用户名: 密码: 验证码:
超声微泡介导HGF转染大鼠损伤面神经的促进作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于面神经的解剖结构和功能比较特殊,在受到外伤、手术操作、炎症及肿瘤侵袭时容易损伤,且神经再生是一个极为复杂的过程,所以,目前最紧迫的是要找出一种新的方法以提高面神经的再生速度。通常来讲,神经生长的微环境对于受损神经能否有效的恢复至关重要。神经损伤的基因治疗便是从这一方面着手,通过基因治疗将对神经生长有促进作用的神经生长因子基因导入受损的神经周围,但目前用于基因治疗的有效载体仍存在各种各样的缺陷:病毒载体虽然转染效率很高,但由于其自身较高的毒性,进入人体内会诱导强烈的免疫应答而限制了其应用。非病毒载体虽然毒性比较小,但转染效率较低也受到了限制。
     那么我们需要探索一种既安全又高效的新的基因载体。近几年的研究表明,超声已经从诊断领域逐渐向治疗领域发展,例如脂质微泡可以在一定强度和频率的超声作用下,顺利的将基因或药物转染到靶组织或靶器官,从而达到靶向治疗的作用,这一发现已经收到越来越多的学者们的注意[1-3]。
     本课题是以肝细胞生长因子(HGF)作为目的基因,然后在自制超生微泡造影剂的基础上,优化工艺,制备一种能与HGF基因高效结合的脂质体微泡造影剂,然后运用超声靶向破坏微泡(UTMD)介导HGF治疗大鼠面神经损伤,最后采用神经电生理、westernblot以及RT-PCR观察治疗后HGF基因在受损面神经的表达情况及治疗效果,并初步研究超声微泡的作用机理。为研究和评价超声微泡造影剂的性质和作用提供一种新的方法,从而为超声微泡作为一种基因或药物的载体提供更为可靠的实验依据。
     第一部分携基因的微泡造影剂的制备与性质检测
     目的制备一种可以携带基因的脂质微泡造影剂,并且研究这种脂质微泡携带基因的能力及其物理和化学的性质
     方法通过机械振荡的方法制备脂质微泡造影剂,经过60Co射线灭菌后,在显微镜下观察脂质微泡造影剂的浓度、形态、电位改变及其平均大小,最后检测这种脂质微泡造影剂与目的基因结合能力的大小。
     结果脂质微泡造影剂的平均颗粒直径范围在2.21-6.15μm内,脂质微泡的分布相对均匀。浓度为3.16×109个/ml;脂质微泡制成后经60Co射线消毒灭菌后,通过显微镜能够观察到脂质微泡的形态,颗粒直径大小以及电位等均未见明显的改变;基因量效优化结果显示,脂质微泡的基因结合率最高位23%,基因结合量最大为0.44mg/ml。
     结论本实验所制备的脂质微泡已经达到了标准微泡造影剂的规格,而且这种脂质微泡造影剂的理化性质稳定,制作过程简单,携带基因的效率非常高,因此是一种理想的微泡造影剂,可以用作一种新型的基因载体。第二部分超声辐照微泡介导HGF促进大鼠损伤面神
     经的修复
     目的观察超声辐照微泡促进肝细胞生长因子(HGF)转染大鼠面神经的可行性
     方法制作大鼠面神经受损模型,将HGF作为目的基因;随机选取48只SD大鼠分成4组:A组:单纯手术组(PBS);B组:HGF+微泡组(HGF+MB);C组:HGF+超声组(HGF+US);D组:HGF+超声+微泡组(HGF+US+MB),每组12只。将含有HGF基因的微泡经静脉注入体内,局部给予超声照射。在第7天、14天、21天、28天后,观察各组大鼠的一般情况,检测面神经的传导速度、潜伏期及神经电位波幅的变化。提取面神经组织,通过western blot及RT-PCR检测HGF的蛋白及mRNA的表达水平。
     结果经行为学检测,D组(HGF+超声+微泡组)大鼠在触须摆动及鼻尖位置均明显优于其余3组。D组(HGF+超声+微泡组)面神经传导速度、神经电位波幅明显高于其余3组,潜伏期明显低于其余3组(p<0.05)。D组(HGF+超声+微泡组)中HGF蛋白和mRNA的表达量明显高于其他3组(p<0.05)。其中C组(HGF+超声组)的HGF蛋白和mRNA的表达量也明显高于A(单纯手术组)、B(HGF+微泡组)两组。
     结论超声介导携基因微泡促进HGF转染面神经被证明是一种效率较高的基因转染方法,在一定频率和强度的超声作用下,超声微泡可以将目的基因转染损伤后的面神经,从而有利于面神经的修复。由于损伤后的面神经在超声辐照微泡的作用下进行的基因转染并没有损害周围正常的面神经组织,因此超声辐照微泡可以安全、高效的将基因或药物送入损伤后的面神经,为面神经损伤的治疗提供了一条新型、安全、高效的方法。
Facial nerve due to its anatomical structure and function of a special,facial nerve may be injuried due to trauma, inflammation, tumor or surgicaloperation and nerve regeneration is a very complex process, therefore,looking for new repair methods to improve nerve regeneration speed andquality is the current problem. Gene therapy plays a significant role inimproving nerve damage, but the currently available vectors (viruses,liposomes, etc.) may produce potentially harmful to the body, there is aneed to explore more suitable gene carrier. In recent years, the ultrasonicfield appears a new carrier: ultrasound contrast agent targeted therapyachieved gratifying results, making it more and more attention of themedical profession.
     This research is hepatocyte growth factor (HGF) as the target geneand then manufacture microbubbles with efficient binding to the HGF genefor preparing a liposomal microbubbles. Then use ultrasound-targetedmicrobubble destruction (UTMD) mediated HGF treatment of facial nerveinjury in rats, the last expression HGF mRNA and protein and facial nerve treatment effects observed after treatment by the neurophysiological,westernblot well as RT-PCR.To the study and evaluation of ultrasoundtargeted microbubble destruction mediated gene transfection provides anew ways and means to provide a reliable experimental basis for the genetherapy for facial nerve.
