用户名: 密码: 验证码:
金属焊接残余应力的激光超声无损检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用精确测量多种模态的超声波波速来测定金属材料的二阶和三阶弹性常数,并从数值模拟和实验两方面研究了金属焊接的残余应力分布。
     首先,采用有限元方法模拟金属融化焊接和焊接接头冷却成型的过程。建立移动高斯热源对金属板进行焊接的三维模型,在计算焊接和冷却过程中温度场的基础上,采用生死单元法模拟了熔池单元从融化到冷却的相变过程,重点分析了焊接之后母材各位置的残余应力分布。
     针对金属焊接结构,建立了激光声表面波波速的测试系统。该系统利用短脉冲激光器在被测样品表面激发出高频超声表面波,利用自行研制的点接触式PZT传感器接收超声表面波。系统采用激发源和被测样品二维平移方式,实现样品焊缝区的二维扫描,通过波形相关算法精确计算各位置的波速值,并得到焊缝附近区域内的声表面波速度分布。
     设计了适用于金属材料二阶弹性常数的激光超声测量系统。该系统能探测激光线源在铝合金样品上激发的表面波、横波和纵波信号。利用扫描激光源法和波形相关技术精确计算声表面波的传播速度,并用时间飞行法计算了经样品底面反射的横波和纵波的传播速度。进而根据波速与二阶弹性常数的关系计算金属材料的二阶弹性常数。
     针对各向同性的金属材料,采用线性热膨胀引起材料等效微应变的静水压力法测定其三阶弹性常数。通过水浴加热法使金属样品处于静水压力下,采用上述实验系统精确测量了激光在金属上激发的纵波、横波和表面波波速;并对材料进行应力-应变测试,得到其线性热膨胀系数。进而根据声表面波方程和等效弹性常数与各波速的关系计算金属材料的三阶弹性常数。
     在测得的金属焊接区域的声表面波波速分布、二阶弹性常数、三阶弹性常数的基础上,结合单轴应力条件下的声弹性方程,计算金属焊接残余应力的分布,并验证数值模拟结果。
     本文的研究结果将对金属焊接残余应力的激光超声检测提供理论和实验依据,也有助于激光超声无损检测技术进一步发展和应用。
This paper present a new method based on the measurement of velocity of laser-generated ultrasound to determinate the SOEC and TOEC, after that, both the numerical simulation and experiments are carried out to obtain the residual stresses distribution on the welded plates.
     The process form melting to forming after cooling of weld area is been simulated by finite element method (FEM). A very detailed and localized three-dimensional transient thermal model is initially established, which simulates the mechanisms of melting formation, calculates the temperature distribution in the local weld area from the beginning of welding to the final cooling. Subsequently, using the preceding welding model, thermo-mechanical analysis of the welding process is performed, from which residual stresses distribution around the joint are calculated.
     Experiments based on laser-generated surface acoustic wave (SAW) method were carried out to determine the velocity distribution of surface acoustic wave (SAW) around the joint. The waves are detected by self-made PZT transducer and the generated laser and sample is moved on the2D directions, which realize the2D scanning on the welding line area.
     According to the Christoffel theory of elasticity, a measurement system based on laser-generated ultrasound is set up to calculate the elastic constants of metal sample. A serial of ultrasonic pulses is detected by self-made PZT transducer fixed in the detection point when scanning the line source focused from Nd:YAG laser with electronic control translation stage. Then the velocity of Rayleigh waves, longitudinal and shear wave are obtained by different traveling time with their propagation distance. At the end, the SOEC and density of the metal are determinate.
     A new method of measurement of TOEC is proposed through equivalent micro strain which caused by linear thermal expansion. The isotropous sample is placed in steady stress field, then the experiment system is built up to measure the velocity of Rayleigh wave, longitudinal and shear wave accurately. At the same time, the thermal machine analysis (TMA) test between stress and strain is carried out on the sample in order to get the linear thermal expansion coefficient (LTEC). Finally, according the Rayleigh Equation as well as the relation between equivalent elastic coefficients and the velocity of ultrasound, the value of TOEC are calculated.
