用户名: 密码: 验证码:
不同玉米品种苗期对盐胁迫的生物学响应及耐性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国土地盐碱化是玉米生产进一步稳定发展的重要制约因素之一,盐胁迫使玉米幼苗生长受阻,芽势弱,胚根少且短,苗弱,成活率低,严重影响其生长发育及产量。因此,提高玉米品种的耐盐碱性是开发和利用这部分资源的有效途径之一。本文以120份辽宁及内蒙古地区主栽品种为试验材料,通过萌发期的各项指标对其进行耐性鉴定与筛选,在砂培条件下分析了典型不同耐性品种在苗期对盐胁迫的生物学差异,并对植株形态、干物质积累、渗透调节物质、膜质过氧化及保护酶活性、光合特性及荧光特性等方面进行研究,从而探讨出不同耐性品种对盐耐性机制差异,以及在不同盐胁迫条件下的耐性机制差异。主要结论如下:
     1.NaCl胁迫下,180mmol/L浓度可作为不同耐性品种分级鉴定的浓度。在此浓度下进行聚类分析,可将120份玉米品种分为高耐盐、耐盐、中敏、盐敏感、盐极度敏感五个级别。Na_2CO_3+NaHCO_3(1:1)胁迫下,90mmol/L+90mmol/L浓度可作为不同耐性品种分级鉴定的浓度。在此浓度下进行聚类分析,可将120份玉米品种分为耐碱、中耐、中敏、碱性盐敏感四个级别。从分级结果看,中性盐与碱性盐的各级品种差距很大。
     2.NaCl、Na_2CO_3+NaHCO_3胁迫下,两玉米品种的株高、叶面积的变化趋势一致,均随生育时期增加而增加,随盐胁迫浓度增加而降低,盐敏感品种在盐胁迫下的伤害率大于耐盐品种。NaCl胁迫下,主胚根长、根系总长度、根系表面积、根系体积均随生育时期增加而增加,除了在40mmol/L浓度条件下较对照促进生长外,其余浓度条件下随盐浓度增加而降低。Na_2CO_3+NaHCO_3胁迫下,主胚根长、根系总长度、根系表面积、根系体积均随生育时期增加而增加,随盐浓度增加而降低,耐盐品种品种各项指标随盐浓度变化不如盐敏感品种的变化幅度大。根系平均直径随生育时期增加而增加,随盐胁迫浓度增加而增加。盐胁迫程度越重,平均直径越大,此规律在NaCl胁迫下不如在Na_2CO_3+NaHCO_3胁迫下明显。
     3.NaCl胁迫下,轻度的盐胁迫对根系生长的促进作用不如对茎叶的大,重度盐胁迫时,根系快速生长,使根冠比加大。Na_2CO_3+NaHCO_3胁迫下,生育初期地上部、地下部干重随盐浓度变化差距不明显,随生育时期增加,盐胁迫浓度越重,植物组织干重降低越大,根冠比随盐胁迫浓度加大而加大。盐敏感品种伤害率大于耐盐品种。
     4.两品种可溶性蛋白、可溶性糖含量、游离脯氨酸均随NaCl胁迫浓度增加而增加,盐敏感品种的增加幅度不如耐盐品种增加的幅度大。游离氨基酸在叶片中含量随盐胁迫浓度增加而增加,根系中游离氨基酸在120mmol/L浓度下含量显著高于其他处理。两品种叶片、根系中可溶性蛋白含量均随Na_2CO_3+NaHCO_3胁迫浓度增加而升高,叶片中含量显著高于根系中含量。可溶性糖含量随盐胁迫浓度增加而升高,在叶片和根系中差距不大。两品种叶片中游离氨基酸含量随盐胁迫浓度升高而增加,两品种根系游离氨基酸含量在盐胁迫下明显低于0mmol/L处理下的含量。两品种叶片、根系中游离脯氨酸含量均随盐胁迫浓度增加而明显增加,从绝对含量上看,叶片中含量高于根系中含量。两种盐胁迫下,两品种叶片、根系中K~+、Ca~(2+)、Mg~(2+)含量随盐胁迫浓度增加而降低,Na~+含量则随盐胁迫浓度增加而增加,Na~+/Ca~(2+)与Na~+/K~+比值均随盐胁迫浓度增加而增加。碱性盐胁迫下,总无机离子含量随盐胁迫浓度增加而明显降低。
     5.两品种叶片、根系中的相对电导率的含量均随盐胁迫浓度增加而增加,根系中相对电导率的值更大一些,这一点规律两种盐胁迫下表现一致。NaCl、Na_2CO_3+NaHCO_3胁迫下,两玉米品种叶片、根系中超氧阴离子自由基的含量、丙二醛含量,均随盐浓度增加而增加。从绝对含量看,碱性盐胁迫下的含量高于中性盐胁迫下的含量,说明碱性盐胁迫下的膜质过氧化程度高于中性盐。SOD、POD、CAT三种保护酶活性随NaCl胁迫浓度增加而增加,叶片、根系中变化趋势一致。Na_2CO_3+NaHCO_3胁迫下,POD、CAT变化趋势与中性盐胁迫下相一致,但是叶片中SOD在低浓度碱性盐胁迫时活性增加,在高浓度碱性盐胁迫下反而降低。
     6.两玉米品种叶片中叶绿素a+b、叶绿素a、叶绿素b含量均随盐胁迫浓度增加而降低,a/b比值升高,这在两种盐胁迫条件下的表现规律是一致的。玉米叶片净光合速率、气孔导度、胞间CO_2浓度、蒸腾速率随盐浓度增加而降低,光合速率、气孔导度和胞间CO_2浓度三者变化趋势一致,可以认为气孔限制是导致光合速率下降的一个主要原因,两种盐胁迫所引起的光合特性变化也是一致的。两品种的初始荧光F_0均随盐浓度升高而升高,可变荧光Fv、Fv/Fm随盐浓度增加而降低。在荧光特性变化方面,两种盐胁迫下的变化规律也是一致的。
China's soil salinization is one of the most significant constraining factors that affecting the stable development of maize production, salt stress restrains the seedlings growth, decline bud growth force, radicle few and short, enervate seedlings, low survival rate, serious affecting yield, growth and development. Therefore, improve the salt stress tolerance of maize varieties is one of the most efficient ways to development and utilize of this part of the resources. In this paper, 120 maize varieties select from Inner Mongolia and Liaoning province for the trial materials, through various indexes of the germination period identify and classify the salt stress tolerance, Screen out the typical varieties, and then cultivated these varieties in solution culture and sand culture, and then in the seedling period analyzed their salt tolerance difference under these two kinds of cultivate conditions, This research project has been studied on plant morphology, dry matter accumulation, osmotic adjustment matter, membranaceous peroxidation and protective enzyme activities, photosynthesis and fluorescence characteristics, etc., With a view to exploring the salt tolerance mechanism difference in different salt tolerance varieties as well as in different conditions of salt stress. The main conclusions are as follows:
