用户名: 密码: 验证码:
纤维增强复合材料阻尼改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料具有良好的比刚度、比强度和阻尼特性且密度低,已经作为一种主要的结构材料应用于航天、舰船、汽车等工程领域。复合材料的阻尼一般比大多数常见的金属高1到2个数量级,但一般也不超过2%,在工程应用中仍然偏低,需要对其进行阻尼改性处理。本课题通过制备混杂纤维复合材料和结构阻尼复合材料的方式提高复合材料的阻尼性能,并将这两种阻尼改性方法结合起来设计出新型结构阻尼复合材料。
     本文采用手糊模压工艺制备碳纤维/凯夫拉纤维混杂复合材料,使用动态热机械分析技术测试复合材料的损耗因子来评价材料的阻尼性能,研究了混杂比、铺层顺序和混杂方式对复合材料阻尼性能和力学性能的影响。研究结果表明:在CF/KF夹芯混杂复合材料中,面层纤维的种类和铺层数量对材料的力学性能和阻尼性能有着重要的影响。碳纤维分布于面层时,混杂复合材料具有高模量、低阻尼的特点。凯夫拉纤维分布于面层时,混杂复合材料具有低模量、高阻尼的特点。CF/KF混杂复合材料的弯曲模量随着碳纤维相对体积分数的增加而呈上升的趋势。在CF/KF层间混杂复合材料中,混杂界面数越多,混杂复合材料的阻尼性能越好。
     本文还研究了频率和振幅对复合材料阻尼性能的影响。结果表明:频率对复合材料的阻尼性能有较大的影响。随着频率的增加,复合材料的阻尼性能越好。振幅对复合材料阻尼性能的影响非常小。
     本文采用共固化工艺制备结构阻尼复合材料,研究了温度、阻尼层、阻尼层厚度和阻尼层穿孔对复合材料性能的影响。研究结果表明:粘弹性阻尼材料作为特定的铺层直接嵌入到复合材料结构中去,与复合材料共固化成型,可有效提高复合材料的阻尼性能,同时使模量有一定程度的下降。树脂和粘弹性阻尼层的界面结合情况良好,阻尼层不容易脱落。阻尼层在不同温度下的动态力学性能决定了共固化阻尼复合材料的阻尼性能。阻尼层厚度的增加可以显著提高复合材料的阻尼性能,同时会导致复合材料弯曲性能的降低。阻尼层经穿孔处理后,复合材料的阻尼性能略有下降,这种方式可以有效降低阻尼改性过程中力学性能的牺牲。
     最后,本文将两种阻尼改性方式结合起来,设计出新型结构阻尼复合材料。一种方法是对复合材料进行约束阻尼处理,这种方法可以有效提高复合材料的阻尼性能,且不会牺牲材料的刚度,但是增加了一定的厚度和重量。另一种方法是在含有粘弹性阻尼层的碳纤维复合材料中插入一定量的凯夫拉纤维铺层,可以显著提高复合材料的阻尼性能。
Fiber reinforced composites have good specific stiffness, specific strength, damping property and low density. As structural materials, composites have been used in aerospace, ships, automobile and other engineering fields. Damping properties of composites are 10-100 times higher than most of common metals, but not exceeding 2%. They need damping modification treatment. This paper improved damping properties of composites by fabricating hybrid fibers composites and structural damping composites, designed new structural damping composites.
     Carbon fiber/Kevlar fiber hybrid composites are prepared by wet hand lay-up and heat pressing. We tested loss factor by thermal dynamic mechanics analysis technique to evalute damping properties of composites, and studied the influences of the hybrid ratios, stacking sequences and hybrid modes on the damping and mechanical properties of hybrid composites. The results show that the category and quantity of outermost fibers have significant influence on the damping and mechanical properties of composites. When carbon fiber works as surface layer, composites have higher bending properties and lower damping properties. When Kevlar fiber works as surface layer, composites have lower bending properties and higher damping properties. Bending modulus of CF/KF hybrid composites are on the rise with carbon fiber volume fraction increasing. The more hybrid interface number, the better damping properties of interply hybrid composites.