     The velocity of SAW on different position near welding line then can be calculated by waveform related algorithm, from which the residual stresses distribution are calculated due to acoustic-elastic theory. By comparing the thermal-structure model answers with the measurement results, it is found that the numerical simulation results are in good agreement with the experimental data.
     The results in this paper will provide the theoretical and experimental evidence for the determination of elastic constants and residual stresses on metal by laser-generated ultrasound; it's also helpful for the further development and application of nondestructive testing and evaluation (NDT&E) using laser ultrasonic technology.
引文
[1]拉达伊,郑朝云,史耀武,熊第京.焊接热效应:温度场,残余应力,变形.机械工业出版社,1997.
    [2]米谷茂,朱荆璞,材料科学,邵会孟.残余应力的产生和对策.机械工业出版社,1983.
    [3]Kundu T. Ultrasonic nondestructive evaluation:engineering and biological material characterization. CRC,2004.
    [4]Schmerr LW, Song SJ. Ultrasonic nondestructive evaluation systems:models and measurements. Springer Verlag,2007.
    [5]袁易全.近代超声原理及应用.南京:南京大学出版社.1996.
    [6]White R. Generation of elastic waves by transient surface heating. Journal of Applied Physics,1963,34(12):3559-3567.
    [7]Tumbo S, Salyani M, Whitney J, Wheaton T, Miller W. Investigation of laser and ultrasonic ranging sensors for measurements of citrus canopy volume. Applied Engineering in Agriculture,2002,18(3):367-372.
    [8]Fedorov FI, Bradley JES. Theory of elastic waves in crystals. Plenum press New York,1968.
    [9]ASKARIAN G, CHANTURIIA G, PROKHOROV A, Shipulo G. The effects of a laser beam in a liquid(Effervescence, scattering and photohydraulic effects in transparent and absorbing liquids, due to intense ruby laser beam). SOVIET PHYSICS-JETP,1963,17:1463-1465.
    [10]Ramsden S, Savic P, A radiative detonation model for the development of a laser-induced spark in air:DTIC Document,1964.
    [11]Bunkin FV, Konov V, Prokhorov A, Fedorov V. Laser Spark in the. Soviet Journal of Experimental and Theoretical Physics Letters,1969,9:371.
    [12]Stegman R, Schriempf J, Hettche L. Experimental studies of laser-supported absorption waves with 5-ms pulses of 10.6-μ radiation. Journal of Applied Physics,1973,44(8):3675-3681.
    [13]Lee R, White R. Excitation of surface elastic waves by transient surface heating. Applied Physics Letters,1968,12(1):12-14.
    [14]Bourkoff E, Palmer C. Low-energy optical generation and detection of acoustic pulses in metals and nonmetals. Applied Physics Letters,1985,46(2): 143-145.
    [15]Dewhurst R, Hutchins D, Palmer S, Scruby C. Quantitative measurements of laser-generated acoustic waveforms. Journal of Applied Physics,1982,53(6): 4064-4071.
    [16]Hutchins D, Dewhurst R, Palmer S. Directivity patterns of laser-generated ultrasound in aluminum. The Journal of the Acoustical Society of America, 1981,70(5):1362-1369.
    [17]Scruby CB, Drain LE. Laser ultrasonics:techniques and applications. Taylor & Francis,1990.
    [18]Viertl J. Frequency spectrum of laser-generated ultrasonic waves. Journal of Applied Physics,1980,51(1):805-807.
    [19]White R. Elastic wave generation by electron bombardment or electromagnetic wave absorption. Journal of Applied Physics,1963,34(7):2123.
    [20]Telschow K, Conant R. Optical and thermal parameter effects on laser-generated ultrasound. The Journal of the Acoustical Society of America, 1990,88:1494.
    [21]Scruby C, Dewhurst R, Hutchins D, Palmer S. Quantitative studies of thermally generated elastic waves in laser-irradiated metals. Journal of Applied Physics, 1980,51(12):6210-6216.
    [22]Rose L. Point-source representation for laser-generated ultrasound. The Journal of the Acoustical Society of America,1984,75(3):723-732.