     PART I EXPERIMENTAL STUDY ON PREPARATIONAND CHARACTERISTICS OF THE GENE-LOADEDLIPID MICROBUBBLES
     Objective To prepare a lipid ultrasound microbubble contrast agentcan be used as a gene carrier, its physical and chemical properties and itscontained the genetic ability to study.Method Prepared by a method using mechanical oscillation can beused as a gene carrier lipid ultrasound microbubbles observed60Coy raysterilization before and after the appearance of the contrast agent, shape,concentration, average particle size, and the potential change, testing itsability to combine genes.
     Results The average particle diameter in the range of lipidmicrobubbles in2.21-6.15μm, relatively uniform particle size distribution.Its concentration is about3.16×109/ml; Under the microscope after60Coγ-ray sterilization were no significant changes observed microbubbles form,particle size and potential; Gene combined amount effective optimizationresults show that the maximum DNA binding of the contrast agent efficiency was23%, and the largest amount of DNA binding to0.44mg/ml.Conclusion The prepared lipid microbubbles has reached the standardspecifications of the microbubbles, and this lipid microbubbles stablephysical and chemical properties, the production process is simple,gene-carrying efficiency is very high, and therefore is aideal microbubblecontrast agent, can be used as a novel gene vector.
     PART II: EXPERIMENTAL RESEARCH ON THERESTORATION OF INJURIED FACIAL NERVEINDUCED BY HGF DIRECTEDULTRASOUND-TARGETED MICROBUBBLEDESTRUCTION
     Objective Observation the feasibility and effectiveness of ultrasoundmicrobubble mediated hepatocyte growth factor (HGF) gene to promotethe damaged facial nerve repair.
     Method Create a model of facial nerve injury in rats, Hepatocytegrowth factor (HGF) as a therapeutic gene.40SD rats were randomlydivided into four groups: Group A: surgery alone group (PBS); B,HGF andmicrobuble (HGF+MB) group; C,HGF and ultrasound (HGF+US) group;D,HGF+ultrasound+microbubble (HGF+MB/US) group. local injection ofmicrobubbles containing hepatocyte growth factor and Ultrasonicirradiation after facial nerve injury in rats, At7,14,21and28days,respectively, to observe the general condition of the rats and detect the facial nerve conduction velocity, latency and nerve potential amplitudechanges in each group. Rats in each group were sacrificed, and take thenerve tissue, HGF expression was detected by Western blot. HGF mRNAexpression was detected by real-timeRT-PCR,
     ResultsThe behavior alanalyses results showed thatThenosetipposition and vibrissae movement in D group were better thanthat of the other groups. The NCV and potential amplitude of the facialnerve in D group were increased, but the potentiallatency was decreased.HGF expressions was higher than those of other groups in D gouop. Theexpression levels of HGF mRNA in D group was significant lyhigher thanthat of the other groups(p<0.05).
     Conclusion Ultrasound-mediated mircobuble could increase thetransfection of HGF ininjury facial nerve safely and facilitatesitsrestoration.
引文
[1]Pardridge WM. The blood–brain barrier: Bottleneck in brain drug development.[J]NeuroRx.2005;2(1):3–14.
    [2]Neugroschl J, Sano M. An update on treatment and prevention strategies foralzheimer’s disease.[J]Curr Neurol Neurosci Rep.2009;9(5):368–376.
    [3]Schouten LJ, Rutten J, Huveneers HA, et al. Incidence of brain metastases in acohort ofpatients with carcinoma of the breast, colon, kidney, and lung andmelanoma.[J]Cancer.2002;94(10):2698–2705.
    [4]Tosoni A, Ermani M, Brandes AA. The pathogenesis and treatment of brainmetastases: acomprehensive review.[J]Crit Rev Oncol Hematol.2004;52(3):199–215.
    [5]Deeken JF, Loscher W. The blood–brain barrier and cancer: transporters, treatment,and trojanhorses.[J]Clin Cancer Res.2007;13(6):1663–1674.
    [6]Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function oftheblood–brain barrier.[J]Neurobiol Dis.2010;37(1):13–25.
    [7]Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood–brain barrierin drugdiscovery and development.[J]Nat Rev Drug Discov.2007;6(8):650–661.
    [8]Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood–brainbarrier: chemicalmodifications of drugs or drug-nanoparticles?[J]Drug DiscovToday.2008;13(23–24):1099–1106.
    [9]Abbott NJ. Dynamics of cns barriers: Evolution, differentiation, and modulation.[J]Cell MolNeurobiol.2005;25(1):5–23.
    [10]Persidsky Y, Ramirez SH, Haorah J, et al. Blood–brain barrier: Structuralcomponentsand function under physiologic and pathologic conditions.[J]JNeuroimmune Pharmacol.2006;1(3):223–236.
    [11]Pardridge WM. Blood–brain barrier delivery.[J]Drug Discov Today.2007;12(1–2):54–61.
    [12]Levin VA. Relationship of octanol/water partition coefficient and molecularweight to rat braincapillary permeability.[J].J Med Chem.1980;23(6):682–684.
    [13]Fung LK, Shin M, Tyler B, Brem H, Saltzman WM. Chemotherapeutic drugsreleased frompolymers: distribution of1,3-bis(2-chloroethyl)-1-nitrosourea in therat brain.[J].Pharm Res.1996;13(5):671–682.
    [14]Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomaldoxorubicin:review of animal and human studies.[J].Clin Pharmacokinet.2003;42(5):419–436.
