用户名: 密码: 验证码:
基于新型∑△调制的多频带OFDM-UWB通信系统关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带(Ultra Wide Band, UWB)技术是短距离、高速无线连接的物理层技术,也是下一代无线通信的关键技术之一。采用正交频分复用(OrthogonalFrequency Division Multiplexing, OFDM)技术的超宽带系统具有频带利用率高、抗干扰能力强以及功耗低等特性,欧洲ECMA-368标准建议将UWB和OFDM技术相结合,成为短距离、高数据率无线网络理想的传输和接入方案之一。本文针对多频带OFDM-UWB通信系统,研究适合于该系统的数据转换器,设计以新型∑△调制器为核心的高性能数模转换器(Digital to Analog Converter,DAC)和模数转换器(Analog to Digital Converter, ADC),为超宽带信号转换提供新的有效方案。
     在对∑△调制器的结构特点和噪声整形特性进行深入研究的基础上,本文提出了两种适合于多频带OFDM-UWB系统的新型∑△调制器:并行∑△调制器和基于时域插值与抽取的N-Tone∑△调制器,并设计了完整的基于新型∑△调制器的DAC和ADC,完成超宽带信号转换。
     本文提出的并行∑△调制器由低通三阶∑△调制器和带通四阶∑△调制器组成,采用多比特量化和两倍过采样,多频带OFDM-UWB信号分为低频和高频子带并行通过该调制器。为了保证信号带内的噪声整形效果和调制器的稳定性,本文设计了上述调制器的噪声传递函数,并对其零点分布位置进行了优化。
     本文提出的N-Tone∑△调制器基于时域插值与抽取的方法,该方法使得多频带OFDM-UWB子载波间形成空隙,同时N-Tone∑△调制器在其量化噪声频谱中引入位于多频带OFDM-UWB子载波频点上的零点,将大部分量化噪声推到了子载波空隙中,达到很好的噪声整形效果。该调制器采用无过采样结构,对信号进行1比特量化,避免了OFDM系统的高峰均比问题。本文采用的对信号的时域插值和抽取方法降低了系统实现的复杂度和处理时间。
     通过理论分析和仿真,验证了以本文提出的两种新型∑△调制器为核心的DAC和ADC都能够很好地完成信号转换,达到系统性能指标要求,而且两种调制器的采样频率都较低,硬件实现容易。
     本文进一步研究多频带OFDM-UWB通信系统的关键技术,提出了一个原创性的方法,即基于混合信号扩频技术降低OFDM系统峰值功率的方法,将发送端OFDM时域信号分解为离散信号和连续信号,再经过交织后发送出去。在接收端,本文提出了部分信号恢复法对信号解交织和重新组合。通过理论推导和仿真,验证了采用这种技术的OFDM系统峰值功率能够降低6~12dB,误码率从10-2降低到10-5。该方法在大幅降低OFDM系统峰值功率的同时,能够有效提高系统性能,并且适合于任何OFDM系统,为解决OFDM系统降低高峰值功率的关键问题提供了有效的技术方案。
Ultra-wideband (UWB) is the physical layer technique for the short-distancehigh-speed wireless transmission. It is also the key technique which will be widelyused in next generation wireless communication network. UWB communicationsystems offer several potential advantages, including robustness to multi-pathinterference, wide bandwidth, low power consumption and low cost. ECMA-368standardization groups proposed an orthogonal frequency division multiplexing(OFDM) based on UWB transmission for short-distance high datarate wirelessnetworks. This paper studied the data converter for the multi-band OFDM-UWBwireless communication systems. A novel sigma-delta modulator is designed andapplied to digital-to-analog converters (DAC) and analog-to-digital converters (ADC)in multi-band OFDM-UWB systems. This research will provide an effective methodfor UWB signal conversion.
     Based on the research of the modulator design feature and quantization noiseshaping characteristic, two novel sigma-delta modulators are designed for multi-bandOFDM-UWB systems. They are parallel sigma-delta modulator and N-Tonesigma-delta modulator based on the time domain interpolation and decimation. DACand ADC based on the two modulators are also designed for UWB signal conversion.