    [23]Doyle P. On epicentral waveforms for laser-generated ultrasound. Journal of Physics D:Applied Physics,1986,19:1613.
    [24]McDonald FA. On the precursor in laser-generated ultrasound waveforms in metals. Applied Physics Letters,1990,56(3):230-232.
    [25]Sanderson T, Ume C, Jarzynski J. Longitudinal wave generation in laser ultrasonics. Ultrasonics,1998,35(8):553-561.
    [26]Doyle P, Scala C. Near-field ultrasonic Rayleigh waves from a laser line source. Ultrasonics,1996,34(1):1-8.
    [27]Bernstein JR, Spicer JB. Line source representation for laser-generated ultrasound in aluminum. The Journal of the Acoustical Society of America, 2000,107:1352.
    [28]Arias I, Achenbach JD. Thermoelastic generation of ultrasound by line-focused laser irradiation. International journal of solids and structures,2003,40(25): 6917-6935.
    [29]Achenbach J. Quantitative nondestructive evaluation. International journal of solids and structures,2000,37(1):13-27.
    [30]Kromine A, Fomitchov P, Krishnaswamy S, Achenbach J. Laser ultrasonic detection of surface breaking discontinuities:scanning laser source technique. Materials Evaluation,2000,58(2).
    [31]Kromine AK, Fomitchov PA, Krishnaswamy S, Achenbach JD. Applications of scanning laser source technique for detection of surface-breaking defects: proceedings of,2000.
    [32]Aindow A, Dewhurst R, Hutchins D, Palmer S. Laser- generated ultrasonic pulses at free metal surfaces. The Journal of the Acoustical Society of America, 1981,69:449.
    [33]Hirao M, Fukuoka H, Miura Y. Scattering of Rayleigh surface waves by edge cracks:Numerical simulation and experiment. The Journal of the Acoustical Society of America,1982,72:602.
    [34]Scruby C. Studies of laser- generated ultrasonic waveforms at different orientations. Applied Physics Letters,1986,48(2):100-102.
    [35]Dewhurst R, Edwards C, Palmer S. Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver. Applied Physics Letters,1986,49(7):374-376.
    [36]Dewhurst R, Edwards C, McKie A, Palmer S. Comparative study of wide-band ultrasonic transducers. Ultrasonics,1987,25(6):315-321.
    [37]Kenderian S, Djordjevic B, Green J, R.E. Point and line source laser generation of ultrasound for inspection of internal and surface flaws in rail and structural materials. Research in Nondestructive Evaluation,2001,13(4):189-200.
    [38]Monchalin JP. Optical detection of ultrasound. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,1986,33:485-499.
    [39]Adler R, Korpel A, Desmares P. An instrument for making surface waves visible. Sonics and Ultrasonics, IEEE Transactions on,1968,15(3):157-160.
    [40]Sontag H, Tam A. Optical monitoring of photoacoustic pulse propagation in silicon wafers. Applied Physics Letters,1985,46(8):725-727.
    [41]Tam A, Ayers G. Ultrasonic imaging of layered structures utilizing nondestructive subnanosecond photoacoustic pulse generation. Applied Physics Letters,1986,49(21):1420-1422.
    [42]Tam AC. Applications of photoacoustic sensing techniques. Reviews of Modern Physics,1986,58(2):381.
    [43]Nelson KA, Miller R, Lutz D, Fayer M. Optical generation of tunable ultrasonic waves. Journal of Applied Physics,1982,53(2):1144-1149.
    [44]Eesley G. Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Physical review B, Condensed matter, 1986,33(4):2144-2151.
    [45]Grahn H, Young D, Maris H, Tauc J, Hong J, Smith Ⅲ T. Sound velocity and index of refraction of AlAs measured by picosecond ultrasonics. Applied Physics Letters,1988,53:2023.
    [46]Lin HN, Stoner R, Maris H, Tauc J. Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry. Journal of Applied Physics,1991,69(7):3816-3822.
    [47]Thomsen C, Strait J, Vardeny Z, Maris H, Tauc J, Hauser J. Coherent phonon generation and detection by picosecond light pulses. Physical review letters, 1984,53(10):989-992.