     1. Under NaCl stress, the concentration of 180mmol / L can be used as identify and classify different salt tolerance varieties. In this concentration the cluster and analyze can be divided 120 maize varieties into five levels: high-tolerance, salt-tolerance, medium-sensitivity, salt-sensitivity and high-sensitivity. Under Na_2CO_3 + NaHCO_3 stress, the concentration of 90mmol / L +90 mmol / L can be used as identify and classify different salt tolerant varieties. In this concentration cluster and analyze 120 maize varieties can be divided these varieties into four levels: high-tolerance, medium-tolerance, medium-sensitivity, alkaline salt-sensitivity. From the results of the classifications, the neutral salt and the alkaline salt have significant difference between varieties at all levels.
     2. Under stress of NaCl, Na_2CO_3 + NaHCO_3, two maize varieties' height and leaf area changes trend are identical, and increased with the growth stage progressing and decreased with the concentration of salt stress reducing, and under salt stress the injury rate of salt-sensitive varieties greater than the salt-tolerant varieties. Under the stress of NaCl, the main radicle length, total root system length, root surface area, root volume are all increased with the growth stage progressing, except the concentration of 40mmol / L which can be boosts the growth when compare with the checks while the rest concentrations restrains the growth of maize. Under the stress of Na_2CO_3 + NaHCO_3, the main radicle length, total roots length, root surface area and root volume are increased with the advancing of growth periods, and increased if the salt concentration reduced, and the various indexes change range of the salt-tolerant varieties less than salt-sensitive varieties. With the advance of growth periods the average diameter of the root system is increasing, and they were decreasing with the salt stress concentration increased. Average diameter becomes greater when the severe of salt stress increased. These rules are more obvious in Na_2CO_3+NaHCO_3 stress than in the stress of NaCl.
     3. The effects of moderate NaCl stress which boosts the growth of roots system less than stems and leaves while under severe salt stress the roots system grow rapidly thus increase the root cap ratio. Under the stress of Na_2CO_3 + NaHCO_3, in the early growth periods either above ground parts or under ground parts' dry weight change difference isn't obvious, yet with the progressing of growth stages and the higher salt stress concentration the dry weight of plant tissue reduced more severely, and the root-cap ratio was increased with the concentration of salt stress increasing. The varieties of salt-sensitive varieties injury rate greater than salt-tolerant varieties.
     4. Two varieties of soluble protein, soluble sugar content, dissociate proline were increased with increasing concentration of NaCl, salt-sensitive varieties increase range less than salt-tolerant varieties. Along with the salt stress concentration increasing the dissociate amino acid content in the leaves will be increased, if the salt stress concentrations belowl20mmol /L the dissociate amino acid content significantly higher than other treatments. Both these two varieties, the soluble protein content in roots system and leaves increased with Na_2CO_3 + NaHCO_3 stress concentration increasing, the content of soluble protein in leaves were significantly higher than in the root system. Along with the salt stress concentration raising the soluble sugar content increased in leaves while there is slightly difference between leaves and roots system. Dissociate amino acids content of these two varieties' leaves increased with the concentration of salt stress increasing, in the root system, these two varieties the dissociate amino acids content significantly lower than the treatment which is below 0mmol / L concentration. Dissociate proline content in root system and leaves of these two varieties were significantly increased with the concentration of salt stress increasing, from absolutely content point of view, the dissociate proline content in the leaves was higher than in the root system.
