用户名: 密码: 验证码:
时滞诱发的非线性动力系统多稳态运动及其吸引域特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时滞常常引起系统动力学行为的定性改变,如影响系统稳定性,引起系统复杂性等。本文针对时滞这一特点详细研究了在几个典型系统中时滞引起的多稳态运动,及多稳态运动下的吸引盆问题。
     首先,分析了时滞对一个典型非线性自治系统动力学行为的影响规律。文章对一个Van der Pol-Duffing系统引入线性时滞位移反馈控制,通过运用多尺度法得到周期解的解析形式,并判断其稳定性。发现时滞能够引发系统多稳态运动共存现象。并数值地划分了时滞引起的系统多稳态运动的吸引盆。研究发现,时滞不仅可以改变平衡点的稳定性,还可以将不稳定的运动转化为稳态运动,和使系统产生复杂运动,如多稳态运动,概周期运动和混沌运动。
     其次,分析时滞对一个典型非线性非自治系统动力学行为的影响规律。文章主要研究线性时滞位移反馈对于一个有二次和三次非线性项的参振激励系统动力学行为的影响,构造了一种解析方法得到时滞引发的共振响应解的近似解,并确定了分叉解的分叉方向及稳定性,发现时滞引起系统多吸引子共存现象。从而绘制了时滞引起的多吸引子的吸引盆。结果表明,时滞可以改变平衡点的稳定性,将不稳定的运动转化为稳态运动,控制吸引盆边界分形,而且可使系统产生复杂运动,如概周期运动和混沌运动。
     利用时滞引起多解等复杂性这一特点,文章接下来运用三种时滞反馈(位移,速度和状态反馈)分别对一个典型参振激励系统安全盆侵蚀进行控制,并对比三种控制效果。反馈增益系数和时滞被作为控制参数来控制调节安全盆的侵蚀。研究发现在三类时滞反馈控制中,时滞和反馈均对影响安全盆边界有着重要作用。在负反馈的情况下,三类时滞反馈控制下时滞的增大都只能导致安全盆侵蚀的加剧。在正反馈的情况下,时滞能够被用来控制安全盆的侵蚀。在时滞位移反馈下时滞可以被当成影响系统安全盆的有效开关。而在时滞速度或状态反馈下,安全盆侵蚀能够随时滞的增大成功地抑制。相比之下,当时滞量较小时,时滞位移反馈控制下时滞对控制安全盆侵蚀的效果最好;但当时滞足够大时,时滞状态反馈下时滞对安全盆侵蚀的控制效果最好。在三类时滞反馈控制系统中,增益系数在影响安全盆面积和防止固定点的侵蚀方面也起了重要作用。每种反馈下,总有一个反馈增益的临界点,使得安全盆面积达到最大,一旦增益系数越过这个临界点,安全盆就被迅速侵蚀直至面积为零。另外还发现,当反馈增益系数越来越大时,这三类系统中参数激励对于安全盆的影响也越来越小。在三类时滞反馈中,当时滞和增益系数都较小时,时滞位移反馈是控制安全盆侵蚀和增大安全盆面积的最佳策略;但当时滞或增益足够大时,时滞状态反馈则成为控制安全盆侵蚀的最佳方法。
     最后,研究了时滞对于一类典型的时滞Hopfield神经网络系统平衡点吸引盆边界的影响规律。构造了一类两维多时滞Hopfield神经网络系统平衡点与时滞无关的渐进稳定的充分条件,并解析地对吸引子吸引域边界做出了估计,同时通过数值仿真比较验证。研究发现即使时滞不影响系统的动力学行为,仍会引起吸引域边界的变化。当系统存在自连接时,系统吸引域的边界随时滞的变化既不单调也不直观;自连接和他连接的时滞量严重影响吸引域边界,只有当他连接时滞非常小的时候理论预测与数值结果才比较接近;自连接和它连接时滞越大,数值与理论结果吻合的区域就越小。
     本文的创新点有:提出了时滞非线性系统吸引域向有限维欧式空间投影的概念;通过研究吸引域随时滞的变化规律,观察了时滞非线性系统的全局动力学行为,其中包括多吸引子共存,吸引域分形和混沌等复杂运动;提出及运用时滞反馈进行安全盆控制的手段和方法,结果发现时滞反馈可以实现对安全盆侵蚀的控制。
     本文研究发现时滞可以引起系统多吸引子共存,且能够改变吸引盆边界,甚至引起吸引盆拓扑形态的变化。利用这一特性,可以起到控制安全盆侵蚀,和优化吸引域从而按记忆要求设计网络的作用。
Time delay often affects the dynamics of systems essentially which can not only affect the stability of systems, but also lead to the complex dynamics of systems. According to the character of time delay, we study the multiple attractors and their basins of attraction that the delay induces in several classical systems.
