用户名: 密码: 验证码:
磁共振功能成像用于超声微泡—纳米脂质体复合体介导肝细胞生长因子基因治疗肝纤维化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化是肝脏各种慢性损伤导致纤维素沉积形成,进而改变肝脏组织结构和功能,甚至引起肝硬化和肝衰竭。基因治疗肝纤维化是一种新的有效治疗手段。目前许多生长因子已成功用于肝纤维化基因治疗。肝细胞生长因子(HGF)能促进成熟细胞有丝分裂,是有潜力的抗纤维化因子,能够防止许多器官纤维化,包括肝脏。可是缺乏一种安全有效的基因传递载体一直是临床应用的障碍。微泡是临床医学影像超声的显像剂,能在超声波引导下产生空化效应,利用这种特征传递基因可提高转染效率。但微泡在体内通常不稳定,并且直径大约1-6um,无法渗透出静脉,而且靶向分子很难在微泡表面修饰。脂质体作为药物和基因传递载体都很有优势,但转染效率低,并且没有靶向性。因此,我们应用生物素-亲和素系统结合超声微泡和阳离子纳米脂质体形成生物素化超声微泡和生物素化阳离子纳米脂质体复合体(Bio-MB+Bio-CNLP)载体。有效克服两者的不足,明显提高转染效率,经体内及体外实验证实Bio-MB+Bio-CNLP能携带HGF基因靶向治疗肝纤维化,是一种新型有效的基因载体。
     肝活组织检查一直是肝纤维化诊断的金标准,但具有有创性、少数可见并发症及样本误差等缺点限制了临床使用。急需研究一种无创、有效评估肝纤维化程度的诊断技术。这种技术必须没有活组织检查的风险,能简单、方便有效评估抗纤维化程度及治疗效果。本实验我们通过胆总管结扎术建立大鼠肝纤维化模型,尾静脉注射Bio-MB+Bio-CNLP-pCDH-HGF载体,治疗后分别用磁共振扩散加权成像(diffusion-weighted imaging,DWI)、磁共振灌注成像(Perfusionimaging,PWI)和磁共振波普分析(magnetic aesonance spectroscopy,MRS)三种MRI功能成像评估治疗效果。结果表明磁共振功能成像能准确监测肝纤维化发展过程,评估肝纤维化治疗效果。本研究显示三种MRI功能成像参数能定量分析肝纤维化,与肝纤维化分期具有显著相关性,可以为临床诊断和评估肝纤维化治疗提供依据。
     第一部分Bio-MB+Bio-CNLP介导HGF基因治疗肝纤维化生物学效应的体外初步研究
     目的:构建一个新型的生物素化超声微泡基因载体,评估载体介导HGF基因的靶向性和安全性以及对肝脏细胞的作用
     方法:运用生物素-亲和素系统构建Bio-MB+Bio-CNLP载体并且和HGF基因重组;分别转染肝星状细胞(HSC-T6)和肝细胞(L02),分为4组:(1) Bio-MB+Bio-CNLP+HGF无超声辐照;(2)Bio-MB+Bio-CNLP+HGF超声辐照;(3)脂质体+HGF;(4)Bio-MB+Bio-CNLP超声辐照。转染成功后分别用流式细胞仪检测转染率和凋亡率;细胞免疫荧光染色、ELISA和Western blot检测蛋白表达;MTT检测细胞活性。
     结果:超声辐照组转染成功,而无超声辐照组则无转染;与单独脂质体转染比较,Bio-MB+Bio-CNLP介导HGF明显提高转染率;HGF基因转染HSC-T6细胞后72小时蛋白表达量最高,细胞凋亡率明显增加;而转染L02细胞活性明显增加。
     结论:Bio-MB+Bio-CNLP能靶向传递HGF基因并明显提高转染率,促进HSC细胞凋亡,增加正常干细胞活性,表明我们成功制备了一种新型的具有靶向性、安全性和有效性Bio-MB+Bio-CNLP载体。
     第二部分磁共振功能成像对大鼠肝纤维化诊断、定量分析研究
     目的:探索一种新型靶向超声微泡载体介导HGF基因体内表达治疗肝纤维化,并且通过MRI功能成像检测疗效。
     方法:通过胆总管结扎构建大鼠肝纤维化模型,尾静脉注射Bio-MB+Bio-CNLP+HGF悬液,肝脏超声辐照定位转递HGF基因治疗。分别运用DWI、PWI和MRS三种功能成像检测治疗效果,并与病理检查结果对照。
     结果:我们靶向传递HGF基因并且产生抗纤维化效果;MRI功能成像各参数能准确区分肝纤维化分期。
     结论:Bio-MB+Bio-CNLP在体内能靶向传递HGF基因,有效治疗肝纤维化,MRI功能成像参数能用于评估肝纤维化程度和疗效检测。
Liver fibrosis is the wound-healing response to various liver damage,in the form of a progressive accumulation of fibrosis.It alters the tissuestructure and function of liver,leading to cirrhosis and liver failure, Genetherapy may provide novel treatment strategies for a wide range of liverfibrosis. HGF was originally characterized as a potent mitogen for maturehepatocytes, has emerged as a potent anti-fibrotic cytokine that preventstissue fibrosis in various organs, including the liver.[,However, the lack of asafe and effective method for gene delivery to a specific organ or cellremains an obstacle to clinical application. Microbubbles are contrast agentsfor medical ultrasound imaging, improve transfection efficiency afterultrasound-induced cavitation, However, microbubbles are generallyunstable and their mean diameter of around1–6μm is too large forintravascular applications. Moreover, functional particles such as targetingmolecules are difficult to modify on the surface of microbubbles., Theirsurface should be easily modified with functional molecules for targeting after injection into the blood and ultimately, Liposomes have someadvantages as drug, antigen and gene delivery carriers, Their size can beeasily controlled and they can be modified to add a targeting function.but thegene expression was very low Therefore, we developed novelBio-MB+Bio-CNLP, Here, we assessed the feasibility ofBio-MB+Bio-CNLP for gene delivery after cavitation induced byultrasound.