     5. In these two varieties' leaves and root system, the relative conductivity increased with salt stress concentration increasing, yet relative conductivity in roots system has greater value. This performance rule is identical in both these two types of salt stress. Under the stress of NaCl, Na_2CO_3+NaHCO_3, the superoxide anion and malondialdehyde content in roots and leaves of the two varieties were increased with salt concentration increasing. From an absolutely content point of view, the content of the basic salt stress more than neutral salt content, this can be illustrate that the extent of membranaceous peroxide under basic salt stress is more serious than under neutral salt stress. The activity of three types of protection enzyme SOD, POD, CAT will be increasing along with the NaCl concentration stress increased, while the changing in leaves and roots trend to be identical. Under Na_2CO_3 + NaHCO_3 stress, the changes trend of POD, CAT is same as in the natural salt stress, but in the leaves, in the low concentration of alkaline salt stress the activity of SOD will be increase, yet it will be decrease in high concentration of alkaline salt stress.
     6. In two maize varieties' leaves, the content of chlorophyll a + b, chlorophyll a, chlorophyll b will be increased with the salt concentration decreasing, meanwhile, the ratio of a to b will be increase, this rule of performance is identical under the two types of salt-stress conditions. Maize leaf net photosynthetic rate, stomatal conductance, intercellular CO_2 concentration, transpiration rate decreased with the lower salt concentration, the changes trend of photosynthetic rate, stomatal conductance and intercellular CO2 concentration were identical, It can be considered that stomatal limitation is one of the main reasons that lead to photosynthetic rate decline. Photosynthetic characteristics change caused by two kinds of salt stress also are consistent. The initial fluorescence F_0 of the two varieties are increased with the salinity concentration increasing, variable fluorescence Fv, Fv / Fm decreased with higher salinity concentrations. In terms of fluorescence characteristics change, the two types of salt stress change rules also are identical.
引文
1.安树青,王铮峰,朱学雷.1996.NaCl、Na_2SO_4和Na_2CO_3对小麦生长、脯氨酸及Na~+、K~+含量的比较研究[J].南京大学学报(自然科学),32(4):615-620.
    2.陈洁,林栖风.2003.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学版),21(2):177-182.
    3.陈敏,陈其军,朱茂峰,沈国明.2005.玉米Na~+/H~+反向转运器编码基因ZmNHX的克隆及其表达特性分析[J].高技术通讯,15(1):62-65.
    4.陈沁,章文华,刘友良.2000.两相法提取叶片液泡膜微囊[J].植物生理学通讯,36(6):541-544.
    5.陈秀兰,赵可夫.1996.NaCl胁迫对玉米种子萌发的抑制及外源Ca~+的缓解效应.华北农学报,11(4):89-92.
    6.付凤玲,李晚忱,潘光堂.2003.钙在玉米愈伤组织继代及盐诱导脯氨酸积累中的作用[J].西南农业学报,16(1):42-44.
    7.高岩,张汝民,姚云峰等.1997.盐胁迫对梭梭幼苗体内保护酶系统活性的影响[J].内蒙古大学学报(自然科学版),28(2):253-256.
    8.高英,同延安,赵营,樊红柱.2007.盐胁迫对玉米发芽和苗期生长的影响[J].中国土壤与肥料,(2):30-34.
    9.龚明,丁念诚,贺子义,刘友良.1989.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,31(3):32-36.
    10.龚明,赵方杰,员颂如,汪良驹.1990.盐处理对植物氮素代谢酶活性的影响[J].植物生理学通讯,(2):13-16.
    11.郭房庆,汤章城.1999.NaCl胁迫下抗盐突变体和野生型小麦Na~+、K~+累积的差异分析[J].植物学报,41(5):515-518.
    12.郭鹏程,王德清,董翔云,金圣爱.1993.长期施用含氯化肥对土壤性质和作用产量品质的影响[J].硫、镁和微量元素在作物营养平衡中的作用(国际学术讨论会论文集).成都科技大学出版社,494-499.
    13.郭善利,王秀芝.1998.植物抗盐性及其遗传工程[J].聊城师院学报(自然科学版),11(2):53-58.
    14.郭书奎,赵可夫.2001.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学,27(6):461-466.
    15.郭望模,傅亚萍,孙宗修,郑镇一.2003.盐胁迫下不同水稻种质形态指标与耐盐性的相关分析[J].植物遗传资源学报,4(3):245-251.
    16.韩朝红.1998.NaCl对吸胀后水稻的种子发芽和幼苗生长的影响[J].植物生理通讯,34(5):339-342.
    17.郝建军,刘延吉,2001.植物生理学实验技术.沈阳:辽宁科学技术出版社,54-56.
    18.黄占斌,山仑.1998.水分利用效率及其生理生态机理研究进展[J].生态农业研究,6(4):19-23.
    19.胡宝忱,艾军,郭守东,何军.2008.盐胁迫对玉米幼苗生长的影响[J].杂粮作物,28(3):166-168.
    20.江行玉,窦君霞,王正秋.2001.NaCl对玉米和棉花光合作用与渗透调节能力影响的比较(简 报)[J].植物生理学通讯,37(4):303-305.