     The parallel sigma-delta modulator consists of a low-pass third-order modulatorand a band-pass fourth-order modulator based on multi-bit quantization. The samplefrequency is twice Nyquist frequency. The noise transfer function is optimized inview of quantization noise shaping and modulator stability. The multi-bandOFDM-UWB signal is divided into low frequency band and high frequency band andconverted by different sigma-delta modulators for each band.
     The N-Tone sigma-delta modulator is based on the time domain interpolationand decimation. The time domain interpolation results in the gaps of sub-carriers ofmulti-band OFDM-UWB. The N-Tone sigma-delta modulator produces N zeros in thequantization noise spectrum. These zeros are located at the frequencies ofmulti-band OFDM-UWB sub-carriers so that the most quantization noise is in the gaps of the multi-band OFDM-UWB signal spectrum. The sample frequency isNyquist frequency. The problem of high peak-to-average power ratio can be resolvedby using one bit quantizer in the N-Tone sigma-delta modulator. The time domaininterpolation and decimation processing can greatly reduce the computing time andcomplexity.
     The theoretical analysis and simulation results prove the validity of the DAC andADC based on the two designed modulators. The multi-band OFDM-UWB systemhas better bit error ratio (BER) performance. The presented sigma-delta modulatorswith lower sample rate are easy to hardware realization.
     Based on the farther studies on the key techniques of multi-band OFDM-UWBsystems, a new mixed signal spread spectrum OFDM system is suggested. Thesystem uses a novel signal partition method.This method is original and can reducethe peak transmission power of OFDM signals. In the transmitter, time domainsignals are divided into one continuous part and several discrete parts and sent outafter interleaving. Partial signal restoration method is proposed to restore the signalsin the receiver. Theoretical derivation and simulation results show that the peakpower of the spread spectrum OFDM system is decreased6dB to12dB and the BERis reduced form10-2to10-5. This original method can be widely used in OFDMsystems. The research will provide an effective solution for the key problem of peaktransmission power reduction in OFDM systems.
引文
[1]Leeper D. A long-term view of short-range wireless. IEEE Computer,2001, Vol.34(6):39~44
    [2]王金龙,王星贵,阚春荣,徐以涛.无线超宽带(UWB)通信原理与应用.北京:人民邮电出版社,2005.1~20
    [3]西瓦尔克.超宽带无线电技术.北京:电子工业出版社,2005.1~50
    [4]费元春.超宽带雷达理论与技术.北京:国防工业出版社,2010.1~30
    [5]贝尼迪特.超宽带无线电基础.北京:电子工业出版社,2005.1~50
    [6]Hint W. Ultra-wideband radio technology: overview and future research. Computer andCommunications,2003, Vol.26(1):46~52
    [7]黎海涛,徐继麟,张平等. UWB扩频通信技术研究.电子与信息学报,2002, Vol.24(7):1000~1004
    [8]李会勇,高昕艳,徐政五. UWB在室内高速无线传输中的应用研究.电子科技大学学报,2003, Vol.32(6):604~607
    [9]Wilson J M.Ultra wideband technology update at spring2003.Intel Developer UPDATEMagazine,2003:1~9
    [10]Blefari-Melazzi N, Bendedtto M G D, Gerla M, Luediger H, Win M Z, Withingto P. Guesteditorial ultra-wideband radio in multi-access wireless communication. IEEE Journal onSelected Areas in Communications,2002, Vol.20(9):1609~1610
    [11]朱义君,常力. UWB的主要特点及在短距离无线通信中的应用前景.电子技术应用,2003,Vol.1(10):6~8
    [12]Domenico P, Walter H. Ultra-wideband radio technology: potential and chanllenges ahead.IEEE Communications Magazine,2003, Vol.41(7):66~74
    [13]王文博,郑侃.宽带无线通信OFDM技术.北京:人民邮电出版社,2007.50~80
    [14]佟学俭,罗涛.OFDM移动通信技术原理与应用.北京:人民邮电出版社,2003.30~39
    [15]Yang S H, Lu Y G, Gong L. Implementation of the Programmable OFDM Signal GeneratorBased on MCU. Proceedings of2009International Conference on Wireless Communication,Networking and Mobile Computing, Beijing,2009,2397~2412