    [15]Vogelbaum MA. Convection enhanced delivery for treating brain tumors andselected neurologicaldisorders: symposium review.[J].J Neurooncol.2007;83(1):97–109.
    [16]Bidros DS, Liu JK, Vogelbaum MA. Future of convection-enhanced delivery inthe treatment ofbrain tumors.[J].Future Oncol.2010;6(1):117–125.
    [17]Sampson JH, Archer G, Pedain C, et al. Poor drug distribution as a possibleexplanation for theresults of the precise trial.[J].J Neurosurg.2009
    [18]Kunwar S, Chang S, Westphal M, et al. Phase III randomized trial of CED ofIL13-PE38QQR vsgliadel wafers for recurrent glioblastoma.[J].Neuro Oncol.2010;12(8):871–881.
    [19]Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain withmolecular trojanhorses.[J].Bioconjug Chem.2008;19(7):1327–1338.
    [20]Greig NH, Daly EM, Sweeney DJ, Rapoport SI. Pharmacokinetics ofchlorambucil-tertiary butylester, a lipophilic chlorambucil derivative thatachieves and maintains high concentrations in brain.[J].Cancer ChemotherPharmacol.1990;25(5):320–325.
    [21]Jahnke K, Kraemer DF, Knight KR, et al. Intraarterial chemotherapy and osmoticblood–brainbarrier disruption for patients with embryonal and germ cell tumors ofthe central nervous system.[J].Cancer.2008;112(3):581–588.
    [22]Doolittle ND, Abrey LE, Bleyer WA, et al. New frontiers in translational research inneuro-oncology and the blood–brain barrier: report of the tenth annual blood–brainbarrier disruptionconsortium meeting.[J].Clin Cancer Res.2005;11(2Pt1):421–428.
    [23]Kroll RA, Neuwelt EA. Outwitting the blood–brain barrier for therapeutic purposes:osmoticopening and other means.[J].Neurosurgery.1998;42(5):1083–1099.
    [24]Riina HA, Fraser JF, Fralin S,et al. Superselective intraarterialcerebral infusion ofbevacizumab: a revival of interventional neuro-oncology for malignantglioma.[J].JExp Ther Oncol.2009;8(2):145–150.
    [25]Mitragotri S. Healing sound: The use of ultrasound in drug delivery and othertherapeuticapplications.[J].Nat Rev Drug Discov.2005;4(3):255–260.
    [26]Campbell P, Prausnitz MR. Future directions for therapeutic ultrasound. Ultrasound[J].Med Biol.2007;33(4):657.
    [27]Deng CX, Xu Q, Apfel RE, et al. In vitrom easurements of inertial cavitationthresholds inhuman blood.[J].Ultrasound Med Biol.1996;22(7):939–948.
    [28]Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours.[J].Nat Rev Cancer.2005;5(4):321–327.
    [29]Vaezy S, Martin R, Crum L. High intensity focused ultrasound: a method ofhemostasis.[J].Echocardiography.2001;18(4):309–315.
    [29]Vaezy S, Fujimoto VY, Walker C, et al. Treatment of uterine fibroidtumors in a nudemouse model using high-intensity focused ultrasound.[J].Am J ObstetGynecol.2000;183(1):6–11.
    [29]Wu J. Shear stress in cells generated by ultrasound.[J].Prog Biophys Mol Biol.2007;93(1–3):363–373.
    [1] Deng CX, Xu Q, Apfel RE, et al. In vitromeasurements of inertial cavitationthresholds in human blood.[J].Ultrasound Med Biol.1996;22(7):939–948.
    [2] Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours.[J].Nat Rev Cancer.2005;5(4):321–327.
    [3]McCulloch M, Gresser C, Moos S, et al. Ultrasound contrast physics: A series oncontrastechocardiography, article.[J]. J Am Soc Echocardiogr.2000;13(10):959.
    [4] Vaezy S, Martin R, Crum L. High intensity focused ultrasound: a method ofhemostasis.[J].Echocardiography.2001;18(4):309–315.
    [5] Vaezy S, Fujimoto VY, Walker C,et al. Treatment of uterine fibroid tumors in a nudemouse model using high-intensity focused ultrasound.[J].Am J Obstet Gynecol.2000;183(1):6–11.
    [6] Wu J. Shear stress in cells generated by ultrasound.[J].Prog Biophys Mol Biol.2007;93(1–3):363–373.
    [7] Collis J, Manasseh R, Liovic P, et al. Cavitation microstreaming and stress fieldscreated by microbubbles.[J].Ultrasonics.50(2):273–279.
    [8]Buchanan KD, Huang S, Kim H, et al. Echogenic liposome compositions forincreased retention ofultrasound reflectivity at physiologic temperature.[J].Journalof Pharmaceutical Sciences.2007;97(6):2242.[PubMed:17894368]
    [9] Okada K, Kudo N, Niwa K, Yamamoto K. A basic study on sonoporation withmicrobubbles exposed to pulsed ultrasound.[J].J Med Ultrasonics.2005;32:3–11.
    [10] Hallow DM, Mahajan AD, Mccutchen TE, Prausnitz MR. Measurement andcorrelation of acoustic cavitation with cellular bioeffects.[J].Ultrasound Med Biol.2006;32(7):1111–1122.
    [11] Zhou Y, Cui J, Deng CX. Dynamics of sonoporation correlated with acousticcavitation activities.[J].Biophys J.2008;94(7):L51–53.
    [12] Van Wamel A, Kooiman K, Harteveld M, et al. Vibrating microbubbles pokingindividual cells. Drug transfer into cells via sonoporation.[J]. J Control Release.2006;112(2):149–155.
    [13]Amirriazi, S.; Eghtedari, M.; Jin, S., et al. Increasing Ultrasound Sensitivity toPerfluorocarbonEmulsion Droplets.[J].Montreal Canada:2009.(abstract)
    [14] Forbes MM, Steinberg RL, O’brien WD Jr. Examination of intertial cavitation ofoptison in producing sonoporation of chinese hamster ovary cells.[J]. UltrasoundMed Biol.2008;34:2009–2018.