     This paper studied the influences of frequency and amplitude on the damping and mechanical properties of composites. The results show the loss factor is on the rise with test frequency increasing and amplitude has little influence on damping properties.
     We fabricated structural damping composites by the co-curing process, studied the influences of moulding process, temperature, damping layer, damping layer thickness and perforated damping layer on structural damping composites. The results show viscoelastic damping layer can be embeded into composites as specific layer and co-cured with composites. It can improve damping properties of composites and decrease modulus of composites. Resin and viscoelastic damping layer have well combined interface. Damping properties of co-cured damping composites depend on dynamic properties of damping layer at different temperatures. The increase of damping layer thickness can improve damping properties of structural composites and reduce bending properties of composites. Prforated damping layer decreases damping properties of composites while the bending properties of composites have an improvement.
     Finally, we combined two damping modification methods and designed new structural damping composites. One method is conducted by constraint damping treatment on composites. This method improves damping properties efficiently and doesn't decrease stiffness, but increases some thickness and weight. Other method is embeding Kevlar fiber layers into structural composites with interleaved viscoelastic damping layer. This method can improve damping properties efficiently.
引文
[1]樊萍.玻纤/CPE橡胶基复合材料的阻尼性能研究[D].东华大学硕士学位论文,2009:7-9.
    [2]黄志雄,石敏先等.环氧树脂基阻尼复合材料研究进展[J],粘结,2007,28(1):4
    [3]张少辉,陈花铃.国外纤维增强树脂基复合材料阻尼研究综述[J],航空材料学报.2002,22(1),58-62.
    [4]田莳.材料物理性能[M].北京:北京航空航天大学出版社,2004:403-406.
    [5]贺才春,谭亮红.粘弹阻尼材料在振动噪声控制中的应用[J],橡胶科技市场.2008,12,9-12.
    [6]戴德沛.阻尼减震降噪技术[M].西安:西安交通大学出版社,1986:56-66.
    [7]杨根仓.阻尼材料发展现状与展望[J].航空科学技术,1994,12(3):12-13.
    [8]刘棣华.粘弹阻尼降噪应用技术[M].北京:宇航工业出版社,1990:42-53.
    [9]孙庆鸿,张启军.振动与噪声的阻尼控制[M].北京:机械工业出版社,1992
    [10]CHANDRA R, SINGH S P, GUPTA K. Damping studies in fiber-reinforced composites a review[J].Composites Science and Technology,2001,62:562-564.
    [11]Mantena P R,Gibson R F,H Wang.Optimal constrained viscoelastic tape lengths for maximizing damping in laminated composites[J].AIAA Journal,1991,29:1678-1685.
    [12]IOANA C. FINEGAN, RONALD F. GIBSON.Analytical modeling of damping at micromechanical level in polymer composites reinforced with coated fibers [J]. Composites Science and Technology,2000,60:1077-1084.
    [13]MANTENA P R, GIBSON R F. Dynamic mechanical properties of hybrid polyet-hylene/graphhite composites[A].In: Pro.22nd International SAMPE Technical Conference. Covina,CA:Society for Advancement of Materials and Process Engineering,1990:370-382.
    [14]IOANA C. FINEGAN, RONALD F. GIBSON.Analytical modeling of damping at micromechanical level in polymer composites reinforced with coated fibers [J]. Composites Science and Technology,2000,60:1077-1084.
    [15]杨霜,孙康,吴人洁.混杂纤维复合材料参数设计与力学性能的关系[J].纤维复合材料,2001,4(14),14-18.
    [16]宋焕成,张佐光.混杂纤维复合材料[M].北京航空航天大学出版社,1988,04:36-42.
    [17]任勇生,刘立厚.纤维增强复合材料结构阻尼研究进展[J].力学与实 践,2004,26(1),9-16.