    [48]Monchalin JP. Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer. Applied Physics Letters,1985,47(1):14-16.
    [49]Monchalin JP, Heon R. Laser ultrasonic generation and optical detection with a confocal Fabry-Perot interferometer. Materials Evaluation,1986,44: 1231-1237.
    [50]McKie ADW, Wagner JW, Spicer JB, Deaton Jr JB. Dual-beam interferometer for the accurate determination of surface-wave velocity. Applied optics, 1991,30(28):4034-4039.
    [51]Rosenthal D, Schemerber R. Thermal study of arc welding. Welding Journal, 1938,17(4):2s-8s.
    [52]Wilson E, Nickell R. Application of the Finite Element Analysis to Heat Conduction Problems. Nuclear Engineering and Design,1966,(4):276-286.
    [53]Krutz G, Schoenhals R, Hore P. Application of the finite-element method to the inverse heat conduction problem. Numerical Heat Transfer, Part A: Applications,1978,1(4):489-498.
    [54]Rybicki E, Stonesifer R. Computation of residual stresses due to multipass welds in piping systems. Journal of Pressure Vessel Technology,1979,101:149.
    [55]Leblond JB, Mottet G, Devaux J. A theoretical and numerical approach to the plastic behaviour of steels during phase transformations-Ⅰ. Derivation of general relations. Journal of the Mechanics and Physics of Solids,1986,34(4): 395-409.
    [56]Frewin M, Scott D. Finite element model of pulsed laser welding. WELDING JOURNAL-NEW YORK-,1999,78:15.
    [57]Moraitis G, Labeas G. Prediction of residual stresses and distortions due to laser beam welding of butt joints in pressure vessels. International Journal of Pressure Vessels and Piping,2009,86(2-3):133-142.
    [58]Krasovskyy A, Sonnichsen S, Bachmann D. On the residual stresses in multi-pass welds:coupling of welding simulation and fatigue analysis. Procedia Engineering,2011,10:506-511.
    [59]唐慕尧,丁士亮,孟繁森.焊接过程力学行为的数值研究方法.焊接学报,1988,9(3):125-133.
    [60]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算.焊接学报,1983,4(3):139-147.
    [61]汪建华,钟小敏,戚新海.焊接过程的三维热弹塑性有限元分析.力学与实践,1995,17(3):27-29.
    [62]鹿安理,史清宇.厚板焊接过程温度场,应力场的三维有限元数值模拟.中国机械工程,2001,12(2):183-186.
    [63]Zeng Z, Li X, Miao Y, Wu G, Zhao Z. Numerical and experiment analysis of residual stress on magnesium alloy and steel butt joint by hybrid laser-TIG welding. Computational Materials Science,2011.
    [64]Lima C, Nin J, Guilemany J. Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the Modified Layer Removal Method (MLRM). Surface and Coatings Technology,2006,200(20): 5963-5972.
    [65]陆才善.残余应力测试:小孔释放法.西安交通大学出版社,1991.
    [66]James MR, Cohen JB, The measurement of residual stresses by X-ray diffraction techniques:DTIC Document,1978.
    [67]张定铨,材料学,何家文,材料科学.材料中残余应力的X射线衍射分析和作用.西安交通大学出版社,1999.
    [68]OGURI T, MURATA K, MIZUTANI K, UEGAMI K. Application of X-ray stress measuring technique to curved surfaces:Residual stress on spherical surfaces. Materials science research international,2002,8(2):74-81.
    [69]张持重,李冬梅,庞绍平,关尚军.采用X射线法测算金属材料内部残余 应力的研究.吉林化工学院学报,2001,18(004):73-75.
    [70]刘翠荣,王成文.磁性法测定A633D钢焊接接头残余应力的研究.太原重型机械学院学报,2002,23(1):16-21.
    [71]卢诚磊,倪纯珍,陈立功.巴克豪森效应在铁磁材料残余应力测量中的应用.无损检测,2005,27(4):176-178.
    [72]王威,王社良,徐金兰.磁测残余应力方法及特点对比.建筑技术开发,2005,32(002):18-19.