     First of all, the effects of time delay on the dynamics of a typical nonlinear autonomous system. The linear delayed position feedback is induced to a Van der Pol-Duffing system. By using the method of multiple scales, we obtain the closed form of the periodic solution and judge its stability theoretically. It is found that the delay can induces the coexistence of multiple periodic solutions. We classify the basins of attraction of the multiple periodic solutions by the numerical approach. The results show that time delay not only changes the stability of the origin, but also leads to the complex dynamics such as periodic motions, the coexistence of multiple periodic motions, quasi-periodic motions and chaotic motions.
     Secondly, the effects of the delay on the dynamics of a typical nonlinear non-autonomous system are investigated. We aim to study the effects of linear delayed position feedbacks on the steady motion of a parametrically excited system with quadratic and cubic nonlinearities. A new method is proposed to obtain the approximation of the periodic solution and predict the bifurcation direction and the stability of the bifurcating solutions. It follows from the theoretical results that the delay leads to the multiple attractors of the system. The basins of attraction are classified numerically. It is found that time delay changes the stability of the equilibrium, transforms the unstable motions to stable ones, controls the fractal boundary of the basin of attraction, and generates complex dynamical motions such as quasi-periodic motions and chaos.
     Since the delay induces multiple solutions, three types of delayed feedbacks, namely, the delayed position feedback (DPF), delayed velocity feedback (DVF) and delayed state feedback (DSF), are proposed to control the erosion of safe basins in a parametrically excited system, and the effects of the three types of delayed feedbacks are also compared. The time delay and the gain in the feedbacks are chosen as control parameters. The delay and gain in each of the three types of the delayed feedbacks play very important roles in affecting the boundaries of safe basins. For negative feedbacks, the delay in the three types of the delayed feedback control can only aggravate the erosion of safe basins. For positive feedbacks, the delay can be indeed used to reduce the erosion of safe basins. The delay in DPF can be used as an efficient "switch" to affect the safe basin. The delays in both DVF and DSF can be used as good approaches to control the erosion of safe basins. Comparatively, the effect of the delay in DPF is the best to expand the area and to control the erosion of safe basins when the delay is short, while the effect of the delay in DSF becomes the best as the delay grows large enough. The gain plays an important role in affecting the area of safe basins and preventing the chosen point from being erosion in the three delayed feedback controlled systems. In each of the three delayed systems, there is a critical value of the gain at which the maximum area appears in the system. When the gain is further increased to cross through the value, the basin is eroded rapidly until the area vanishes. Besides, when the gain grows larger and larger, the effect of the excitation in each of the three delayed systems on the safe basin will become weaker and weaker. Among the three types of delayed feedbacks, DPF is the best strategy to expand the area and reduce the erosion of safe basins at small values of the delay and the gain, while DSF becomes the best when the delay or the gain is large.