    [15] Deng CX, Lizzi FL. A review of physical phenomena associated with ultrasoniccontrast agents and illustrative clinical applications.[J].Ultrasound Med Biol.2002;28(3):277–286.
    [16]Liu J, Levine AL, Mattoon JS, et al. Nanoparticles as image enhancing agents forultrasonography.[J].Phys Med Biol.2006;51(9):2179.[PubMed:16625034]
    [17]Nolte I, Vince GH, Maurer M, et al. Iron particle enhance visualization ofexperimental gliomaswith high resolution sonography.[J].Am J Neuroradiol.2005;26:1469.[PubMed:15956517]
    [18]Linker RA, Kroner A, Horn T, et al. Iron particle-enhanced visualization ofinflammatory centralnervous system lesions by high resolution: preliminary data inan animal model.[J].AJNR Am JNeuroradiol.2006;27(6):1225.[PubMed:16775269]
    [19] Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging andtherapy:physical principles and engineering.[J]. Phys Med Biol.2009;54(6):R27–57.
    [20] Lindner JR. Microbubbles in medical imaging: current applications and futuredirections.[J].Nat RevDrug Discov.2004;3(6):527–532.
    [21]Marshall D, Pedley RB, Boden JA, et al. Polyethylene glycol modification of agalactosylatedstreptavidin clearing agent: effects on immunogenicity and clearanceof a biotinylated anti-tumourantibody.[J].Br J Cancer.1996;73(5):565.[PubMed:8605088]
    [22] Ohl CD, Arora M, Ikink R, et al. Sonoporation from jetting cavitation bubbles.[J].Biophys J.2006;91(11):4285–4295.
    [23] Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents:fundamentals andapplication to gene and drug delivery.[J]. Annu Rev BiomedEng.2007;9:415–447.
    [24] Price RJ, Skyba DM, Kaul S, et al. Delivery of colloidal particles and red bloodcells to tissue through microvessel ruptures created by targeted microbubbledestruction with ultrasound.[J].Circulation.1998;98(13):1264–1267.
    [25] Postema M, Van Wamel A, Lancee CT,et al. Ultrasound-induced encapsulatedmicrobubble phenomena.[J].Ultrasound Med Biol.2004;30(6):827–840.
    [26] Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy--a review of the synergisticeffects of drugs and ultrasound.[J]. Ultrason Sonochem.2004;11(6):349–363.
    [1] Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomaldoxorubicin:review of animal and human studies.[J].Clin Pharmacokinet.2003;42(5):419–436.
    [2] Vogelbaum MA. Convection enhanced delivery for treating brain tumors andselected neurologicaldisorders: symposium review.[J].J Neurooncol.2007;83(1):97–109.
    [3] Fung LK, Shin M, Tyler B,et al. Chemotherapeutic drugs released from polymers:distribution of1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain.[J].Pharm Res.1996;13(5):671–682.
    [4] Bidros DS, Liu JK, Vogelbaum MA. Future of convection-enhanced delivery inthetreatment of brain tumors.[J].Future Oncol.2010;6(1):117–125.
    [5] Sampson JH, Archer G, Pedain C, et al. Poor drug distribution as a possibleexplanation for the results of the precise trial.[J].J Neurosurg.2009
    [6] Kunwar S, Chang S, Westphal M, et al. Phase III randomized trial of CED ofIL13-PE38QQR vs gliadel wafers for recurrent glioblastoma.[J].Neuro Oncol.2010;12(8):871–881.
    [7]Hamilton, M.; Blackstock, D. Nonlinear Acoustics:[J].Theory and Applications.Academic Press;1998.20(1):27–38.
    [8] Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain withmolecular trojanhorses.[J].Bioconjug Chem.2008;19(7):1327–1338.
    [9]Chang PH, Shung KK, Levine HB. Second harmonic imaging and harmonicDopplermeasurements with Albunex.[J].IEEE Trans Ultrason Ferroelect FreqContr.1995;42:1020.
    [10] Greig NH, Daly EM, Sweeney DJ,et al. Pharmacokinetics of chlorambucil-tertiarybutyl ester, a lipophilic chlorambucil derivative that achieves and maintains highconcentrations inbrain.[J].Cancer Chemother Pharmacol.1990;25(5):320–325.
    [11] de Jong N, Frinking PJA, Buoakaz A, et al. Detection procedures of ultrasoundcontrast agents.[J]. Ultrasonics.2000;38:87.
    [12] Jahnke K, Kraemer DF, Knight KR, et al. Intraarterial chemotherapy and osmoticblood–brain barrier disruption for patients with embryonal and germ cell tumors ofthe central nervous system.[J].Cancer.2008;112(3):581–588.
    [13] Doolittle ND, Abrey LE, Bleyer WA, et al. New frontiers in translational researchin neuro-oncology and the blood–brain barrier: report of the tenth annualblood–brain barrier disruption consortium meeting.[J].Clin Cancer Res.2005;11(2Pt1):421–428.
    [14.] Kroll RA, Neuwelt EA. Outwitting the blood–brain barrier for therapeuticpurposes: osmotic opening and other means. Neurosurgery.1998;42(5):1083–1099.[15.] Averkiou MA. Tissue harmonic ultrasonic imaging.[J].CRAcad Sci Ser IV-Phys Astrophys.2001;2(1139-1151)
    [16.] Hope-Simpson D, Burns PN, Averkiou MA. Techniques for Perfusion Imagingwith MicrobubbleContrast Agents.[J].IEEE Trans Ultrason Ferroelect Freq Contr.2001;48:1483.