    [73]Erofeev V, Zaznobin V, Samokhvalov R. Determination of mechanical stresses in solids by an acoustic method. Acoustical Physics,2007,53(5):546-552.
    [74]虞付进,赵燕伟,张克华.超声检测表面残余应力的研究与发展.表面技术,2007,36(4):72-75.
    [75]Benson R, Raelson V. Acoustoelasticity. Product Engineering,1959,30(29): 56-59.
    [76]潘友光,钟善桐.国内外焊接残余应力的测试技术和理论分析的综述[J].钢结构,1994,3(9):145-152.
    [77]Hayes M, Rivlin RS. Surface waves in deformed elastic materials. Archive for Rational Mechanics and Analysis,1961,8(1):358-380.
    [78]Iwashimizu Y, Kobori O. The Rayleigh wave in a finitely deformed isotropic elastic material. The Journal of the Acoustical Society of America,1978,64: 910.
    [79]Gerhart G. Rayleigh wave velocity for a stress-induced slightly anisotropic solid. The Journal of the Acoustical Society of America,1976,60:1085.
    [80]Hirao M, Fukuoka H, Hori K. Acoustoelastic effect of Rayleigh surface wave in isotropic material. Journal of Applied Mechanics,1981,48:119.
    [81]Biot MA. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics,1956,27(3):240-253.
    [82]Tokuoka T, Iwashimizu Y. Acoustical birefringence of ultrasonic waves in deformed isotropic elastic materials. International journal of solids and structures,1968,4(3):383-389.
    [83]Daniels WB, Smith CS. Pressure Derivatives of the Elastic Constants of Copper, Silver, and Gold to 10000 Bars. Physical Review,1958,111(3):713.
    [84]Bateman T, Mason W, McSkimin H. Third-order elastic moduli of germanium. Journal of Applied Physics,1961,32(5):928-936.
    [85]Seeger A, Buck O. Die experimentelle Ermittlung der elastischen Konstanten hoherer Ordnung. Zeitschrift Naturforschung Teil A,1960,15:1056.
    [86]Zeyfang R, Buck O, Seeger A. Thermally Activated Plastic Deformation of High-Purity Copper Single Crystals, physica status solidi (b),1974,61(2): 551-561.
    [87]Crecraft D. The measurement of applied and residual stresses in metals using ultrasonic waves. Journal of Sound and Vibration,1967,5(1):173-192.
    [88]Murnaghan FD. Finite deformation of an elastic solid. Dover New York,1967.
    [89]Jassby K, Saltoun D. Use of ultrasonic Rayleigh waves for the measurement of applied biaxial surface stresses in aluminum 2024-T 351 alloy. Materials Evaluation,1982,40:198-205.
    [90]Husson D. A perturbation theory for the acoustoelastic effect of surface waves. Journal of Applied Physics,1985,57(5):1562-1568.
    [91]Luthi T. Determination of biaxial and triaxial stress distributions using ultrasonics. NDT international,1990,23(6):351-356.
    [92]Duquennoy M, Ouaftouh M, Ourak M. Ultrasonic evaluation of stresses in orthotropic materials using Rayleigh waves. NDT & E International,1999,32(4): 189-199.
    [93]Duquennoy M, Ouaftouh M, Qian M, Jenot F, Ourak M. Ultrasonic characterization of residual stresses in steel rods using a laser line source and piezoelectric transducers. NDT & E International,2001,34(5):355-362.
    [94]王寅观,曲家棣.利用Rayleigh表面波无损检测热套圆盘的平面残余应力的研究.声学学报,1999,24(001):53-58.
    [95]Hu E, He Y, Chen Y. Experimental study on the surface stress measurement with Rayleigh wave detection technique. Applied Acoustics,2009,70(2): 356-360.
    [96]Delsanto P, Mignogna R, Clark A. Ultrasonic texture and stress measurements in anisotropic polycrystalline aggregates. The Journal of the Acoustical Society of America,1990,87(1):215-224.
    [97]Qozam H, Chaki S, Bourse G, Robin C, Walaszek H, Bouteille P. Microstructure effect on the Lcr elastic wave for welding residual stress measurement. Experimental mechanics,2010,50(2):179-185.