    [16]Tarokh V, Jafarkhani H. On the computation and reduction of the peak-to-average powerratio in multicarrier communication. IEEE Transactions on Communications,2000, Vol.48(1):37~44
    [17]Dinur N, Wulich D. Peak-to-average power ratio in high-order OFDM. IEEE Transactions oncommunications,2001, Vol.49(6):1063~1072
    [18]Seyedi A,Saulnier G J.General ICI self-cancellation scheme for OFDM systems.IEEETransactions on Vehicular Technology,2005,Vol.54(1):198~210
    [19]Candy J C, Benjamin O J. The Structure of Quantization Noise from Sigma-Delta Modulation.IEEE Transactions on Communications,1981, Vol.29(6):1316~1323
    [20]Engelberg S. Sigma-delta converters: theory and simulation. IEEE Instrumentation&Measurement Magazine,2007, Vol.10(6):49~53
    [21]Win M Z, Scholtz R A. Impulse radio: how it work. IEEE Communications letters,1998, Vol.2(2):36~38
    [22]Win M Z, Scholtz R A. Ultra-Wideband time-hopping spread-spectrum impulse radio forwireless-access communications. IEEE transactions on Communications,2000, Vol.48(4):399~430
    [23]吴建军,陈江,蒋伟,项海格. TH-PPM UWB系统的多址干扰模型改进及误码性能分析.北京大学学报(自然科学版),2006, Vol.1(3):79~84
    [24]Ghavami M,Michael L B,Haruyam A S,et al.A novel UWB pulse shape modulationsystem.Kluwer Wireless Personal Communications Journal,2002,23:105~120
    [25]Batra A, Balakrishnan J, Dabak A. Multi-Band OFDM: A New Approach for UWB.Proceedings of the2004International Symposium on Circuits and Systems.2004.365~368
    [26]Batra A. et al. Multi-band OFDM Physical Layer Proposal for IEEE802.15Task Group3a.IEEE P802.15-03/268rl-TG3a,2003
    [27]ECMA-368.High rate ultra wideband PHY and MAC standard.2005
    [28]Ai B, Ge J H, Wang Y. Symbol timing technique in OFDM systems. IEEE Transactions onBroadcasting,2004, Vol.50(1):56~62
    [29]Schmidl T M,Cox D C.Robust frequency and timing synchronization for OFDM.IEEETransactions on Communications,1997,Vol.45(12):1613~1621
    [30]Lee D,Cheun K.A new symbol timing recovery algorithm for OFDM systems.IEEETransactions on Consumer Electronics,1997,Vol.43(3):767~775
    [31]Muquet B,Zhengdao Wang,Giannakis G B,et al.Cyclic prefixing or zero padding forwireless multicarrier transmissions. IEEE Transactions on Communications,2002,Vol.50(12):2136~2148
    [32]Wang J,Song J,Yang Z X,et al.Frames theoretic analysis of zero-padding OFDM over deepfading wireless channels.IEEE Transactions on Broadcasting,2006,Vol.52(2):252~260
    [33]Ochiai H, Imai H. Performance analysis of deliberately clipped OFDM signals. IEEETransactions on Communications,2002, Vol.50(2):171~177
    [34]Bauml R, Fischer R, Huber J. Reducing the peak-to-average power ratio of multicarriermodulation by selected mapping. Electronics Letters,1996, Vol.32(22):2056~2057
    [35]Cimini L J. Peak-to-average power ratio reduction of an OFDM signal using partial transmitsequences. IEEE Communication Letters,2000, Vol.4(3):86~88
    [36]Davis J A, Jedwab J. Peak-to-mean Power control in OFDM, golay complementary sequencesand reed-muller codes. IEEE Transactions on Information Theory,1999, Vol.45(7):2397~2471
    [37]Ai B, Yang Z X, Pan C Y, et al.On the synchronization techniques for wireless OFDMsystems. IEEE Transactions on Broadcasting,2006, Vol.52(2):236~244
    [38]Van de Beek J J,Sandal M,Ola Boresson P.ML estimation of timing and frequency offset inOFDM systems.IEEE Transactions on Signal Processing,1997,Vol.45(7):1800~1805
    [39]Ko C C,Mo R H,Shi M.A new data rotation based CP synchronization scheme for OFDMsystems.IEEE Transactions on Broadcasting,2005,Vol.51(3):315~321