    [17.] Foster FS, Pavlin CJ, Harasiewicz KA, et al. Advances in ultrasoundbiomicroscopy.[J].UltrasoundMed Biol.2000;26:1.
    [18.] Foster FS, Zhang MY, Zhou YQ, et al. A new ultrasound instrument for in vivomicroimaging ofmice.[J].Ultrasound Med Biol.2002;28(9):1165.
    [19.] Needles A, Goertz DE, Karshafian R, et al. High-frequency subharmonicpulsed-wave Doppler andcolor flow imaging of microbubble contrast agents.[J].Ultrasound Med Biol.2008;34:1139.
    [20.] Goertz DE, Cherin E, Needles A, et al. High frequency nonlinear B-Scan imagingof microbubblecontrast agents.[J].Ultrason Ferroelectr Freq Cont.2005;52:65.
    [21.] Riina HA, Fraser JF, Fralin S, Knopman J, Scheff RJ, Boockvar JA. Superselectiveintraarterial cerebral infusion of bevacizumab: a revival of interventionalneuro-oncology for malignant glioma.[J].J Exp Ther Oncol.2009;8(2):145–150.
    [22.] Mitragotri S. Healing sound: The use of ultrasound in drug delivery and othertherapeutic applications.[J].Nat Rev Drug Discov.2005;4(3):255–260.
    [23.] Campbell P, Prausnitz MR. Future directions for therapeutic ultrasound.[J].Ultrasound Med Biol.2007;33(4):657.
    [24.] Vassiliadis S, Hakkennes EA, Wong JSSM, et al. The sum-absolute-differencemotion estimationaccelerator.[J].Proc IEEE Euromicro Conference.1998;2(559-566)
    [1] Kassan DG, Lynch AM, Stiller MJ. Physical enhancement of dermatologic drugdelivery: Iontophoresis and phonophoresis.[J].J Am Acad Dermatol1996;34:657–66.
    [2] Gramiak R, Shah PM. Echocardiography of the aortic root.[J].Invest Radiol1968;3:356–66.
    [3] Feinstein SB, Ten Cate FJ, Zwehl W, et al.Two-dimensional contrastechocardiography. I. In vitro development and quantitative analysis of echo contrastagents.[J].J Am Coll Cardiol1984;3:14–20.
    [4] Ten Cate FJ, Feinstein S, Zwehl W, et al. Two-dimensionalcontrastechocardiography. Ii. Transpulmonary studies.[J].J Am Coll Cardiol1984;3:21–7.
    [5] Kabalnov A, Klein D, Pelura T,et al. Dissolution of multicomponent microbubblesinthe bloodstream:1. Theory.[J].Ultrasound Med Biol1998;24:739–49.
    [6] Lee S, Kim DH, Needham D. Equilibrium and dynamic interfacial tensionmeasurements atmicroscopic interfaces using a micropipet technique.2. Dynamicsof phospholipid monolayer formation and equilibrium tensions at the water-airinterface.[J].Langmuir2001;17:5544–5550.
    [7] Lindner JR, Wei K. Contrast echocardiography.[J].Curr Probl Cardiol2002;27:454–519.
    [8] de Jong N, Hoff L, Skotland T, Bom N. Absorption and scatter of encapsulated gasfilled microspheres:Theoretical considerations and some measurements.[J].Ultrasonics1992;30:95–103.
    [9] de Jong N, Bouakaz A, Frinking P. Basic acoustic properties of microbubbles.[J].Echocardiography2002;19:229–40.
    [10]Oeffinger BE, Wheatley MA. Development and characterization of a nano-scalecontrast agent.[J].Ultrasonics2004;42:343–7.
    [11]Patel D, Dayton P, Gut J,et al. Optical and acoustical interrogation ofsubmicroncontrast agents.[J].IEEE Trans Ultrason Ferroelectr Freq Control2002;49:1641–51.
    [12]Cohen JL, Cheirif J, Segar DS, et al. Improved leftventricular endocardial borderdelineation and opacification with optison (fs069), a newechocardiographic contrastagent. Results of a phase iii multicenter trial. J Am Coll Cardiol1998;32:746–52.
    [13]Chomas JE, Dayton P, Allen J, et al. Mechanisms of contrast agent destruction.[J].IEEE Trans Ultrason Ferroelectr Freq Control2001;48:232–48.
    [14]Chomas JE, Dayton PA, May D,et al. Optical observation of contrast agentdestruction.[J].Applied Physics Letters2000;77:1056–1058.
    [15]Wei K, Skyba DM, Firschke C,et al. Interactions between microbubbles andultrasound: In vitro and in vivo observations.[J].J Am Coll Cardiol1997;29:1081–8.
    [16]Jayaweera AR, Kaul S. Quantifying myocardial blood flow with contrastechocardiography.[J].Am JCard Imaging1993;7:317–35.
    [17]Jayaweera AR, Edwards N, Glasheen WP,et al. In vivo myocardial kinetics ofair-filled albumin microbubbles during myocardial contrastechocardiography.Comparison with radiolabeled red blood cells.[J].Circ Res1994;74:1157–65.
    [18]Keller MW, Segal SS, Kaul S,. The behavior of sonicated albumin microbubbleswithin themicrocirculation: A basis for their use during myocardial contrastechocardiography.[J]. Circ Res1989;65:458–67.
    [19]Wei K, Le E, Bin JP,et al. Quantification of renal blood flow withcontrast-enhanced ultrasound.[J]. J Am Coll Cardiol2001;37:1135–40.
    [20]Rim SJ, Leong-Poi H, Lindner JR,et al.Quantification of cerebral perfusion with“Real-time” Contrast-enhanced ultrasound.[J].Circulation2001;104:2582–7.
    [21]Christiansen JP, Leong-Poi H, Amiss LR,et al. Skin perfusion assessedby contrastultrasound predicts tissue survival in a free flap model.[J].Ultrasound MedBiol2002;28:315–20.