    [98]何林,丁杰雄,孔朝志.一种用于L_(CR)波应力检测的LFMCW声时测量系统设计与实现.测控技术,2011,30(002):106-111.
    [99]钱梦騄.激光超声学的若干进展.声学技术,2002,21(1):19-24.
    [100]钱梦騄.激光超声检测技术及其应用.上海计量测试,2003,30(001):4-7.
    [101]Ruiz A, Nagy PB. Diffraction correction for precision surface acoustic wave velocity measurements. The Journal of the Acoustical Society of America, 2002,112:835.
    [102]Karabutov A, Devichensky A, Ivochkin A, Lyamshev M, Pelivanov I, Rohadgi U, Solomatin V, Subudhi M. Laser ultrasonic diagnostics of residual stress. Ultrasonics,2008,48(6):631-635.
    [103]潘永东,钱梦騄,徐卫疆.激光超声检测铝合金材料的残余应力分布[J].声学学报:中文版,2004,29(3):254-257.
    [104]谢惠民,刘战伟,朱宏伟,方岱宁,戴福隆,尚海霞.单壁碳纳米管力学行为的数字散斑相关法实验研究.光学技术,2004,30(004):449-451.
    [105]杨彦锡,梁建术.金属材料纵向弹性常数测试的实验比较.河北机电学院学报,1998,15(2):54-58.
    [106]Bai M, Kato K, Umehara N, Miyake Y. Nanoindentation and FEM study of the effect of internal stress on micro/nano mechanical property of thin CN< sub> x films. Thin Solid Films,2000,377:138-147.
    [107]刘东旭,张泰华,郇勇.宏观深度测量压入仪器的研制.力学学报,2007,39(3):350-355.
    [108]Jipson V, Quate C. Acoustic microscopy at optical wavelengths. Applied Physics Letters,1978,32(12):789-791.
    [109]Lee YC, Ko SP. Measuring dispersion curves of acoustic waves using PVDF line-focus transducers. NDT & E International,2001,34(3):191-197.
    [110]魏智,王文富.航空有机玻璃高阶弹性常数超声测定.应用力学学报,2001,18(001):1-5.
    [111]宋国荣,何存富,黄垚,吴斌.小试件材料弹性常数超声测量方法的研究.应用基础与工程科学学报,2007,15(2):226-234.
    [112]Thurston R, Brugger K. Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Physical Review, 1964,133(6A):A1604.
    [113]王耀俊.固体性能研究中的非线性超声波.物理学进展,1986,6(4):509-527.
    [114]Bosher S, Dunstan D. Practical non-linear elasticity theory for large strains. High Pressure Research,2003,23(3):323-327.
    [115]Pastorelli R, Ferrari A, Beghi M, Bottani C, Robertson J. Elastic constants of ultrathin diamond-like carbon films. Diamond and related materials,2000,9(3): 825-830.
    [116]Mouchtachi A, El Guerjouma R, Baboux J, Santini P, Merle P, Bouami D. Ultrasonic Study of Elastic Anisotropy of Material Composite. Applied Composite Materials,2004,11(6):341-351.
    [117]Kim KY, Sribar R, Sachse W. Analytical and optimization procedures for determination of all elastic constants of anisotropic solids from group velocity data measured in symmetry planes. Journal of Applied Physics,1995,77(11): 5589-5600.
    [118]王小民,李明轩.用相速度测量数据反演单向纤维增强复合材料板的弹性常数.应用声学,1998,17(005):25-29.
    [119]许明翔,王耀俊.单向复合纤维材料弹性系数的超声测量.应用声学,1996,15(1):1-4.
    [120]Wilcox W, Calder C, Materials testing using laser energy deposition:California Univ., Livermore (USA). Lawrence Livermore Lab.,1977.
    [121]Bresse L, Hutchins D, Lundgren K. Elastic constant determination using generation by pulsed lasers. The Journal of the Acoustical Society of America, 1988,84:1751.
    [122]Scruby C, Moss B. Non-contact ultrasonic measurements on steel at elevated temperatures. NDT & E International,1993,26(4):177-188.