    [40]Ai B,Ge J H,Wang Y,et al. Frequency offset estimation for OFDM in wirelesscommunications. IEEE Transactions on consumer Electronics,2004, Vol.50(1):73~77
    [41]Ai B, Ge J H, Wang Y, et al, Decimal frequency offset estimation in OFDM wireless personalcommunications. IEEE Transactions on Broadcasting,2004, Vol.50(2):154~158
    [42]You Y H,Lee K T,Kang S J.Pilot-aided frequency offset tracking scheme for OFDM-basedDVB-T.IEEE Transactions on Consumer Electronics,2008,Vol.54(3):1053~1058
    [43]Tsai P Y,Kang H Y,Chiueh T D.Joint weighted least-squares estimation of carrier-frequencyoffset and timing offset for OFDM systems over multipath fading channels. IEEETransactions on Vehicular Technology,2005,Vol.54(1):211~223
    [44]李长青,刘丹谱,乐光新.UWB-OFDM系统的符号盲同步方法.电子与信息学报,2007,Vol.29(8):1895~1899
    [45]Li Y,Minn H,Rajatheva R M A P.Synchronization, channel estimation, and equalization inMB-OFDM Systems.IEEE Transactions on Wireless Communications,2008,Vol.7(11):4341~4352
    [46]Foerster J, Li Q H. UWB channel modeling contribution from Inter. IEEEP802.15~02/279r0-SG3a,2003
    [47]Lano G, Reig J, Rubio L. The UWB-OFDM channel analysis in frequency. Proceedings ofIEEE69th Vehicular Technology Conference. Barcelona,2009,1365~1372
    [48]Molisch A, Win M Z, Cassioli D. The Ultra Wide Bandwidth indoor channel from statisticalmodel to simulations. IEEE P802.15~02/284-sG3a and IEEE P9=802.15-02/285-SG3a,2002
    [49]Molisch A, Foerster J. Channel models for Ultra Wideband personal area networks. IEEEwireless communications,2003
    [50]Razavi B,Aytur T,Lam C,et al.A UWB CMOS transceiver.IEEE Journal of Solid-StateCircuits,2005,Vol.40(12):2555~2562
    [51]赵为春,刘丹谱,乐光新.一种新的无线超宽带(UWB)接收机及其与RAKE接收机的比较.电路与系统学报,2006, Vol.11(5):31~36
    [52]Souryal M R, You H Q. Quantize-and-Forward Relaying with M-ary Phase Shift Keying.Proceedings of2008IEEE Conference on Wireless Communications and Networking, LasVegas,2008,42~47
    [53]Candy J C. A use of double integration in sigma-delta modulation. IEEE Transactions onCommunications,1985, Vol.33(12):249~258
    [54] Chen J R, Kuo T H. An efficient design method for the modulator of high-order∑△ADCs.Proceedings of IEEE International Symposium on Circuits and Systems,1996,9~12
    [55]Kuo T H, Chen K D, Chen J R. Automatic coefficients design for high-order sigma-deltamodulators. IEEE Transactions on Circuits and Systems II: Analog and Digital SignalProcessing,1999, Vol.46(1):6~15
    [56]Sandner C, Clara M, Santner A, et al. A6-bit1.2Gs/s low-power flash ADC in0.13-μmdigital CMOS. IEEE Journals of Solid-State Circuits,2005, Vol.40(7):1499~1505
    [57]Li Z, Fiez T S. A14bit continuous-time delta-sigma A/D modulator with2.5MHz signalbandwidth. IEEE Journals of Solid-State Circuits,2007, Vol.42(9):1873~1883
    [58]Candy J C. A Use of Limit Cycle Oscillations to Obtain Robust Analog-to-Digital Converters.IEEE Transactions on Communications,1974, Vol.22(10):298~305
    [59]Hein S, Zakhor A. On The Stability of Sigma Delta Modulators. IEEE Transactions On SignalProcessing,1993, Vol.41(7):2322~2348
    [60]Risbo L. Stability predictions for high-order∑△modulators based on quasilinear modeling.Proceedings of International Symposium on Circuits and Systems,1995,361~364
    [61]Fraser N A, Nowrouzian B. A Novel Technique for the Estimation of Stability in Feedforwardand Multiple-Feedback Oversampled Sigma-Delta A/D Converter Configurations.Proceedings of European Conference on Circuit Theory and Design, Finland,2001,317~320
    [62]Medeiro F, Perez-Verdu B, Rodriguez-Vazquez A. A13-bit,2.2-MS/s,55-mW multibitcascade∑△modulator in CMOS0.7-μm single-poly technology. IEEE Journal ofSolid-State Circuits,1999, Vol.34(6):748~760.