     Chronic diffuse liver disease is a worldwide problem.Whereashistology remains the gold standard by which to diagnose hepatic fibrosis,Several clinical limitations are associated with the use of liver biopsy.It isan invasive and costly procedure prone to complications, sampling error isinherent in the technique, Alternative techniques for assessingthe severityof diffuse liver disease are urgently needed. and such a tool would reducebiopsy related risks and costs, could be useful for guiding anti-fibrotictreatments, monitoring treatment efficacy, and helpful in the clinicalevaluation of new anti-fibrotic drugs. Furthermore, the identification ofoccult advanced fibrosis, may direct further management, and has essentialprognostic implications.
     We established a bile duct ligation (BDL) rat model of hepatic fibrosis.Bio-MB+Bio-CNLP-pCDH-HGF carrier was administered through tail-veininjections. The gene therapy efficacy was evaluated in vivo. Before and aftertreatment, the rats were examined with diffusion-weighted imaging (DWI)、 Perfusion imaging (PWI) and magnetic aesonancespectroscopy(MRS) respectively. Magnetic resonance functional imagingcould potentially provide a more accurate representation of the diseaseprocess. Recently, in vivo Magnetic resonance functional imaging hasbeen suggested for the evaluation of chronic liver disease and discuss thevalue of MR functional imaging in early diagnosis、quantization analysisand staging of hepatic fibrosis by analyzing the changes of perfusionparameters of MR functional imaging of different degree of hepaticfibrosis
     Part I Enhanced effect of HGF on liver cell growth with specialemphasis on hepatic stellate cells by a novel modified ultrasoundtargeted microbubble gene delivery system
     Purpose: To evaluate the efficacy and safetyof human hepatocytegrowth factor (HGF) delivery by a novel ultrasound targeted microbubblesystemusing avidin to crosslink biotinylated ultrasound microbubbles(Bio-MB) and biotinylated cationic nano-liposomes (Bio-CNLP), which isreferred to as Bio-MB+Bio-CNLP.
     Methods: HGF was linked to Bio-MB+Bio-CNLP, and transfected tohepatic stellate cells (HSC-T6) and normal liver cell line L02according tothe following four groups:(1) Bio-MB+Bio-CNLP+HGF, no ultrasonicirradiation group;(2) Bio-MB+Bio-CNLP+HGF+ultrasonic irradiation group;(3) liposomes+HGF;(4) Bio-MB+Bio-CNLP+ultrasonicirradiation group. Protein expression, L02cell viability, and HSC-T6cellapoptosis rate were determined respectively.
     Results: Compared with liposome mediated transfection, Bio-MB+Bio-CNLP mediated transfection rate increased markedly, with the highestprotein expression in HGF transfected HSC-T6cells at72hours aftertransfection. Compared with mock transfection control group, the apoptosisrate was32.8%and7.5%respectively. Cell viability significantly increasedin HGF transfected L02compared with normal L02.
     Conclusion: Introducing HGF using an ultrasound-mediated Bio-MB+Bio-CNLP system improved gene transfection rate and promoted normalliver cell growth. This appears to be a promising approach for targetedtherapy.
     Part Ⅱ Efficacy of HGF for treating hepatic fibrosis and itsrelationship with MRI functional imaging parameters
     Object: The aims of the present study were: i) to explore the interest oftreating liver fibrosisusing human hepatocyte growth factor (HGF)expression vector carried by a novel ultrasound targeted microbubbledelivery system.; b) to explore the diagnostic interest of MR functionalimaging parameters in evaluating liver fibrosis
     Method: We established a rat model of hepatic fibrosis by bile duct ligation. The rats were administered HGF linked to biotynilated ultrasoundmicrobubbles and biotynilated cationic nano-liposomes, and compared tosham-operated animals. The impact on hepatic fibrosis was evaluated byhisto-pathology, hydroxyproline content, with special focus on MRfunctional imaging parameters.
     Result: Our targeted gene therapy produced a significant anti-fibrosiseffect, as shown by liver histology and decreased hepatic collagen content.Moreover, proved of interest as indicated by the respective evolution of MRfunctional imaging parameters.