    21.金兰,罗桂花.2004.盐胁迫对紫花苜蓿SOD丙二醛及SOD同工酶的影响[J].黑龙江畜牧兽医,(5):15-16.
    22.克热术·伊力,袁琳,齐曼·尤努斯等.2004.盐胁迫对阿月浑子SOD,CAT,POD活性的影响[J].新疆农业科学,41(3):129-134.
    23.柯裕州,周金星,卢楠等.2009.盐胁迫对桑树幼苗光合生理及叶绿素荧光特性的影响[J].新疆农业科学,22(2):200-206.
    24.郭房庆,潘廷国.1999.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3):229-233.
    25.李德全,邹琦,程炳嵩.1994.植物在水分胁迫下的渗透调节作用[M].作物抗旱生理生态研究.山东科学技术出版社,3-12.
    26.李德红,潘瑞炽.1995.水杨酸在植物体内的作用[J].植物生理学通讯,31(2):144-149.
    27.李付广,李凤连,李秀兰.1994.盐胁迫对棉花幼苗保护酶系统活性的影响[J].河北农业大学学报,17(3):52-56.
    28.李合生主编.2000.植物生理生化实验技术.北京:高等教育出版社.
    29.李景欣,高春宇,华晓秀.2005.NaCl胁迫对黄芪种子萌发及幼苗生长的影响[J].内蒙古林业科技,(3):11-14.
    30.李良左,李爽.2002.水杨酸浸种对水分胁迫下玉米幼苗某些生理过程的影响[J].南京农业大学学报,25(3):9-11.
    31.林栖凤,李冠一.2000.植物耐盐性研究进展[J].生物工程进展,20(2):20-25.
    32.林植芳,李双全,林桂珠等.1984.衰老叶片和叶绿体中H_2O_2的累积与膜脂过氧化的关系[J].植物学报,26(6):605-615.
    33.林植芳,林桂珠,李双顺.1988.衰老叶片和叶绿体中超氧阴离子和有机自由基浓度的变化[J].植物生理学报,14(3):238-243.
    34.刘家栋.2001.植物抗盐机理的研究[J].农业与技术,21(1):26-29.
    35.刘俊,周一峰,章文华,刘友良.2006.外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响[J].西北植物学报,26(2):0254-0258.
    36.刘晓鹏,赵迎春,黄大恩等.2003.NaCl胁迫下转入Cu,Zn-SOD基因马铃薯活性氧的代谢及保护酶的变化[J].植物保护,29(3):21-24.
    37.李良左,李爽.2002.水杨酸浸种对水分胁迫下玉米幼苗某些生理过程的影响[J].南京农业大学学报,25(3):9-11.
    38.刘友良,毛才良,汪良驹.1987.植物耐盐性研究进展[J].植物生理学通讯,23(4):1-7.
    39.刘友良,汪良驹.1981.植物对盐胁迫的反应和耐盐性[A].植物生理与分子生物学[C],科学技术出版社,752-769.
    40.吕芝香,刘珍奇,仲崇信.1992.互花米草幼苗在不同浓度NaCl溶液中的生长和溶质的积累[J].武汉植物学研究,10(2):169-173.
    41.吕芝香,乙引.1992.NaCl对小麦苗叶片脯氨酸氧化酶活性和游离脯氨酸积累的影响[J].植物生理学报,18(4):376-382.
    42.吕芝香,仲崇信.1982.NaCl对大米草幼苗游离氨基酸成分和脯氨酸积累的效应[J].植物生理学报,8(4):393-396.
    43.吕志英.1995.抗(耐)盐杨新无性系的筛选研究报告[J].南京林业大学:13-19.
    44.吕志英.1995.抗(耐)盐杨新无性系的筛选研究报告[J].南京林业大学:42-50.
    45.罗辉.2004.玉米幼苗对盐胁迫的响应和适应[J].井冈山师范学院学报(自然科学),25(5):23-28.
    46.罗庆云,於丙军,刘友良.2001.大豆苗期耐盐性鉴定指标的检验[J].大豆科学,(8):177-182.
    47.马建华.2001.植物抗盐生理研究进展[J].生命科学研究,5(3):175-179.
    48.齐曼·尤努斯,李阳,木合塔尔,马娉婷等.2006.NaCl、Na_2SO_4胁迫胁迫对新疆大果沙枣种子萌发及生理特性的影响[J].新疆农业科学,43(2):136-139.
    49.秦忠彬,赵守仁,张月平.1989.作物抗逆性的原理与技术[M].北京农业大学出版社,279-281.
    50.曲元刚,赵可夫.2004.NaCl和Na_2CO_3对玉米生长和生理胁迫效应的比较研究[J].作物学报,30(4):334-341.
    51.全先庆,高文.2003.盐生植物活性氧的非酶促清除机制[J].安徽农业科学,31(3):49-501.
    52.商学芳.2008.不同基因型玉米对盐胁迫的敏感性及耐盐机理研究[D].山东农业大学博士论文.
    53.盛彦敏,石德成,肖洪兴,许月.1999.不同程度中碱性复合盐对向日葵生长的影响[J].东北师范大学学报,4:65-69.
    54.石德成.1995.磷酸中和缓解Na_2CO_3对星星草的胁迫作用[J].草业学报,4(4):34-38.