    [63]Geerts Y, Steyaert M S J, Sansen W. A High Performance Multibit△∑CMOS ADC. IEEEJournal of Solid-State Circuits,2000, Vol.35(12):1829~1840
    [64]Fujimori I, Longo L, Hairapetian A, Seiyama K, Kosic S, Cao J, Chan S L. A90-dB SNR2.5-MHz output-rate ADC using cascaded multibit delta-sigma modulation at8×oversampling ratio. IEEE Journal of Solid-State Circuits,2000, Vol.35(12):1820~1828
    [65]Chen F, Leung B. A High Resolution Multibit Sigma-Delta Modulator with Individual LevelAveraging. IEEE Journal of Solid-State Circuits,1995, Vol.30(4):453~460
    [66]Neitola M, Rahkonen T. A generalized data-weighted averaging algorithm. IEEE Transactionson Circuits and Systems,2010, Vol.57(6):115~119
    [67]Jensen H T, Galton I. A Low-Complexity Dynamic Element Matching DAC for Direct DigitalSynthesis. IEEE Transactions on Circuits and Systems–II: Analog and Digital SignalProcessing,1998, Vol.45(1):13~27
    [68]Jensen H T, Galton I. An Analysis of the Partial Randomization Dynamic Element MatchingTechnique. IEEE Transactions on Circuits and Systems II: Analog and Digital SignalProcessing,1998, Vol.45(12):1538~1549
    [69]Lee D H, Li C C, Kuo T H, High-Speed Low-Complexity Implementation for Data WeightedAveraging Algorithm. Proceedings of IEEE Asia-Pacific Conference on ASIC, Taiwan,2002,283~286
    [70] Leung B, Sutarja S. Multibit A/D Converter Incorporating A Novel Class of DynamicElement Matching Techniques. IEEE Transactions on Circuits and Systems II: Analog andDigital Signal Processing,1992, Vol.39(1):35~51
    [71]Dong Y, craft M, Hedenstierna N, Renman-White W. Microgyroscope control system using ahigh-order band-pass continuous-time sigma-delta modulator. Proceedings of the14thInternational Conference on Solid-State Sensors, Actuators and Microsystems.2007,2533~2536
    [72]Chang T H, Dung L R. Fourth-order cascaded∑△modulator using tri-level quantization andbandpass noise shaping for broadband telecommunication applications. IEEE Transactionson Circuits and Systems,2008, Vol.55(6):1722~1732
    [73]Schreier R, Singer L, et al. A50mW bandpass Sigma Delta ADC with333kHz BW and90dB DR. Proceedings of IEEE International Solid-State Circuits Conference,2002,216~217
    [74]Salo T, Lindfors S, Halonen K, A80MHz Band-Pass Sigma Delta Modulator for a100MHzIF-receiver. Proceedings of European Solid-State Circuits Conference,2001,528~531
    [75] Moorer J. General Spectral Transformations for Digital Filters. IEEE Transactions onAcoustics, Speech and Signal Processing,1981, Vol.29(5):1092~1094
    [76]Yang X, Chen G C, Cheng J, Zhang H. A novel cascade sigma-delta modulator architecturefor broadband applications. Proceedings of2007International Symposium onCommunications and Information Technologies. Sydney,2007,101~105
    [77]Liang Y, Wang Z G, Meng Q, Guo X D. Design of high speed high SNR bit-stream adderbased on∑△modulation. Electronics Letters,2010, Vol.46(11):752~753
    [78]Aboudina M, Razavi B. A ΔΣ CMOS ADC with80-dB dynamic range and31-MHz signalbandwidth. Proceedings of IEEE International Midwest Symposium on Circuits and Systems.Cancun,2009,397~401
    [79]Valdes-Garcia A, Mishra C, Bahmani F, et al. An11-band3-10GHz receiver in SiGeBiCOMS for multiband OFDM UWB communication. IEEE Journals of Solid-State Circuits,2007, Vol.42(4):935~948