     Conclusion: This is the first in vivo report of using ultrasoundmicrobubble-cationic nanoliposomes complex for gene delivery. The dataindicate that, in our experimental model, this approach is efficient tocounteract the fibrosis process. MRI functional imaging parameters appearsa promising imaging technique for reflecting liver fibrosis..
引文
[1] Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology2008;134:1655–1669.
    [2] Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells ofthe liver. PhysiolRev2008;88:125–172.
    [3] Li Z, Dranoff JA, Chan EP, et al. Transforming growth factor-beta and substratestiffness regulateportal fibroblast activation in culture. Hepatology2007;46:1246–1256.
    [4] Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology2008;47:1394–1400.
    [5] Han YP, Yan C, Zhou L, et al. A matrix metalloproteinase-9activation cascade byhepatic stellate cells in trans-differentiation in the three-dimensional extracellularmatrix. J Biol Chem2007;282:12928–12939.
    [6] Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammationand repair in a solid organ. J Clin Invest2007;117:539–548.
    [7] De Minicis S, Seki E, Uchinami H, et al. Gene expression profiles during hepaticstellate cell activation in culture and in vivo. Gastroenterology2007;132:1937–1946.
    [8] Higashiyama R, Inagaki Y, Hong YY, et al. Bone marrow-derived cells expressmatrix metalloproteinases and contribute to regression of liver fibrosis in mice.Hepatology2007;45:213–222.
    [9] Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. CellTissue Res2008;331:283–300.
    [10]Bataller, R., and Brenner, D.A. Hepatic stellate cells as a target for the treatment ofliver fibrosis. Semin. Liver Dis.2001.21:437–451.
    [11]Hammel, P., et al. Regression of liver fibrosis after biliary drainage in patients withchronic pancreatitis and stenosis of the common bile duct.N. Engl. J. Med.2001.344:418–423.
    [12] Arthur, M.J. Reversibility of liver fibrosis and cirrhosis following treatment forhepatitis C. Gastroenterology.2002.122:1525–1528.
    [13]Pares, A., Caballeria, J., Bruguera, M., Torres, M., and Rodes, J. Histological courseof alcoholic hepatitis. Influence of abstinence, sex and extent of hepatic damage. J.Hepatol1986.2:33–42.
    [14]Dixon, J.B., Bhathal, P.S., Hughes, N.R, and O’Brien, P.E. Nonalcoholic fatty liverdisease: Improvement in liver histological analysis with weight loss. Hepatology.2004.39:1647–1654
    [15] Gressner, A.M., Weiskirchen, R., Breitkopf, K., and Dooley, S. Roles of TGF-betain hepatic fibrosis. Front. Biosci.2002.7:d793–d807.
    [16]E. Check, Safety panel backs principle of gene-therapy trials, Nature420(2002), p.595.
    [17] E. Check, Second cancer case halts gene-therapy trials, Nature421(2003), p.305.
    [18] E. Marshall, Gene therapy death prompts review of adenovirus vector, Science286(1999), pp.2244–2245.
    [19] C.C. Conwell and L. Huang, Recent progress in non-viral gene delivery, Non-viralGene Therapy, Gene Design and Delivery (2005), pp.3–10.
    [20]K. Wada, H. Arima, T. Tsutsumi, Y. Chihara, K. Hattori, F. Hirayama and K.Uekama, Improvement of gene delivery mediated by mannosylateddendrimer/alpha-cyclodextrin conjugates, J. Control. Release104(2005), pp.397–413.
    [21] K. Kogure, R. Moriguchi, K. Sasaki, M. Ueno, S. Futaki and H. Harashima,Development of a non-viral multifunctional envelope-type nano device by a novellipid film hydration method, J. Control. Release98(2004), pp.317–323.
    [22] R. Moriguchi, K. Kogure, H. Akita, S. Futaki, M. Miyagishi, K. Taira and H.Harashima, A multifunctional envelope-type nano device for novel gene delivery ofsiRNA plasmids, Int. J. Pharm.301(2005), pp.277–285.
    [23]H. Mizuguchi, T. Nakagawa, M. Nakanishi, S. Imazu, S. Nakagawa and T. Mayumi,Efficient gene transfer into mammalian cells using fusogenic liposome, Biochem.Biophys. Res. Commun.218(1996), pp.402–407.
    [24]M. Fechheimer, J.F. Boylan, S. Parker, J.E. Sisken, G.L. Patel and S.G. Zimmer,Transfection of mammalian cells with plasmid DNA by scrape loading andsonication loading, Proc. Natl. Acad. Sci. U. S. A.84(1987), pp.8463–8467.
    [25]Lindner JR. Mierobubbles in medical imaging:Current applications and futuredirections.Nat Rev Drug Discov2004:3:527-532.
    [26]Klibanov AL. Microbubble contrast agents:targeted ultrasound imaging andultrasound-assisted drug-delivery applieations[[J] Invest Radiol,2006,41(3):354-62.
    [27]Sakahara H,SagaT. Avidin-biotin system for delivery of diagnostic agents.Adv DrugDeliv Rev1999;37:89-101.
    [28]Kheirolomoom A,Dayton PA.Lum AF,et a1.Acoustically-active microbubblesconjugated to liposomes:characterization of a proposed drug delivery vehicle.JControl Release,2007.118(3):275-284.