    55.石德成,盛彦敏.1998.不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报,40(12):1136-1142.
    56.石德成,盛彦敏,赵可夫.2002.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].作物学报,28(4):461-467.
    57.石德成,殷立鹃.1993.不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报,35(2):144-149.
    58.时丽冉.2000.外源水杨酸对玉米幼苗盐害的缓解作用[J].衡水师范专科学校学报,2(2):35-38.
    59.时丽冉,杜军华.2001.水杨酸对盐害下玉米幼苗质膜稳定性及Na~+/K~+的影响[J].青海师范大学学报(自然科学版),(1):50-52.
    60.时丽冉,芦站根,白丽荣,崔兴国.2006.等渗胁迫下NaCl和PEG对玉米幼苗伤害的研究[J].玉米科学,14(4):100-103.
    61.斯琴巴特尔,吴红英.2000.盐胁迫对玉米种子及幼苗生长的影响[J].干旱区资源与环境,14(4):76-80.
    62.斯琴巴特尔,吴红英.2002.土壤的盐碱化对玉米的胁迫作用[J].内蒙古大学学报(自然科学版),33(3):309-312.
    63.苏国兴.2000.盐胁迫下桑树无机元素的消长变化[J].江苏农业科学,(5):61-63.
    64.苏梦云,范铭庆.2000.渗透胁迫和钙处理对杉木幼苗膜脂过氧化及保护酶活性的影响[J].林业科学研究,13(4):391-396.
    65.孙方行,孙明高,魏海霞,夏阳.2006.NaCl胁迫对紫荆幼苗膜脂过氧化及保护酶活性的影响[J].河北农业大学学报,29(1):17-19.
    66.孙国荣,关旸,阎秀峰.2001.盐胁迫对星星草幼苗保护酶系统的影响[J].草业学报,9(1):34-38.
    67.孙巧玲.2000.不同盐分在不同浓度条件下对玉米幼苗基础生理效应的研究.山东师大学报(自然科学版),15(1):77-82.
    68.孙小芳,刘友良,陈沁.1998.棉花耐盐性研究进展[J].棉花学报,10(3):118-124.
    69.谈建康,安树青,王铮峰,朱学雷等.1998.NaCl、Na_2SO_4和Na_2CO_3胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报,15(增刊):82-86.
    70.汤华,柳晓磊.2007.盐胁迫下玉米苗期农艺性状和脯氨酸含量变化的研究[J].植物生理科学,23(3):244-249.
    71.汪良驹,刘友良,马凯等.1999.无花果细胞系耐盐性与抗氧化酶活性的变化[J].园艺学报,26(6):351-355.
    72.王爱国,罗广华.1993.植物的超氧自由基与羟胺反应的定量关系[J].植物生理学通讯,26(6):55-57.
    73.王宝山.1988.生物自由基与生物膜伤害[J].植物生理学通讯,(2):12-16.
    74.王宝山.1991.NaCl处理下大麦根中Na~+,K~+和ABA对液泡ATPase活性的影响[J].植物生理学报,17(4):403-406.
    75.王宝增,赵可夫.2006.低浓度NaCl对玉米生长的效应[J].植物生理学通讯,42(4):628-632.
    76.王宝山,邹琦.2000.NaCl胁迫高粱根,叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响[J].植物生理学报,26(3):181-188.
    77.王宝山,邹琦,赵可夫.1996.液泡膜转运蛋白与植物耐盐关系研究进展[J].植物学通报,13(3):30-36.
    78.王洪春等.1981.植物抗盐生理[J].植物生理学通讯,(6):72-81.
    79.王君.2007.不同玉米自交系芽苗期耐NaCl胁迫的研究[D].沈阳农业大学硕士论文.
    80.王君,曹敏建,王宁,曹娜.2007.NaCl胁迫对玉米自交系种子萌发的影响[J].杂粮作物,27(1):28-32.
    81.王丽燕.2002.毕氏海蓬子耐盐基础生理的研究[D].山东师范大学硕士论文.
    82.王丽燕,赵可夫.2005.玉米幼苗对盐胁迫的生理响应[J].作物学报,31(2):264-266.
    83.王仁雷,华春,罗庆云,刘友良.2002.盐胁迫下水稻叶绿体中Na~+,Cl~-积累导致叶片净光合速率下降[J].植物生理与分子生物学学报,28(5):385-389.
    84.王善广,张华云,孙秀兰等.2000.生物膜与果树抗寒性[J].天津农业科学,6(1):37-40.
    85.王文斌,金润熙,邓西平等.2009.苜蓿幼苗芽、根器官对盐胁迫的生理生化响应[J].西北农林科技大学学报(自然科学版),37(5):217-223.
    86.王玉凤2008.玉米苗期对NaCl胁迫的响应与耐盐性调空机理的研究[D].沈阳农业大学博士论文.
    87.王尊亲,祝寿泉,俞仁培.1993.中国盐渍土.北京:科学出版社.
    88.谢承陶.1993.盐渍土改良原理与作物抗性.中国农业科技出版社:184-210.