     Finally, the effect of the delay on the boundary of the basin of attraction in a Hopfield neural network system is studied. We obtain some sufficient conditions for the stability of the stationary points by the theoretical approach. Then we are able to characterize theoretically and numerically the evolution of the boundary separating the basins of attraction of two locally stable equilibrium points as the delay varies. It follows that the delay may affect the boundaries of the basins of attraction even if it does not affect the dynamics of the system. If there is self connection in the neural system, the evolution of the boundary with the delays is neither simple nor intuitive. The delays affect the shape of the boundary greatly. The numerical results verify the validity of the analytical predictions only if the delays in the self and neighbor connections are short. The longer the delays in the self and neighbor connections are, the smaller the range where the analytical and numerical boundaries agree with each other will be.
     The main innovations of this paper are shown as follows. Firstly, the paper proposes the definition of the basin of attraction of the delayed nonlinear system projected on a finite dimensional Euclid space. Secondly, the global dynamics of the delayed system, including the complex dynamics such as the coexistence of the multiple attractors, the fractal of the basin of attraction and chaos, is observed by the investigation of the evolution of the region of attraction with the variation of the delay in this paper. Thirdly, the stradegy of the delayed feedbacks to control the safe basin is proposed in this paper, and it is found that the delayed feebacks can be successfully used to control the erosion of the safe basin.
     Our investigation show that time delay can induces the coexistence of the multiple solutions, and change the nature of the basins. By the property, we can use the delayed feedback to control the erosion of safe basins and optimaze of the region of attraction for designing the network according to need.
引文
[1]秦元勋、刘永清、王联、郑祖庥.带有时滞的动力系统的稳定性(第二版),北京:科学出版社,1989.
    [2]S.I.Niculescu,Delay effects on stability:a robust control approach,Berlin:Springer-verlag,2001.
    [3]H.Y.Hu.Using delayed state feedback to stabilize periodic motions of an oscillator,Journal of Sound and Vibration,2004,275(3-5):1009-1025.
    [4]S.R.Taylor,S.A.Campbell.Approximating chaotic saddles for delay differential equations.Physical Review E,2007,75(4):046215.
    [5]W.Just,H.Benner,C.V.Loewenich.On global properties of time-delayed feedback control:weakly nonlinear analysis.Physica D-Nonlinear Phenomena,2004,199(1-2):33-44
    [6]H.L.Wang,H.Y.Hu,Z H Wang.Global dynamics of a duffing oscillator with delayed displacement feedback.International Journal of Bifurcation and Chaos,2004,14(8):2753-2775.
    [7]D.V.R.Reddy,A Sen,G L.Johnston.Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks,Physica D,2000,144:335-357.
    [8]D.V.R.Reddy,A.Sen,G L.Johnston.Time delay effects on coupled limit cycle oscillators at Hopf bifurcation,Phys.D,1999,129(1-2):2129-2156.
    [9]L.J.Pei,J.Xu.Nonresonant double Hopf bifurcation in delayed Stuart-Landau system.Journal of Vibration Engineering,2005,18(1):24-28.
    [10]D.Y.Xu,H.Y.Zhao.Invariant set and attractivity of nonlinear differential equations with delays.Applied Mathematics Letters,2002,15(3):321-325.
    [11]T.Nagatani.Delay transition of a recurrent bus on a circular route.Physica A,2001,297(1-2):260-268.
    [12]J.Xu,K.W.Chung,C.L.Chan.An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks.SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS,2007,6(1):29-60.
    [13]K.Pakdaman,C.P.Malta,C.G Ragazzo,et al.Effect of delay on the boundary of the basin of attraction in a self-excited single graded-response neuron.Neural Computation,1997,9(2):319-336.
    [14]J.Xu,Q.S.Lu.Hopf bifurcation of time-delay Lienard equations,International Journal of Bifurcation and Chaos,1999,9(5):939-951.
    [15]R.Rangwala,D.Dornfeld.Sensor integration using neural networks for intelligent tool condition monitoring.Transaction of ASME,Journal of Engineering for Industry.1990,112(8):219-228.