    [29]Manning DS, Afdhal NH. Diagnosis and quantitation of fibrosis. Gastroenterology2008;134:1670-1681
    [30]Schmeltzer PA, Talwalkar JA. Noninvasive tools to assess hepatic fibrosis: readyfor prime time? Gastroenterol Clin North Am2011;40:507-521.
    [31] Martinez SM, Crespo G, Navasa M, Forns X. Noninvasive assessment of liverfibrosis. Hepatology2011;53:325-335.
    [32]Clark PJ, Patel K. Noninvasive tools to assess liver disease. Curr OpinGastroenterol2011;27:210-216.
    [33] Baranova A, Lal P, Birerdinc A, Younossi ZM. Non-Invasive markers for hepaticfibrosis. BMC Gastroenterol2011;11:91.
    [34] Taouli B, Ehman RL, Reeder SB. Advanced MRI methods for assessment ofchronic liver disease. AJR Am J Roentgenol2009;193:14-27.
    [35]Rouviere O, Yin M, Dresner MA, Rossman PJ, Burgart LJ, Fidler JL, et al. MRelastography of the liver: preliminary results. Radiology2006;240:440-448.
    [36]Wang Y, Ganger DR, Levitsky J, Sternick LA, McCarthy RJ, Chen ZE, et al.Assessment of chronic hepatitis and fibrosis: comparison of MR elastography anddiffusion-weighted imaging. AJR Am J Roentgenol2011;196:553-561.
    [37]Kim H, Booth CJ, Pinus AB, Chen P, Lee A, Qiu M, et al. Induced hepaticfibrosis in rats: hepatic steatosis, macromolecule content, perfusion parameters,and their correlations-preliminary MR imaging in rats. Radiology2008;247:696-705.
    [38]Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology2010;254:47-66.
    [39]Fujimoto K, Tonan T, Azuma S, Kage M, Nakashima O, Johkoh T, et al.Evaluationof the mean and entropy of apparent diffusion coefficient values in chronic hepatitisC: correlation with pathologic fibrosis stage and inflammatory activitygrade.Radiology2011;258:739-748.
    [40] Aguirre DA, Behling CA, Alpert E, Hassanein TI, Sirlin CB. Liver fibrosis:noninvasive diagnosis with double contrast material-enhanced MR imaging.Radiology2006;239:425-437.
    [41]Tamada T, Ito K, Higaki A, Yoshida K, Kanki A, Sato T, et al.Gd-EOB-DTPAenhanced MR imaging: Evaluation of hepatic enhancement effectsin normal and cirrhotic livers. Eur J Radiol2011;80:e311-316.
    [42]Watanabe H, Kanematsu M, Goshima S, Kondo H, Onozuka M, Moriyama N, etal. Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced anddiffusionweighted MR imaging--preliminary observations. Radiology2011;259:142-150.
    [43]Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets. DigLiver Dis.2004;36:231–242.
    [44] Albanis E, Friedman SL. Hepatic fibrosis. Pathogenesis and principles of therapy.Clin Liver Dis.2001;5:315–334.
    [45]Eng FJ, Friedman SL. Fibrogenesis I. New insights into hepatic stellate cellactivation: the simple becomes complex. Am J Physiol.2000;279:G7–G11.
    [46] Michalopoulos GK,De Frances MC. Liver regeneration. Science.1997,276:60–66.]
    [47] Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential andmechanisms of action. Am J Physiol Renal Physiol.2004;287:F7–F16.
    [48]Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potentialtherapeutics for renal diseases. Kidney Int.2001;59:2023–2038.
    [49]Matsuda Y, Matsumoto K, Yamada A, Ichida T, Asakura H, Komoriya Y, NishiyamaE, Nakamura T. Preventive and therapeutic effects in rats of hepatocyte growthfactor infusion on liver fibrosis/cirrhosis. Hepatology.1997;26:81–89.
    [50]Ueki T, Kaneda Y, Tsutsui H, Nakanishi K, Sawa Y, Morishita R, Matsumoto K,Nakamura T, Takahashi H, Okamoto E, Fujimoto J. Hepatocyte growth factor genetherapy of liver cirrhosis in rats. Nat Med.1999;5:226–230.
    [51]JM Isner Myocardial gene therapy Nature,415(2002),pp.234-239
    [52]S Yla-Herttuala, JF Martin Cardiovascular gene therapy Lancet,355(2000),pp.213-222
    [53]Daigeler A, Chromik AM, Haendschke K, Emmelmann S, Siepmann M, Hensel K,Schmitz G, Klein-Hitpass L, Steinau HU, Lehnhardt M, Hauser J. Synergisticeffects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma.Ultrasound Med Biol.2010;36(11):1893–906.
    [54]Luo J, Zhou X, Diao L, Wang Z. Experimental research on wild-type p53plasmidtransfected into retinoblastoma cells and tissues using an ultrasound microbubbleintensifier. J Int Med Res.2010;38(3):1005–15.
    [55] Suzuki J, Ogawa M, Takayama K, Taniyama Y, Morishita R, Hirata Y, Nagai R,Isobe M. ltrasound-microbubble-mediated intercellular adhesion molecule-1smallinterfering ribonucleic acid transfection attenuates neointimal formation afterarterial injury in mice. J Am Coll Cardiol.2010;55(9):904–913.