    [22]Dawson D, Vincent MA, Barrett EJ,et al. Vascular recruitmentin skeletal muscleduring exercise and hyperinsulinemia assessed by contrast ultrasound. Am JPhysiolEndocrinol Metab2002;282:E714–20.
    [23]Ferrara KW, Merritt CR, Burns PN,et al. Evaluation of tumorangiogenesis with us:Imaging, doppler, and contrast agents.[J]. Acad Radiol2000;7:824–39.
    [24]Bloch SH, Dayton PA, Wan M,. Optical observation of lipid-andpolymer-shelledultrasound microbubble contrast agents.[J].Appl Phys Lett2004;84:631–633.
    [25]Van de Wiele C, Revets H, Mertens N. Radioimmunoimaging.[J].Advances andprospects. Q J NuclMed Mol Imaging2004;48:317–25.
    [26]Villanueva FS, Jankowski RJ, Klibanov S,et al. Microbubbles targeted tointercellular adhesion molecule-1bind to activated coronaryartery endothelial cells.[J]. Circulation1998;98:1–5.
    [27]Weller GE, Lu E, Csikari MM,et al. Ultrasoundimaging of acute cardiac transplantrejection with microbubbles targeted to intercellular adhesionmolecule-1.[J].Circulation2003;108:218–24.
    [28]Ellegala DB, Leong-Poi H, Carpenter JE,et al.Imaging tumor angiogenesis withcontrast ultrasound and microbubbles targeted to alpha(v)beta3.[J].Circulation2003;108:336–41.
    [29]Leong-Poi H, Christiansen J, Heppner P,et al. Assessmentof endogenous andtherapeutic arteriogenesis by contrast ultrasound molecular imaging ofintegrinexpression.[J]. Circulation2005;111:3248–54.
    [30]Weller GE, Wong MK, Modzelewski RA,et al.Ultrasonic imaging of tumorangiogenesis using contrast microbubbles targeted via the tumor-binding peptidearginine-arginine-leucine.[J].Cancer Res2005;65:533–9.
    [31]Wheatley MA, Lathia JD, Oum KL. Polymeric ultrasound contrast agents targetedto integrins:Importance of process methods and surface density of ligands.[J].Biomacromolecules2007;8:516–22.
    [32]Hauff P, Reinhardt M, Briel A,et al. Molecular targeting of lymph nodes withl-selectin ligand-specific us contrast agent: A feasibility study in mice and dogs.[J].Radiology2004;231:667–73.
    [33]Schumann PA, Christiansen JP, Quigley RM,et al. Targeted-microbubble bindingselectively to gpiib iiia receptors of platelet thrombi.[J].Invest Radiol2002;37:587–93.
    [34]Weller GE, Villanueva FS, Tom EM. Targeted ultrasound contrast agents: Invitroassessment of endothelial dysfunction and multi-targeting to icam-1and sialyllewisx.[J].BiotechnolBioeng2005;92:780–8.
    [35]Kim DH, Klibanov AL, Needham D. The influence of tiered layers ofsurface-grafted poly(ethyleneglycol) on receptor-ligand-mediated adhesion betweenphospholipid monolayer-stabilizedmicrobubbles and coated glass beads.[J].Langmuir2000;16:2808–2817.
    [36]Bloemen PG, Henricks PA, van Bloois L,et al. Adhesion molecules: A new targetfor immunoliposome-mediated drug delivery.[J].FEBSLett1995;357:140–4.
    [37]Jeppesen C, Wong JY, Kuhl TL, Israelachvili JN, Mullah N, Zalipsky S, MarquesCM. Impact ofpolymer tether length on multiple ligand-receptor bond formation.Science2001;293:465–8.
    [38]Weller GE, Villanueva FS, Klibanov AL,. Modulating targeted adhesion of anultrasoundcontrast agent to dysfunctional endothelium.[J].Ann Biomed Eng2002;30:1012–9.
    [39]Borden MA, Sarantos MR, Stieger SM,et al. Ultrasound radiationforce modulatesligand availability on targeted contrast agents.[J].Mol Imaging2006;5:139–47.
    [40]Rychak JJ, Klibanov AL, Hossack JA. Acoustic radiation force enhances tareteddelivery ofultrasound contrast microbubbles: In vitro verification.[J]. IEEE TransUltrason Ferroelectr Freq Control2005;52:421–433.
    [41]Dayton PA, Allen JS, Ferrara KW. The magnitude of radiation force on ultrasoundcontrast agents.[J].J Acoust Soc Am2002;112:2183–92.
    [42]Dayton PA, Morgan KE, Klibanov ALS,et al. Apreliminary evaluation of the effectsof primary and secondary radiation forces on acoustic contrastagents. IEEE TransUltrason Ferroelectr Freq Control1997;44:1264–1277.
    [43]Zhao S, Borden M, Bloch SH,et al. Radiation-force assisted targetingfacilitatesultrasonic molecular imaging.[J].Mol Imaging2004;3:135–48.
    [44]Dayton P, Klibanov A, Brandenburger G. Acoustic radiation force in vivo: Amechanismto assist targeting of microbubbles.[J].Ultrasound Med Biol1999;25:1195–201.
    [45]Dayton PA, Zhao S, Bloch SH,et al. Application of ultrasound to selectivelylocalize nanodroplets for targeted imaging andtherapy.[J].Mol Imaging2006;5:160–74.
    [46]Li P, Cao LQ, Dou CY,et al. Impact of myocardial contrast echocardiographyonvascular permeability: An in vivo dose response study of delivery mode, pressureamplitude andcontrast dose.[J]. Ultrasound Med Biol2003;29:1341–9.
    [47]Skyba DM, Price RJ, Linka AZ, et al. Direct in vivo visualization ofintravasculardestruction of microbubbles by ultrasound and its local effects ontissue.[J].Circulation1998;98:290–3.