    89.魏炜,赵欣平,吕辉等.2003.三种抗氧化酶在小麦抗干旱逆境中的作用初探[J].四川大学学报(自然科学版),12(6):1172-1175.
    90.徐明慧,于晓东,马兴林等.2004.水分胁迫对玉米萌发期保护系活力影响及其与抗旱性的关系[J].玉米科学,12(3):73-75.
    91.许祥明,和春,国风.2000.作物抗盐机理的研究进展[J].应用与环境生物学报,6(4):79-87.
    92.徐云岭,余叔文.1990.植物适应盐逆境过程中的能量消耗[J].植物生理学通讯,(6):70-73.
    93.许大全.2002.光合作用效率[M].上海科学技术出版社,163-170.
    94.颜宏,石德成,尹尚军等.2000.碱胁迫下星星草的主要胁变反应[J].东北师范大学学报,32(3):47-51.
    95.闫先喜.1995.盐胁迫对大麦种子细胞膜透性的影响[J].植物学报,12(增刊):53-54.
    96.姚广,王鑫,高辉远.2009.盐胁迫对高羊茅叶片光系统活性的影响[J].中国草地学报,31(2):46-52.
    97.叶荣梅,刘玉霞.2000.NaCl对吸胀后小麦种子发芽和幼苗生长的影响[J].安徽农业技术师范学院学报,14(2):35-36.
    98.殷立鹃,石德成.1993.东北碱化草地的主要盐分NazCO_3对羊草危害因素分析[J].草业学报,2(1):1-5.
    99.於丙军,李锁娜,刘友良.2002.大豆苗抗盐离子效应的比较[J].南京农业大学学报,25(1):5-9.
    100.张海燕,赵可夫.1998.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,40(1):56-61.
    101.张其德.2001.盐胁迫对植物及其光合作用的影响(中).植物杂志,(Ⅰ):28-29.
    102.张淑红,张恩平,庞金安,2000.植物耐盐性研究进展[J].北方园艺,(3):19-20.
    103.张宪政.1992.作物生理研究法.北京:农业出版社,47,140-142,150-152.
    104.张显强,张宇斌,王家远,乙引.2002.NaCl胁迫对玉米幼苗叶片蛋白质降解和脯氨酸累积的影响[J].贵州农业科学,30(2):3-4.
    105.张振清.1985.植物生理学实验手册[M].上海科学技术出版社,134-138.
    106.张志良.1990.植物生理学实验指导.北京:高等教育出版社,65-68,154-155.
    107.章文华.1997.植物的抗盐生理和盐害的防治[J].植物生理学通讯,33(6):479-479.
    108.赵可夫.1993.植物抗盐生理[M].中国科学技术出版社:149-158.
    109.赵可夫,李军.1999.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响[J].植物学报,41(12):1287-1292.
    110.赵可夫,李明信等.1984.在等渗条件下PEG和NaCl对玉米幼苗脯氨酸积累的效应[J].曲阜师范学报(植物抗盐生理专刊),116-118.
    111.赵可夫,邹琦,李德全.1993.盐分和水分胁迫对盐生和非盐生植物细胞膜质过氧化作用的效应[J].植物学报,35(7):519-525.
    112.赵锁劳,窦延玲.1998.小麦耐盐性鉴定指标极其分析评价[J].西北农业大学学报,26(6):80-85.
    113.赵旭,王林权,尚浩博等.2005.盐胁迫对不同基因型冬小麦发芽和出苗的影响[J].干旱地区农业研究,23(4):108-112.
    114.郑霞,韦小敏,季良越,胡彦民.2004.玉米体细胞抗盐突变体的筛选及耐盐性鉴定[J].河南农业大学学报,38(2):139-143.
    115.赵玉蓉,王维中.1995.植物在盐害下的渗透调节[J].徐州师范学院学报(自然科学版),13(4):59-62.
    116.赵自国,陆静梅.2002.植物耐盐性研究及进展.长春师范学院学报,21(1):51-53.
    117.郑世英,陈吉美.2000.植物的抗盐生理[J].德州高专学报,16(4):39-40.
    118.周万海,师希雄,曹孜义.2009.盐胁迫对不同葡萄砧木苗期生长特性的影响[J].甘肃农业大学学报,44(2):60-63.
    119.朱广廉,钟海文,张爱琴.1990.植物生理学实验[M].北京大学出版社:242-245.
    120.邹琦.1995.植物生理生化实验指导[J].北京:中国农业出版社.
    121.Apse,Aharon GS,Snedden WA,Blumuald E,1999.Salt tolerance conferred by over expression of a vacuolar Na~+/H~+ antiporter in Arabidopsis.Science,285:1256-1258.
    122.Asada,Kiso K,Yoshikawa K,1974.J Biol Chem,249:2175~2184.
    123.Ballesteros E,Blumwalt E,Donaire J P,Belver A.1997.Na~+/H~+ antiport activity in tonoplasr vesicles isolated from sunflower roots induced by NaCl stress.Physiol Plant,99:328-334.
    124.Bamett,NM and Naylor.1966.AW Amino acid and protein metabolism in Bermuda grass during water stress [J].Plant physical,41:1222~1230.
    125.Binzel ML,Hess F D,Bressan R A et al.1988.Intracellular compartmentation of ions in salt adapted tobacco cells.Plant Physiol,86:607.