    [56] Suzuki R,Maruyama K.Effective in vitro and in vivo gene delivery by thecombination of liposomal bubbles(bubble liposomes)and ultrasound exposureMethods Mol Biol,2010,605:473—486.
    [57] Suzuki R,Takizawa T,Negishi Y。et a1.Tumor specific ultrasound enhancedgene transfer in vivo with novel liposomal bubbles.J Control Release。2008125(2):137-144.
    [58] Zhao YZ, Luo YK, Zhang Y, Mei XG, Tang J. Property and contrast-enhancementeffects of lipid ultrasound contrast agent: a preliminary experimental study.Ultrasound Med Biol.2005;31:537–43.
    [59]M Nishion, Y limuro,T Ueki et al Hepatocyte growth factor improves survival afterpartial hepatectomy in cirrhotic rats suppressing apoptosis of hepatocytes JSurg,144(3)(2008),pp.374-384
    [60] S Ozawa, K Uchiyama, M Nakamori et al Combination gene therapy of HGF andtruncated type II TGF-beta receptor for rat liver cirrhosis after partial hepatectomySurgery,139(4)(2006),pp.563-573
    [61]F Li, JY Sun, JY Wang et al Effect of hepatocyte growth factor encapsulated intargeted liposomes on liver cirrhosisJ Control Release,131(1)(2008),PP.77-82
    [62] SL Friedman, Liver fibrosis—from bench to bedside, J Hepatol38(Suppl1)(2003), pp. S38–S53.
    [63]Tanaka T, Ichimaru N, Takahara S, Yazawa K, Hatori M, Suzuki K, et al. In vivogene transfer of hepatocyte growth factor to skeletal muscle prevents changes in ratkidneys after5/6nephrectomy. Am J Transplant2002;2:828-836.
    [64]Y Liu, Hepatocyte growth factor and the kidney, Curr Opin Nephrol Hypertens11(2002), pp.23–30.
    [65]K Matsumoto and T Nakamura, Hepatocyte growth factor: renotropic role andpotential therapeutics for renal diseases, Kidney Int59(2001), pp.2023–2038.
    [66]GK Michalopoulos and MC DeFrances, Liver regeneration, Science276(1997), pp.60–66.
    [67]GA Vargas, A Hoeflich and PM Jehle, Hepatocyte growth factor in renal failure:promise and reality, Kidney Int57(2000), pp.1426–1436.
    [68]I Hellgren, J Gorman, C Sylven Factors controlling the efficiency ofTat-mediated plasmid DNA transfer J Drug Target,12(2004),pp.39-47
    [69]Korpanty G, Chen S, Shohet RV, et al. Targeting of VEGF-mediated angiogenesis torat myocardium using ultrasonic destruction of microbubbles.Gene Ther.[J].2005,12(17):1305-1312.
    [70] Vancraeynest D, Havaux X, Pouleur AC, et al. Myocardial delivery of colloidnanoparticles using ultrasound-targeted microbubble destruction.[J] Eur HeartJ.2006,27(2):237-245.
    [71] Zhigang W, Zhiyu L, Haitao R, et al. Ultrasound-mediated microbubbledestruction enhances VEGF gene delivery to the infarcted myocardium in rats.[J]Clin Imaging.2004,28(6):395-398.
    [72] Li X, Wang Z, Ran H, et al. Experimental research on therapeutic angiogenesisinduced by Hepatocyte Growth Factor directed by ultrasound-targeted microbubbledestruction in rats.[J] J Ultrasound Med.2008,27:439-446.
    [73] Ren JL, Wang ZG, Zhang Y, et al. Transfection efficiency of TDL compound inHUVEC enhanced by ultrasound-targeted microbubble destruction.[J] UltrasoundMed Biol.2008,34(11):1857-1867.
    [74]Aeynest D, Havaux X, Pouleur AC, et al. Myocardial delivery of colloidnanoparticles using ultrasound-targeted microbubble destruction.[J] Eur Heart J,2006,27(2):237-245.
    [75]Lindner JR. Mierobubbles in medical imaging:Current applications and futuredirections.Nat Rev Drug Discov2004:3:527-532.
    [76] Klibanov AL. Microbubble contrast agents:targeted ultrasound imaging andultrasound-assisted drug-delivery applieations[[J] Invest Radiol,2006,41(3):354-62.
    [77] Sakahara H,SagaT. Avidin-biotin system for delivery of diagnostic agents.AdvDrug Deliv Rev1999;37:89--101.
    [78] Safadi R, Friedman SL. Hepatic fibrosis: role of hepatic stellate cell activation.Med Gen Med.2002;4:27.
    [79]7Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol.2000;15:290–301.
    [80] Kinnman N, Housset C. Peribiliary myofibroblasts in biliary type liver fibrosis.Front Biosci.2002;7:d496–d503.
    [81]Rastaldi MP, Ferrario F, Giardino L, Dell’Antonio G, Grillo C, Grillo P, Strutz F,Muller GA, Colasanti G, D’Amico G. Epithelial-mesenchymal transition of tubularepithelial cells in human renal biopsies. Kidney Int.2002;62:137–146.