    [123]周辛庚,何存富.激光超声无损检测.实验力学,1996,11(4):434-441.
    [124]张锐,万明习,李刚,Wenwu C低频多模式超声兰姆波超薄层状横观各向同性复合材料定征方法:理论与实验.声学学报(中文版),2001,1.
    [125]杨京,崔连军,徐健,程建春.单向纤维增强复合板弹性常数的反演方法研究.声学学报,2005,30(4):355-361.
    [126]Lee YC, Cheng SW. Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2001,48(3): 830-837.
    [127]Hughes DS, Kelly J. Second-order elastic deformation of solids. Physical Review,1953,92:1145-1149.
    [128]Yost W, Breazeale M. Ultrasonic nonlinearity parameters and third-order elastic constants of germanium between 300 and 77° K. Physical Review B,1974,9(2): 510.
    [129]Yost W, Cantrell JH, Breazeale M. Ultrasonic nonlinearity parameters and third -order elastic constants of copper between 300 and 3° K. Journal of Applied Physics,1981,52(1):126-128.
    [130]Smith R, Stern R, Stephens R. Third-Order Elastic Moduli of Polycrystalline Metals from Ultrasonic Velocity Measurements. The Journal of the Acoustical Society of America,1966,40:1002.
    [131]Johal A, Dunstan D. Reappraisal of experimental values of third-order elastic constants of some cubic semiconductors and metals. Physical Review B, 2006,73(2):024106.
    [132]王寅观,邵良华.三阶弹性常数的超声测量方法.同济大学学报:自然科学版,1995,23(005):552-557.
    [133]姜文华.测量三阶弹性常数的非线性声学方法.物理,1994,23(4):231-235.
    [134]Royer D, Chenu C. Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source. Ultrasonics,2000,38(9): 891-895.
    [135]Duquennoy M, Ouaftouh M, Ourak M, Xu WJ. Influence of natural and initial acoustoelastic coefficients on residual stress evaluation:Theory and experiment. Journal of Applied Physics,1999,86(5):2490-2498.
    [136]Neubrand A, Hess P. Laser generation and detection of surface acoustic waves: Elastic properties of surface layers. Journal of Applied Physics,1992,71(1): 227-238.
    [137]Yu Z, Boseck S. Propagation of surface waves in deformed, anisotropic thin layered solids. Nondestructive Testing And Evaluation,2002,18(2):51-73.
    [138]何存富,周辛庚,戴福隆.一种非接触式测定材料弹性常数的新方法.力学学报,1997,29(6):720-725.
    [139]Lindgren LE. Finite element modeling and simulation of welding part 1: Increased complexity. Journal of thermal stresses,2001,24(2):141-192.
    [140]Deng D, Kiyoshima S. FEM analysis of residual stress distribution near weld start/end location in thick plates. Computational Materials Science,2011.
    [141]陈会丽,钟毅,王华昆,张家涛,起华荣.残余应力测试方法的研究进展.云南冶金,2005,34(003):52-54.
    [142]Akhshik S, Moharrami R. Improvement in accuracy of the measurements of residual stresses due to circumferential welds in thin-walled pipe using Rayleigh wave method. Nuclear Engineering and Design,2009,239(10): 2201-2208.
    [143]Kwon SD, Song SJ, Lee YZ. Evaluation of residual stress using saw: proceedings of,2002.
    [144]Wang R, Lei Y, Shi Y. Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet. Optics & Laser Technology,2011,43(4):870-873.
    [145]Shi Y, Ni C, Shen Z, Ni X, Lu J. Determination of Surface Stress Distributions in Steel Using Laser-Generated Surface Acoustic Waves. Japanese Journal of Applied Physics,2008,47:3504.
    [146]Auld BA. Acoustic fields and waves in solids. RE Krieger,1990.
    [147]Schroder CT, Scott Jr WR. On the complex conjugate roots of the Rayleigh equation:The leaky surface wave. The Journal of the Acoustical Society of America,2001,110:2867.
    [148]Wang H, Li M. Ab initio calculations of second-, third-, and fourth-order elastic constants for single crystals. Physical Review B Condensed Matter And Materials Physics,2009,79(22):224102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700