    126.Blumwaid,Aharon GS,Apse MP.2000.Sodium transport in plant cells.Biochim Biophs Acta,1465:140-151.
    127.Bradford M.1976.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.Analytical Biochemistry,72:248-254.
    128.Bowter C,Van C W,Montagu M,Inze D.1994.Superoxide dismutase in plants.Grit Rev Plant Sci,13:199-218.
    129.Cheeseman J M.1988.Mechnism of salinity tolerance in plants [J].Plant Physloi,87:547-550.
    130.Dhindsa,RS and Cleland,RE.1975.Water stress and protein synthesis [J].Plant Physical,55:778-785.
    131.Dudeck A E,Peacock C H and Sheehan T J.1986.An evaluation of germination media for turfgrass salinity studies.J Amer Soc Hort Sci,111(2):170-173.
    132.Farquhar GD,Sharkey TD.1982.Stomatal conductance and photosynthesis.Annu Rer Plant Physical,33:317~345.
    133.Flowers TJ.1977.The mechanism of salt tolerance in halophytes Ann Rev.Plant Physiol,28:89-121.
    134.Garcia,A.,Senadhira,Flowers,T.J.,et al.1995.The effect of selection for sodium transport and for agronomic characteristic upon salt resistance in rice(Oryza sativa L.) [J].Theor.Appl.Genet,(90):1106-1111.
    135.Gleen E P,Brown J J.1999.Salt tolerance and crop potential of halophytes.Critical Reviews in Plant Sciences,18(2):227-255.
    136.Gleen E P,Watson M C.O'Leary J W,Axelson R D.1992.Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C_4 halophyter,At riplex canescens.Plant Cell Environ.15:711-718.
    137.Godfrey W N,John C O,Erwin B.2004.Sorghum and Salinity:I .Response of Growth,Water Relations,and Ion Accumulation to NaCl Salinity.Crop Science,44(3):797-805.
    138.Godfrey W N,John C O,Erwin B.2004.Sorghum and Salinity:II.Gas Exchange and Chlorophy Ⅱ Fluorescence of Sorghum under Salt Stress.Crop Science,44(3):806-811.
    139.Gong M,Ding N C,He Z Y.1989.Correlation between lipid preoxidation damage and ultrastructural changes of mesophy II cells in barley and wheat seedlings during salt stress.Acta Botanica Sinica,31(11):841-846.
    140.Gramer G R.1985.Displacement of Ca~(2+) and Na~+ form the plasmalema of rottlells.Plant Physiol,79:207-211.
    141.Greenway H,Munns R.1980.Mechanism of salt tolerance in nonhalophytes.Annu Rev Plant Physiol,31:149-190.
    142.Grieve C M,Lesch S M,Mas E V,Francois LE.1993.Leaf and spikelet primordia initiation in salt-stressed wheat.Crop Science,33:1286-1292.
    143.H Richter.1997.Water relation of plants in the field:some comments on the measurements of selected parameters.J Exp Bot,48:1-7.
    144.Halliwell B,1981.Chloroplast metabolism,the structure and function of chloroplast in greenleaf cell.Oxford:Charendom Press,ppl86.
    145.Hasegawa PM,Bressan R A,Zhu J K et al.2000.Plant cellular and molecular responses to high salinity.Annu Rev Plant Physiol Plant Mol Biol,51:463-499.
    146.Hong SW,Jon JH,Kwak JM.1997.Identification of receptor like protein kinases gene rapidly induced by ABA,dehydration,high salt,and cold treatments in Arabidopsis theliana.Plant Physiol,113:1203-1212.
    147.Ishitani M.2000.SOS3 function in plant salt tolerance requires N-myristolatian and calcium binding.Plant Cell,12:1667-1677.
    148.Kellogg E W,Fridovish I,1975.J Biol Chem,250:8812~8817.
    149.Lauchli A.1984.Salt exclusion:An adaptation of Liegumes for crops and Pastures under saline conditions.Salinity tolerance in plants,In Staples R C,Toenniesson G H(eds).New York,John wiley sons,171-187.
    150.Lutts,S.,Kinet,J.M.Bouharmont,J.1996.NaCl induced senescence in leaves of rice(Oryza sativa L.) cultivars differing in salinity resistance [J].Ann.Bot,(78):389- 398.
    151.LEVITT J.1980.Response of Plants to Environmental Stress [M].New York:Aedemic press.
    152.Liu J,Zhu JK.1998.A calcium sensor homolog required for plant salt tolerance.Science,280:1943-1945.
    153.Mac Robbie EAC.1997.Signaling in guard cell and regulation of ion channel activity [J].Exp Bot,48:515-528.
    154.McCord,Fridovish VM,1969.J Biol Chem,244:6049~6055.
    155.Mendoza I.1994.The protein phosphatase caleineurin is essential for NaCl tolerance of Saccharomyces Cerevisiae [J].Biol Chem,269:8792-8796.
    156.Munns R,Schachtman D P& Condon A G 1995.The siginificance of the two-phase growth response to salinity in wheat and barley [J].Aust J.Plant Physloi,22:561-569.
    157.Munns R,Termaat.1986.Whole plant response to salinity.Aust J Plant Physiol,13:143-160.