    [82]Ezure T, Sakamoto T, Tsuji H, Lunz JG, third, Murase N, Fung JJ, Demetris AJ. Thedevelopment and compensation of biliary cirrhosis in interleukin-6-deficient mice.Am J Pathol.2000;156:1627–1639.
    [83]T. Li, K. Tachibana, M. Kuroki and M. Kuroki, Gene transfer with echo-enhancedcontrast agents: comparison between Albunex, Optison, and Levovist in mice-initialresults, Radiology229(2003), pp.423–428.
    [84]Y. Taniyama, K. Tachibana, K. Hiraoka, M. Aoki, S. Yamamoto, K. Matsumoto, T.Nakamura, T. Ogihara, Y. Kaneda and R. Morishita, Development of safe andefficient novel nonviral gene transfer using ultrasound: enhancement of transfectionefficiency of naked plasmid DNA in skeletal muscle, Gene Ther.9(2002), pp.372–380.
    [85]Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M.Aoki, T. Ogihara, K. Yasufumi and R. Morishita, Local delivery of plasmid DNAinto rat carotid artery using ultrasound, Circulation105(2002), pp.1233–1239.
    [86]S. Sonoda, K. Tachibana, E. Uchino, A. Okubo, M. Yamamoto, K. Sakoda, T.Hisatomi, K.H. Sonoda, Y. Negishi, Y. Izumi, S. Takao and T. Sakamoto, Genetransfer to corneal epithelium and keratocytes mediated by ultrasound withmicrobubbles, Investig. Ophthalmol. Vis. Sci.47(2006), pp.558–564.
    [87]R.V. Shohet, S. Chen, Y.T. Zhou, Z. Wang, R.S. Meidell, R.H. Unger and P.A.Grayburn, Echocardiographic destruction of albumin microbubbles directs genedelivery to the myocardium, Circulation101(2000), pp.25
    [88]M. Kinoshita and K. Hynynen, A novel method for the intracellular delivery ofsiRNA using microbubble-enhanced focused ultrasound, Biochem. Biophys. Res.Commun.335(2005), pp.393–399.
    [89]M. Kinoshita and K. Hynynen, Intracellular delivery of Bak BH3peptide bymicrobubble-enhanced ultrasound, Pharm. Res.22(2005), pp.716–720.
    [90]J.R. Lindner, Microbubbles in medical imaging: current applications and futuredirections, Nat. Rev. Drug. Discov.3(2004), pp.527–532.
    [91]S. Tsunoda, O. Mazda, Y. Oda, Y. Iida, S. Akabame, T. Kishida, M. Shin-Ya, H.Asada, S. Gojo, J. Imanishi, H. Matsubara and T. Yoshikawa, Sonoporation usingmicrobubble BR14promotes pDNA/siRNA transduction to murine heart, Biochem.Biophys. Res. Commun.336(2005), pp.118–127.
    [92]Roth Y, Tichler T, kostenich G,et al. High-b-value difffusion-weighted MRimaging for pretreatment prediction and early monitoring of tumor response totherapy in mice. Radiology2004;232:685-692.
    [93]Chow LC, Bammer R, Moseley ME,et al. Single breath-hold diffusion-weightedimaging of the abdomen. J Magn Reson Imaging2003;18:377-382
    [94]Koh TS, Thng CH, Lee PS, Hartono S, Rumpel H, Goh BC, Bisdas S. Hepaticmetastases: in vivo assessment of perfusion parameters at dynamiccontrast-enhanced MR imaging with dual-input two-compartment tracer kineticsmodel. Radiology2008;249:307-320
    [95]Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB,Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating kineticparameters from dynamic contrast-enhanced T1-weighted MRI of a diffusabletracer: standardized quantities and symbols. J Magn Reson Imaging1999;10:223-232
    [96]Totman JJ, O’gorman RL, Kane PA, Karani JB. Comparison of the hepaticperfusion index measured with gadoliniumenhanced volumetric MRI in controlsand in patients with colorectal cancer. Br J Radiol2005;78:105-109
    [97]Orton MR, Miyazaki K, Koh DM, Collins DJ, Hawkes DJ, Atkinson D, Leach MO.Optimizing functional parameter accuracy for breath-hold DCE-MRI of livertumours. Phys Med Biol2009;54:2197-2215
    [98]Van Beers BE, Leconte I, Materne R, Smith AM, Jamart J, Horsmans Y. Hepaticperfusion parameters in chronic liver disease: dynamic CT measurements correlatedwith disease severity. AJR Am J Roentgenol2001;176:667-673
    [99]Hagiwara M, Rusinek H, Lee VS, Losada M, Bannan MA, Krinsky GA, Taouli B.Advanced liver fibrosis: diagnosis with3D whole-liver perfusion MR imaging-initial experience. Radiology2008;246:926-934
    [100] Thampanitchawong P, Piratvisuth T Liver biopsy: complications and riskfactors. World J Gastroenterol1999,5:301–304
    [101] Cho SG, KimMY, Kim HJ et al (2001) Chronic hepatitis: in vivo proton MRspectroscopic evaluation of the liver and correlation with histopathologic findings.Radiology221:740–746
    [102] Longo R, Ricci C, Masutti F et al (1993) Fatty infiltration of the liverQuantification by1H localized magnetic resonance spectroscopy and comparisonwith computed tomography. Invest Radiol28:297–302
    [103] Thomsen C, Becker U, Winkler K et alQuantification of liver fat usingmagnetic resonance spectroscopy. Magn Reson Imaging1994,12:487–495
    [1] Schiff ER, Lee SS, Chao YC, Kew-Yoon S, Bessone F, Wu SS, Kryczka W, Lurie Y,Gadano A, Kitis G, Beebe S, Xu D, Tang H, Iloeje U: Long-term treatment withentecavir induces reversal of advanced fibrosis or cirrhosis in patients with chronichepatitis B. Clin Gastroenterol Hepatol2010.