    [48]Miller DL, Quddus J. Diagnostic ultrasound activation of contrast agent gas bodiesinduces capillaryrupture in mice.[J].Proc Natl Acad Sci U S A2000;97:10179–84.
    [49]Ay T, Havaux X, Van Camp G,et al. Destruction of contrast microbubbles byultrasound: Effects on myocardialfunction, coronary perfusion pressure, andmicrovascular integrity.[J].Circulation2001;104:461–6.
    [50]Miller DL, Gies RA. Gas-body-based contrast agent enhances vascular bioeffects of1.09mhzultrasound on mouse intestine.[J].Ultrasound Med Biol1998;24:1201–8.
    [51]Li P, Armstrong WF, Miller DL. Impact of myocardial contrast echocardiographyon vascularpermeability: Comparison of three different contrast agents.[J].Ultrasound Med Biol2004;30:83–91.
    [52]Wible JH Jr, Galen KP, Wojdyla JK, et al. Microbubblesinduce renal hemorrhagewhen exposed to diagnostic ultrasound in anesthetized rats.[J].Ultrasound MedBiol2002;28:1535–46.
    [53]Miller DL, Li P, Gordon D, Armstrong WF. Histological characterization ofmicrolesions inducedby myocardial contrast echocardiography.[J].Echocardiography2005;22:25–34.
    [54]Miller DL, Li P, Dou C, Gordon D. Influence of contrast agent doseand ultrasoundexposure on cardiomyocyte injury induced by myocardial contrastechocardiographyin rats.[J].Radiology2005;237:137–43.
    [55]Miller DL, Dou C, Armstrong WF. The influence of agent delivery mode oncardiomyocyte injuryinduced by myocardial contrast echocardiography in rats.[J].Ultrasound Med Biol2005;31:1257–63.
    [56]Miller DL, Driscoll EM, Dou C,et al. Microvascular permeabilizationandcardiomyocyte injury provoked by myocardial contrast echocardiography in acanine model.[J].J AmColl Cardiol2006;47:1464–8.
    [57]van Der Wouw PA, Brauns AC,et al. Premature ventricular contractionsduringtriggered imaging with ultrasound contrast.[J].J Am Soc Echocardiogr2000;13:288–94.
    [58]Zachary JF, Hartleben SA, Frizzell LA. Arrhythmias in rat hearts exposed topulsedultrasound after intravenous injection of a contrast agent.[J].J UltrasoundMed2002;21:1347–56.
    [59]Vancraeynest D, Havaux X, Pouleur AC,et al. Myocardial delivery of colloidnanoparticles using ultrasound-targetedmicrobubble destruction.[J].Eur Heart J2006;27:237–45.
    [60]Miller DL. Overview of experimental studies of biological effects of medicalultrasound caused bygas body activation and inertial cavitation.[J].Prog BiophysMol Biol2007;93:314–30.
    [61]Trubestein G, Engel C, Etzel F,et al. Thrombolysis by ultrasound.[J].ClinSci MolMed Suppl1976;3:697s–698s.
    [62]Trubestein G. removal of intravascular thrombi by means of ultrasonics.Experimental study with anew method and its clinical use.[J].Fortschr Med1978;96:755–60.
    [63]Tachibana K, Tachibana S. Albumin microbubble echo-contrast material as anenhancer forultrasound accelerated thrombolysis.[J].Circulation1995;92:1148–50.
    [64]Porter TR, LeVeen RF, Fox R,et al. Thrombolytic enhancement withperfluorocarbon-exposed sonicated dextrose albumin microbubbles.[J].Am Heart J1996;132:964–8.
    [65]Molina CA, Ribo M, Rubiera M,et al. Microbubble administration accelerates clotlysisduring continuous2-mhz ultrasound monitoring in stroke patients treated withintravenous tissueplasminogen activator.[J].Stroke2006;37:425–9.
    [66]Birnbaum Y, Iakobishvili Z, Porter A, et al. Microparticle-containing oncoticsolutions augment in-vitro clot disruption by ultrasound.[J].ThrombRes2000;98:549–57.
    [67]Culp WC, Porter TR, McCowan TC,et al. Microbubble-augmented ultrasounddeclotting of thrombosed arteriovenous dialysis grafts in dogs.[J].J VascIntervRadiol2003;14:343–347.
    [68]Pagola J, Ribo M, Alvarez-Sabin J,et al. Timing of recanalizationaftermicrobubble-enhanced intravenous thrombolysis in basilar artery occlusion.[J].Stroke2007;38:2931–4.
    [69]Nesser HJ, Karia DH, Tkalec W. Therapeutic ultrasound in cardiology.[J].Herz2002;27:269–78.
    [70]Song J, Cottler PS, Klibanov AL. Microvascular remodeling andacceleratedhyperemia blood flow restoration in arterially occluded skeletal muscleexposed to ultrasonicmicrobubble destruction.[J].Am J Physiol Heart Circ Physiol2004;287:H2754–61.
    [71]Price RJ, Skyba DM, Kaul S. Delivery of colloidal particles and red blood cells totissuethrough microvessel ruptures created by targeted microbubble destructionwith ultrasound.[J].Circulation1998;98:1264–7.
    [72]Song J, Chappell JC, Qi M,et al. Influence of injection site, microvascularpressureand ultrasound variables on microbubble-mediated delivery of microspheres tomuscle.[J].JAm Coll Cardiol2002;39:726–31.
    [73]Yoshida J, Ohmori K, Takeuchi H,et al.Treatment of ischemic limbs based on localrecruitment of vascular endothelial growth factor-producing inflammatory cellswith ultrasonic microbubble destruction.[J].J Am Coll Cardiol2005;46:899–905.
