of America,1994,91(5): 1609-1613.
    [6]Kemp P F, Aller J Y. Estimating prokaryotic diversity:When are 16S rDNA libraries large enough?[J]. Limnology and Oceanography:Methods,2004,2:114-125.
    [7]Ravenschlag K, Sahm K, Pernthaler J, et al. High bacterial diversity in permanently cold marine sediments[J]. Applied and Environmental Microbiology,1999,65(9): 3982-3989.
    [8]Ward D M, Weller R, Bateson M M.16S rRNA sequences revealnumerous uncultured microorganisms in a natural community[J]. Nature,1990,345:63-65.
    [9]Hesselmann R P X, Werlen C, Hahn D, et al. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J]. Systematic and Applied Microbiology,1999,22(3):454-465.
    [10]Crocetti G R, Hugenholtz P, Bond P L, et al. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation[J]. Applied and Environmental Microbiology,2000, 66(3):1175-1182.
    [11]柴丽红,王涛,崔晓龙,等.青海柯柯盐湖16株细菌的ARDRA筛选及系统发育初步分析[J].云南大学学报,2003,25(6):541-544.
    [12]Good I J. The population frequencies of species and the estimation of population parameters[J]. Biometrika,1953,40:237-264
    [13]Chao A. Estimating the population size for capture-recapturedata with unequal catchability[J]. Biometrics,1987,43:783-791.
    [14]Magurran A E. Ecological diversity and its measurement[M]. London:Chapman and Hall,1996.
    [15]阎冰红.树林土壤细菌和古菌的16SrDNA多样性研究[D].华中农业大学博士学位论文,2007.
    [16]McCaig A E, Glover L A, Prosser J I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures[J]. Applied and Environmental Microbiology,1999,65(4):1721-1730.
    [17]宋兆齐,陈经全,职晓阳,等.腾冲两热泉泉古菌多样性及系统发育的初步分析[J].微生物学通报,2008,35(3):372-377.
    [18]Kemp P F, Aller J Y. Baeterial diversity in aquatic and other environments:what 16S rDNA libraries can tell us[J]. FEMS Microbiology Ecology,2004,47(2):161-177.
    [19]Olsen G J, Woese C R, Overbeek R. The winds of (evolutionary) change:breathing new life into microbiology[J]. Journal of Bacteriology,1994,176(1):1-6
    [20]Martin-Laurent F, Philippot L, Hallet S, et al. DNA Extraction from Soils:old bias for new microbial diversity analysis methods[J]. Applied and Environmental Mierobiology,2001,67(5):2354-2359
    [21]Stach J E M, Bathe S, Clapp J P, et al. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods[J]. FEMS Microbiology Ecology,2001,36:139-151.
    [22]Blanc M, Marilley L, Beffa T, et al. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular(16S rDNA)methods[J]. FEMS Microbiology Ecology,1999,28(2):141-149.
    [23]Dees P M, Ghiorse W C. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA[J]. FEMS Microbiology Ecology,2001,35(2):207-216.
    [24]Peters S, Koschinsky S, Schwieger F, et al. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes[J]. Applied and Environmental Microbiology,2000,66(3):930-936.
    [25]Rosenberg M S, Kumar S. Incomplete taxon sampling is not a problem for phylogenetic inference[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98 (19):10751-10756.
    [26]胡松楠.嗜热耐盐放线菌菌株YIM90462胞外纤维素酶的分离纯化和性质研究[D].云南大学硕士学位论文,2009.
    [27]Cahyani V R, Matsuya K, Asakawa S, et al. Succession and phylogenetic composition of bacterial communitied responsible for the composting process of rice straw estimated by PCR-DGGE analysis[J]. Soil Science and Plant Nutrition,2003, 49:619-630.
    [28]何利鸿.双孢蘑菇培养料二次发酵过程中的细菌群落结构研究[D].南京农业大学硕士学位论文,2005.
    [1]Tajima K, Aminov R I, Nagamine T, et al. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR[J]. Applied and Environmental Microbiology,2001,67:2766-2774.
    [2]Li X R, Ma E B, Yan L Z, et al. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process[J]. International Journal of Food Microbiology, 2011,146:31-37.
    [3]Savazzini F, Longa C M O, Pertot I, et al. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SCI in soil[J]. Journal of Microbiological Methods,2008,73:185-194.
    [4]Xiao Y, Zeng G M, Yang Z H, et al. Change in the actinomycetal communities during continuous thermophilic composting as revealed by denaturing gradient gel electrophoresis and quantitative PCR[J]. Bioresource Technology,2011,102: 1383-1388.
    [5]Fergus C L. Thermophilic and thermotolerant molds and antinomycetes of mushroom compost during Peak-heating[J]. Mycologia,1964,56:267-284.
    [6]赵玉华.瘤胃微生物Real Time PCR定量方法的建立及其应用[D].中国农业科学院博士学位论文,2004.
    [7]王宏乐.荧光定量PCR监测黄瓜根分泌物对土壤中枯萎病菌生物量的影响[J].上海交通大学学报,2010,28(1):41-45.
    [81]李光伟,刘和,张峰,等.荧光定量PCR监测五氯酚对好氧颗粒污泥和活性污泥中氨氧化细菌数量的影响[J].微生物学报,2007,47(1):136-140.
    [9]王远亮.中国大陆科学钻探的地下深层微生物研究[D].中国科学院微生物研究所博士学位论文,2006.
    [10]Deobaldl A, Crawford D L. Activities of cellulase and other extracellular enzymes during lignin solubilisation by Streptomyces viridosporus[J]. Applied Microbiology and Biotechnology,1987,26:158-163.
    [11]岳铁军.兔粪堆肥控制参数研究及其微生物群落变化的PCR-DGGE分析[D].四川农业大学硕士学位论文,2010.
    [12]姜成,王泽生.蘑菇培养料堆制过程中微生物的演替及作用[J].微生物学杂志,2003,23:56-58.
    [13]官家发.高温堆肥发酵工艺处理城市生活垃圾过程中的部份微生物学问题[J].四川环境,2000,19(3):21-22.
    [14]徐孝华.普通微生物学[M].北京:中国农业大学出版社,1992.
    [15]古静燕,刘红兵,崔承彬,等.海洋来源白浅灰链霉菌中环二肽类化合物的分离与结构鉴定[J].中国海洋大学学报,2005,35:618-620.
    [16]孙晓红,杨艳秋,贺丹,等.假丝酵母SSR-PCR反应体系的优化[J].中国实验诊断学,2011,15:66-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700