    [2] Chang TT, Liaw YF, Wu SS, Schiff E, Han KH, Lai CL, Safadi R, Lee SS, Halota W,Goodman Z, Chi YC, Zhang H, Hindes R, Iloeje U, Beebe S, Kreter B: Long-termentecavir therapy results in the reversal of fibrosis/cirrhosis and continuedhistological improvement in patients with chronic hepatitis B. Hepatology2010,52(3):886-893.
    [3] Rygiel KA, Robertson H, Marshall HL, Pekalski M, Zhao L, Booth TA,Jones DE,Burt AD, Kirby JA: Epithelial-mesenchymal transition contributes to portal tractfibrogenesis during human chronic liver disease. Lab Invest2008,88:112-123.
    [4] Brenner DA: Molecular pathogenesis of liver fibrosis. Transactions of the AmericanClinical and Climatological Association2009,120:361-368.
    [5] Malhi H, Guicciardi ME, Gregory J, Gores GJ: Hepatocyte death: a clear andpresent danger. Physiol Rev2010,90:1165-1194.
    [6] Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I, Klaunig JE: Role of theKupffer Cell in Mediating Hepatic Toxicity and Carcinogenesis.ToxicologicalSciences2006,96(1):2-7, Friedman SL. Hepatic stellate cells: protean,multifunctional, and enigmatic cells of the liver. Physiol Rev.2008,88(1):125-172.
    [7] Jiao J, Friedman SL, Aloman C: Hepatic fibrosis. Curr Opin Gastroenterol2009,25(3):223-229.
    [8] Bataller R, Brenner DA: Liver Fibrosis. The Journal of Clinical Investigation2005,115(2):209-218.
    [9] Fontana L, Jerez D, Rojas-Valencia L, Solis-Herruzo JA, Greenwel P,Rojkind M:Ethanol induces the expression of alpha1(I) procollagen mRNA in a co-culturesystem containing a liver stellate cell-line and freshly isolated hepatocytes. BiochimBiophys Acta1997,1362:135-144.
    [10]Purohit V, Brenner DA: Mechanisms of Alcohol-Induced Hepatic Fibrosis:ASummary of the Ron Thurman Symposium. Hepatology2006,43(4):872-878.
    [11]Bertolani C, Marra F: The role of adipokines in liver fibrosis.Pathophysiology2008,15:91-101.
    [12]Diehl AM: Nonalcoholic steatosis and steatohepatitis, Nonalcoholic fatty liverdisease abnormalities in macrophage function and cytokines. Am J PhysiolGastrointest Liver Physiol2002,282:G1-G5.
    [13]Rahmouni K, Haynes WG: Endothelial effects of leptin: implications in health anddiseases. Curr Diab Rep2005,5:260-266.
    [14]Bertolani C, Sancho-Bru P, Failli P, Bataller R, Aleffi S, DeFranco R,Mazzinghi B,Romagnani P, Milani S, Gines P, Colmenero J, Parola M, Gelmini S, Tarquini R,Laffi G, Pinzani M, Marra F: Resistin as an intrahepatic cytokine: overexpressionduring chronic injury and induction of proinflammatory actions in hepatic stellatecells. Am J Pathol2006,169:2042-2053.
    [15]Glaser SS, Gaudio E, Miller T, Alvaro D, Alpini G: Cholangiocyte proliferationand liver fibrosis. Expert Rev Mol Med2009,25;11:e7.
    [16]Bataller R, Yang L, Brenner DA: A dual reporter gene transgenic mousedemonstrates heterogeneity in hepatic fibrogenic cell populations.Hepatology2004,40:1151-1159.
    [17]Martin-Vílchez S, Sanz-Cameno P, Rodriguez-Munoz Y, Majano PL, Molina-Jimenez F, Lopez-Cabrera M, Moreno-Otero R, Lara-Pezzi E: The hepatitis B virusX protein induces paracrine activation of human hepatic stellate cells. Hepatology2008,47(6):1872-1883
    [18]Sebastiani G, Alberti A: Non invasive fibrosis biomarkers reduce but not substitutethe need for liver biopsy. World J Gastroenterol2006,12(23):3682-3694.