    [80]Arias J, Quintanilla L, Segundo J, et al. Parallel continuous-time△∑ADC for OFDM UWBreceivers. IEEE Transactions on Circuits and Systems,2009, Vol.56(7):1478~1487
    [81]Leung B H, Neff R, Gray P R, Brodersen R W. Area-efficient multi-channel oversampledPCM voice-band coder. IEEE Journal of Solid-State Circuits, Vol.23(8):1351~1357
    [82]Nam K Y, Lee S M, Su D K, Wooley B A. A low-voltage low-power sigma-delta modulatorfor broadband analog-to-digital conversion. IEEE Journal of Solid-State Circuits,2005, Vol.40(9):1855~1864
    [83]Lampinen H, Vainio O. An optimization approach to designing OTAs for low-voltagesigma-delta modulators. IEEE Transactions on Instrumentation and Measurement,2001, Vol.50(6):1665~1671
    [84]Fraser N A, Nowrouzian B. A statistical technique for the determination of the noise powergain in higher-order Sigma-Delta A/D converters excited by DC input signals. Proceedingsof the200411th IEEE International Conference on Electronics, Circuits and Systems,2004,563~566
    [85]Bourdopoulos G I, Pneumatikakis A G, Deliyannis T L. Optimal NTFs for single-bit SigmaDelta modulators. Proceedings of14th International Conference on Digital Signal Processing,2002,877~880
    [86]Yagyu M, Nishihara A. Fast and efficient algorithm to design noise-shaping FIR filters forhigh-order overload-free stable sigma-delta modulators. Proceedings of the2004International Symposium on Circuits and Systems,2004,469~472
    [87]Yagyu M. Design of noise shaping FIR filters by minimizing in-band peak amplitude forstable single-and multi-bit data converters. Proceedings of the2003InternationalSymposium on Circuits and Systems,2003,945~948
    [88] Neitola M, Rahkonen T. A generalized data-weighted averaging algorithm. IEEETransactions on Circuits and Systems,2010, Vol.57(6):115~119
    [89]Orfanidis S J. Introduction to signal processing. New Brunswick: Pearson Education,2010,300~308
    [90]Ai B, Yang Z X, Pan C Y,et al. Effects of PAPR reduction on HPA predistoration. IEEETransactions on Broadcasting,2005, Vol.51(4):1143~1147
    [91]Armstrong J. Peak-to-average power reduction for OFDM by repeated clipping and frequencydomain filtering. IEEE Electronics Letters,2002, Vol.38(5):246~247
    [92]Davis J, Jebwab J. Peak-to-mean power control and error correction for OFDM transmissionusing golay sequences and reed-muller codes. Electronics Letters,1997, Vol.33(4):267~268
    [93]Tellambura C. Use of M-Sequences for OFDM Peak to Average Power Ratio Reduction.Electronics Letters,1997, Vol.3(15):1300~1301
    [94]Varahram P, Al-Azzo W F, Ali B M. A low complexity partial transmit sequence schemeby use of dummy signals for PAPR reduction in OFDM systems. IEEE Transactions onConsumer Electronics,2010, Vol.56(4):2416~2420.
    [95]Wang L,Cao Y.Sub-optimum PTS for PAPR reduction of OFDM signals.ElectronicsLetters,2008,Vol.44(15):921~922
    [96]Seung Hee Han Jae Hong Lee.Modified selected mapping technique for PAPR reduction ofcoded OFDM signal.IEEE Transactions on Broadcasting,2004,Vol.50(3):335~341
    [97] Krongold B S, Jones D L. PAR Reduction in OFDM Via Active Constellation Extension.IEEE Transactions on Broadcast,2003, Vol.49(3):258~268
    [98]宋铁成,尤肖虎,沈连丰.基于信号空间扩展方法降低OFDM系统的PAPR.东南大学学报(自然科学版),2005, Vol.5(5):323~327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700