    [74]Song J, Qi M, Kaul S. Stimulation of arteriogenesis in skeletal muscle bymicrobubbledestruction with ultrasound.[J].Circulation2002;106:1550–5.
    [75]Imada T, Tatsumi T, Mori Y,et al. Targeted delivery of bone marrow mononuclearcellsby ultrasound destruction of microbubbles induces both angiogenesis andarteriogenesis response.[J].Arterioscler Thromb Vasc Biol2005;25:2128–34.
    [76]Zen K, Okigaki M, Hosokawa Y,et al. Myocardium-targeted delivery of endothelialprogenitor cells byultrasound-mediated microbubble destruction improves cardiacfunction via an angiogenic response.J Mol Cell Cardiol2006;40:799–809.
    [77]Miyake Y, Ohmori K, Yoshida J,et al. Granulocytecolony-stimulating factorfacilitates the angiogenesis induced by ultrasonic microbubble destruction.[J].Ultrasound Med Biol.2007
    [78]McDannold N, Vykhodtseva N, Raymond S,et al. Mri-guided targetedblood-brainbarrier disruption with focused ultrasound: Histological findings inrabbits.[J].Ultrasound Med Biol2005;31:1527–37.
    [79]Treat LH, McDannold N, Vykhodtseva N,et al. Targeted delivery ofdoxorubicin tothe rat brain at therapeutic levels using mri-guided focused ultrasound.[J].Int JCancer2007;121:901–7.
    [80]Hynynen K. Focused ultrasound for blood-brain disruption and delivery oftherapeutic molecules intothe brain.[J].Expert Opin Drug Deliv2007;4:27–35.
    [81]Schlachetzki F, Holscher T, Koch HJ,et al. Observationon the integrity of theblood-brain barrier after microbubble destruction by diagnostictranscranialcolor-coded sonography. J Ultrasound Med2002;21:419–29.
    [82]Lawrie A, Brisken AF, Francis SE,et al. Ultrasound enhances reporter geneexpression after transfection of vascular cells invitro.[J].Circulation1999;99:2617–20.
    [83]Ward M, Wu J, Chiu JF. Ultrasound-induced cell lysis and sonoporation enhancedby contrast agents.[J].J Acoust Soc Am1999;105:2951–7.
    [84]Wu J, Ross JP, Chiu JF. Reparable sonoporation generated by microstreaming.[J].JAcoust Soc Am2002;111:1460–4.
    [85]Tachibana K, Uchida T, Ogawa K,et al. Induction of cell-membrane porositybyultrasound.[J]. Lancet1999;353:1409.
    [86]Ogawa K, Tachibana K, Uchida T,et al. High-resolutionscanning electronmicroscopic evaluation of cell-membrane porosity by ultrasound. MedElectronMicrosc2001;34:249–53.
    [87]van Wamel A, Bouakaz A, Versluis M. Micromanipulation of endothelialcells:Ultrasound-microbubble-cell interaction.[J].Ultrasound Med Biol2004;30:1255–8.
    [1].Pardridge WM. The blood–brain barrier: Bottleneck in brain drug development.[J]NeuroRx.2005;2(1):3–14.
    [2].Ambrosini G,Adida C,Altieri DC.A novel antiapoptosis gene,survivin,expressedin cancer and lymphoma.[J]Nature Med,1997,8:917.
    [3].Bang CI, Paik SY, Sun DI, Joo YH, Kim MS,et a1.Cell growth inhibition anddown-regulation of survivin by silibinin in a laryngeal squamous cell carcinomacell line..[J]Ann Otol Rhinol Laryngol,2008Oct;117(10):781-5.
    [4].Chen XM, Luan XY, Lei DP,et al. Suppression of survivin expression by shorthairpin RNA induces apoptosis in human laryngeal carcinoma cells.[J] ORL JOtorhinolaryngol Relat Spec.2008;70(3):168-75.
    [5].Neugroschl J, Sano M. An update on treatment and prevention strategies foralzheimer’s disease.[J]Curr Neurol Neurosci Rep.2009;9(5):368–376.
    [6].Schouten LJ, Rutten J, Huveneers HA. Incidence of brain metastases in a cohortofpatients with carcinoma of the breast, colon, kidney, and lung and melanoma.[J]Cancer.2002;94(10):2698–2705.
    [7].Tosoni A, Ermani M, Brandes AA. The pathogenesis and treatment of brainmetastases: acomprehensive review.[J]Crit Rev Oncol Hematol.2004;52(3):199–215.
    [8].Levin VA. Relationship of octanol/water partition coefficient and molecular weightto rat braincapillary permeability.[J]J Med Chem.1980;23(6):682–684.
    [9].Deeken JF, Loscher W. The blood–brain barrier and cancer: transporters, treatment,and trojanhorses.[J]Clin Cancer Res.2007;13(6):1663–1674.
    [10].Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure andfunction of the blood–brain barrier.[J]Neurobiol Dis.2010;37(1):13–25.
    [11].Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood–brain barrierin drug discovery and development.[J]Nat Rev Drug Discov.2007;6(8):650–661.
    [12].Juillerat-Jeanneret L. The targeted delivery of cancer drugs across theblood–brainbarrier: chemical modifications of drugs or drug-nanoparticles?[J]Drug Discov Today.2008;13(23–24):1099–1106.
    [13].Pennati M,Binda M,Co1e1la G,et a1.Ribozynlen1ediated inhibition of Sur ivinexpression increases spontaneous and druginduced apoptosis and decieases thetumorigenic potentia1of human prostate cancer cells[J].Oncogerle,2004,23(2):386-394.
    [14].Abbott NJ. Dynamics of cns barriers: Evolution, differentiation, and modulation.[J]Cell Mol Neurobiol.2005;25(1):5–23.
    [15].Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood–brain barrier:Structural components and function under physiologic and pathologic conditions.[J] J Neuroimmune Pharmacol.2006;1(3):223–236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700