    [19]West J, Card TR: Reduced mortality rates following elective percutaneous liverbiopsies. Gastroenterology2010,139(4):1230-7,
    [20]Terjung B, Lemnitzer I, Dumoulin FL, Effenberger W, Brackmann HH, SauerbruchT, Spengler U: Bleeding complications after percutaneous liver biopsy. An analysisof risk factors. Digestion2003,67(3):138-45.
    [21]Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, Kiernan TW,Wollman J: Formulation and application of a numerical scoring system forassessing histological activity in asymptomatic chronic active hepatitis. Hepatology1981,1:431-435.
    [22] Standish RA, Cholongitas E, Dhillon A, Burroughs AK, Dhillon AP: An appraisalof the histopathological assessment of liver fibrosis. Gut2006,55:569-578.
    [23] Scheuer PJ: Classification of chronic viral hepatitis: a need for reassessment.Journal of Hepatology1991,13:372-4.
    [24] Desmet V J, Gerber M, Hoofnagle JH, et al: Classification of chronic hepatitis:Diagnosis, grading and staging. Hepatology1994,19:1513-20.
    [25] Ratnakar KS, Sudha S: Image analysis in the evaluation of chronic hepatitis.Bahrain Medical Bulletin2001.
    [26] Bedossa P, Poynard T: An algorithm for the grading of activity in chronic hepatitisC. The METAVIR Cooperative Study Group. Hepatology1996,24(2):289-293.
    [27]Franciscus A: HCV Diagnostic tools: Grading and staging a liver biopsy.HCSP;2010, Version2.4.
    [28]Bedossa P, Carrat F: Liver fibrosis: screening is not staging. J Hepatol2009,50(6):1268-1269.
    [29]Bondini S, Kleiner DE, Goodman ZD, Gramlich T, Younossi ZM: Pathologicassessment of non-alcoholic fatty liver disease. Clin Liver Dis2007,11(1):17-23,
    [30]Poynard T, Halfon P, Castera L, Munteanu M, Imbert-Bismut F, Ratziu V,Benhamou Y, Bourlière M, de Ledinghen V, FibroPaca Group: Standardization ofROC curve areas for diagnostic evaluation of liver fibrosis markers based onprevalences of fibrosis stages. Clin Chem2007,53(9):1615-22.
    [31]Bedossa P, Dargère D, Paradis V: Sampling variability of liver fibrosis in chronichepatitis C. Hepatology2003,38(6):1449-57.
    [32]Zhou K, Lu LG: Assessment of fibrosis in chronic liver diseases. Journal ofDigestive Diseases2009,10(1):7-14.
    [33]Grigorescu M: Noninvasive Biochemical Markers of Liver Fibrosis. JGastrointestin Liver Dis2006,15(2):149-159.
    [34]Taouli B, Ehman RL, Reeder SB: Advanced MRI methods for assessment ofchronic liver disease. AJR2009,193:14-27.
    [35]Rouviere O, Yin M, Dresner MA, Rossman PJ, Burgart LJ, Fidler JL, Ehman RL:MR elastography of the liver: preliminary results. Radiology2006,240(2):440–448.
    [36]Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, FidlerJL,Ehman RL, Yin, M: Assessment of hepatic fibrosis with magnetic resonanceelastography. Clin Gastroenterol Hepatol2007,5:1207-1213.
    [37] Huwart L, Sempoux C, Vicaut E, Salameh N, Annet L, Danse E, Peeters F, terBeek LC, Rahier J, Sinkus R, Horsmans Y, Van Beers BE: Magnetic resonanceelastography for the non invasive staging of liver fibrosis. Gastroenterology2008,135(1):32-40.
    [38] Kim T, Murakami T, Takahashi S,et al. Diffusion-weighted single-shot echo planarMR imaging for liver disease [J]. AJR,1999,173(2):393-398.
    [39] Amano Y, Kumazaki T, Ishihara M,et al. Single-shot diffusion weightedecho-planar imaging of normal and cirrhotic livers using a Phased-array multicoil[J]. Acta Radiol,1998,39(4):440-442.
    [40]杨正汉,谢敬霞,周诚等,肝硬化组织表现扩散吸收改变及其可能机制的实验研究[J]。中国医学影像技术,2002,18(3):849-851.
    [41] Ichikawa T, Haradome H, Hachiya J, et al. Perfusion-weighted MR imaging in theupper abdomen: preliminary clinical experience iin61patients[J]. AJR,1997,169(4):1061-1066
    [42] Hall HW, Groud JV, Hattum JV,ey al.31p Magnetic resonance spectroscopy ofthe liver: correlation with standardized serum, clinical, and histological changesin diffuse liver disease [J]. Hepalology,1995,21-43.
    [43] Stanka M, Rummeny E, Reimer P, et al. Characterization of chronic liver diseasesby localized1H-MR-STEAM spectroscopy [J]. Program of ISMRM,1997,12-72
    [44] Lim AK, Hamilton G, Patel N, et al.1H MR spectroscopy in the evaluation of theseverity of chronic liver disease [J]. Radiology,2003,226:288-289.
    [45] Soon G, Mi Y, Hyung JK,ea al. Chronic Hepatitis: In Vivo proton MRSpectroscopic Evaluation of the Liver and Correlation with HistopathologicFindings [J]. Radiology,2001,221:740-746

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700