    158.Munro R.1993.Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses [J].Plant,Cell and Environ,16:15-24.
    159.Neumann P M,Azaizeh H & Leon D.1994.Hardening of root cell walls:a growth in hibitory response to salinity stress [J].Plant,Cell and Enviro,17:303-309.
    160.Neumann P M.1997.Salinity resistance and plant growth visited [J]Plant.Cell and Eaviron,20:1193-1198.
    161.Niu X,Bressan R A.Hasegawa PM,et al.Ion homeostasis in NaCl stress environments.Plant Physical,1995,109:735-742.
    162.Niu ZM,Ray A,Bressan Paul M.1995,Ion homeostasis in NaCl stess Enviroments.Plant Physiol,109:735-742.
    163.Pastermak D&Pietro S.1985.Biosalinity in action:biopruduction with saline water[J].Plant and Soil,89:1-413.
    164.Paul M,Hasegawa,Ray A,Bresson,ZhuJK,Hans J,Bohnert.2001.Plant cellular and molecular responses to high salinity.Annu Rev Plant Physiol Plant Mol Bio,463- 499.
    165.Pitman M G 1984.Transport across the root and shoot/root interactions.In:Salinity Tolerance in plant,Strategies for crop improvement(Staples R C,Toenniessen G H eds) New York:John Wiley & Sons,93-123.
    166.Ramon Serano,Alonso Rodriguez-Navarro.2001.Ion homeostasis during salt stress in plants.Current opinion cell biology,13:1101-1112.
    167.Ratajczak R,Richter J,Lutge U.1994.Adaption of the Tonoplast V-type H+-Atpase of Mese mbryanthemum Cryslallinum to Salt Stress,C3-CAMtransition and plant age.Plant Cell Environ,17:1101-1112.
    168.Rodriguez H G,Boberts J K M,Jordan W R,Drew M C.1997.Growth,water relations,and accumulation of organic and inorganic solutes in roots of Maize seedlings during salt stress.Plant Plwsiol,113:881-893.
    169.Rubio F,Gassman W,Schroeder JI.1995.Sodium-driven potassium uptake by the plant potassium transport HKT1 and mutations conferring salt tolerance.Science,270:1660-1663.
    170.Saiz JF,Leidi EO.1997.Is salinity tolerance related to Na~+ accumulation in Upland cotton seedlings.Plant and Soi.,190:67-75.
    171.Schachtman DP,Schroeder JI.1994.Structure and transport mechanism of a high-affinity potassium uptake transport from higher plan ts.Nature,370:655-658.
    172.Schachtmm DP,Tyerman SD,Terry BR.1991.The K~+/Na~+ selectivity of a cation channel in the plasma membrane of root cells doesnot differ in salt-tolerant and salt-sensitive wheat species.Plant physiol,97:598-605.
    173.Serrow R,Mulet JM,RioS G,Marquez JA.1999.A glimpse of the mechanismof ion homeostasis during salt stress.J Exp Bot,50:1023-1036.
    174.Shi H,Ishitani M,kim C,et al.2000.The Arabidopsis thaliana salt tolerance gene SOSl encodes a putative Na~+/H~+ antiporte.Proc Natl Acad Sci,97:6896.
    175.Shi H,Ishitani M,Kin C,Zhu JK.2000.The Arabidopsis thaliana salt tolerance gene SOSl encodes a putative Na~+/H~+antiporter.Proc Natl Acad Sci USA,97:686-690.
    176.Strogonov B P.1973.Structure and function of Plant cell in saline babitate.New York:Halsted Press,20-25.
    177.Stumpf,D.K.,Prisco.J.T.Weeks,J R et al.1986.Salinity and Salicornia bigelovii Torr.Seedling establishment [J].Water relations.J.Exp.Bot.(37) :160-169.
    178.Troll W,Lindsley J.Photometric method for the determination of proline.Journal Biol Chem,1955,215:655-660.
    179.Urao T,Katagiri T,Mizoguehi T.1994.Two genes that encode Ca~(2+) dependent protein kinase are induced by drought and high salt stress in Arabidopsis theliana.Mol Genet,244:331-340.
    180.Valentina M.2000.Activities of SOD and the ascorbate glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative lycopersicon pennellii.Plant physiol,33:65-77.
    181.Wahid ,A.,Rao,A.R.,Rasul,E.1997.Identification of salt tolerance traits in sugarcane lines [J].Field Crops Res,(54):9-17.
    182.Wahid,A.,Rao,A.R.,Rasul,E.1999.Germination of seeds and propagules under salt stress[S].In:Peessarakli,M.( Ed.),Hand-book of Plant and Corp Stress.2,Marcel Dekker,New York ,153-167.
    183.White PJ.1999.The molecular mechanism of sodium influx to root cells.Trends Plant sci,4:245-246
    184.Zhong H,lauchli A.1994.Spatial distribution of solutes,K~+,Na~+,Ca~(2+) and their disposition rates in the growth zone of primary cotton roots:effects of NaCl and CaCl_2.Planta,194:34-41.
    185.Zhu J K.2001.Plant salt tolerance.Trends in Plant Science,6(2):66-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700