    [18]周光明,梁中全,赵谦.C/G层内混杂复合材料力学性能的实验研究[J].宇航材料工艺,2004,5,21-25.
    [19]张大兴,张佐光CF/GF多向混杂纤维复合材料拉伸特性研究[J].新型碳材料,1997,12(2),29-34.
    [20]张大兴,张佐光CF/GF,CF/KF混杂纤维复合材料混杂效应实验与分析[J].新型碳材料,1997,12(3),46-51.
    [21]余启勇,郭万涛等.FRP的共固化阻尼改性[J].材料工程,2009,增刊2,20-24.
    [22]潘利剑,张博明,戴福洪.黏弹阻尼层共固化复合材料不同温度下的阻尼性能[J].复合材料学报,2008,25(1),168-172.
    [23]贺成红,张佐光,李玉彬等CF/GF混杂增强环氧树脂复合材料的高载动态黏弹特性[J],复合材料学报,2007,24(2),73-78.
    [24]王荣国.复合材料概论[M],哈尔滨工业大学出版社,1999.8:57-62.
    [25]赵士贵,袭建人,陈国文.碳纤维*玻璃纤维混杂复合材料性能研究[J].工程塑料应用,1999,27(12),10-11.
    [26]范永忠,孙康,吴人洁,环氧树脂混杂复合材料的阻尼性能研究[J].功能材料,2000,31(增刊),94-96.
    [27]田农,薛忠民,陈淳等.纤维增强聚合物基复合材料阻尼性能的研究进展[J].玻璃钢/复合材料,2009,1,85-88.
    [28]杨霜,孙康,吴人洁.混杂纤维复合材料阻尼性能的研究[J],纤维复合材料,2002,1,6-10.
    [29]袁辉,陈浩森,赵启林.混杂纤维增强复合材料梁挠度计算理论研究[J].玻璃钢/复合材料,2007,4,11-13.
    [30]Adams R D, Baco D C G.Effect of Fiber Orientation and Laminate Geometry on the Dynamic Properties of CFRP[J].Journal of Composite Materials,1973,7(10):402-4 23.
    [31]蒋鞠慧,尹冬梅,张雄军.阻尼材料的研究状况及进展[J].玻璃钢/复合材料,2010,4,76-80.
    [32]余启勇,马玉璞等.结构阻尼复合材料及其研究进展[J].材料工程,2007,增刊1:253-256.
    [33]张少辉,陈花铃.共固化复合材料粘弹性阻尼结构的损耗因子研究[J].航空 材料学报,2005(1):94-97.
    [34]Janet M. Biggerstaff. Vibrational Damping of composite materials; Materials Science and Engineering[D].2006,48-76.
    [35]潘利剑,张博明,戴福洪.简谐激励下共固化复合材料粘弹性阻尼结构的损耗因子研究[J].振动与冲击,2007,27(2):57-60.
    [36]梁森,吴宁晶,常园园.嵌入式共固化复合材料阻尼结构研究[J].科学技术与工程,2010,10(6):1510-1513
    [37]李明俊,李蓉等.嵌入中空纤维的树脂基复合阻尼材料设计[J].南昌航空大学学报,2009,26(6):10-15.
    [38]杨加明,钟晓丹,赵艳影.复合材料夹杂双层粘弹性材料的应变能和阻尼性能分析[J].工程力学,2010,27(3):212-215.
    [39]罗涵,王翔等.三维缝合夹层结构复合材料的阻尼性能研究[J].武汉理工大学学报,2009,31(21):40-43.
    [40]杨雪,王源生等.多层阻尼复合结构阻尼性能[J].复合材料学报,2005,22(3):175-181.
    [41]潘利剑,张博明,戴洪福.粘弹阻尼层共固化复合材料的阻尼特性分析[J].振动与冲击,2009,28(4):10-13.
    [42]张文璋,龙连春.粘弹性阻尼减振技术及其在梁类结构中的应用[J].现代制造工程,2009,08:113-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700