    [16]T.C.Tsao,M.W.Macarthy,S.G.Kapoor.Anew approach to stability analysis of variable speed machining systems.International Journal of Machine Tools and Manufacture.1993,33(6):791-780.
    [17]T.K.Nagy,G.Stephen,F.C.Moon,Subcritical Hopf bifurcation in the delay equation model for machine tool vibration,Nonlinear Dynamics,2001,26(2):121-142.
    [18]M.S.Fofana.Effect of regenerative process on the sample stability of a multiple delay differential equation.Chaos,Solitons and Fractals,2002,14(2):301-309.
    [19]G Stepan,T.Insperger,R.Szalai.Delay,parametric excitation,and the nonlinear dynamics of cutting processes.International Journal of Bifurcation and Chaos,2005,15(9):2783-2798.
    [20]G W.Housner,L.A.Bergman,T.K.Caughey,et al.Structural Control:PAST,PRESENT,AND FUTURE,Journal of Engineering Mechanics,1997.
    [21]P.S.Els,C.L.Giliomee.The development history of semi-active dampers in South Africa.Wheels and Tracks Symposium.Shrivenham,UK:Royal Military College of Science,1998.
    [22]S.Nell,J.L.Steyn.Experimental evaluation of an unsophisticated two-state semi-active damper.Journal of Terramechanics 1994,31(4):227-238.
    [23]P.S.Els,T.J.Holman.Semi-active rotary damper for a heavy off-road wheeled vehicle.Journal of Terramechanics 1999,36:51-60.
    [24]S.Nell,J.L.Steyn.An alternative control strategy for semi-active dampers on off-road vehicles.Journal of Terramechanics 1998,35:25 - 40.
    [25]C.L.Giliomee,P.S.Els.Semi-active hydropneumatic spring and damper system.Journal of Terramechanics 1998,35:109-117.
    [26]张文丰,翁建生,胡海岩.时滞对车辆悬架"天棚"阻尼控制的影响.振动工程学报,1999,12(4):486-491.
    [27]F.Daniel,I.Rolf.Mechatronic Semi-active and Active Vehicle Suspensions.Control Engineering Practice,2004,12:1353-1367.
    [28]胡海岩,郭大蕾,翁建生,振动半主动控制技术的进展.振动,测试与诊断,2001,21(4):235-244.
    [29]陈龙,汪若尘,江浩斌等.含时滞半主动悬架及其控制系统.机械工程学报,2006,42(1):130-133.
    [30]H.C.Sohn,K.S.Hong,J.H.Hedrich.Semi-active control of the Macpherson suspension system:hardware-in-the-loop simulations.In:Proceedings of 2000 IEEE international Conference on Control Applications,Anchorage Alaska USA,2000.982-987.
    [31]汪若尘,陈龙,江浩斌.时滞半主动悬架大系统递阶控制研究.中国机械工程,2007,18(11):1382-1385.
    [32]嵇春艳,李华军.随机波浪作用下海洋平台主动控制的时滞补偿研究.海洋工程,2004,22(4):95-101.
    [33]J.Suhardjo,A.Kareem.Feedback-feedforward control of offshore platforms under random waves.Earthquake Engineering and Structural Dynamics,2001,30(2):213-235.
    [34]J.Richalet.Predictive functional control application to fast and acute robots.In:Isermann.R,ed.Automatic control Tenth Triennial World Congress of IFAC,oxford,1988,4:251-258
    [35]D.Clark,W.Mohtadi,et al,Generalize predict control.Automatic,23(2):137-160.
    [36]Q.Kai,J.S.Kuand,Time delay compensation in active closed-loop structural control,Mechanics Research Communications,1995,22(2):129-135.
    [37]T.T.Soong.Control:theory and practice.Bufalo:Department of Civil Engineering State University of New York,1989.
    [38]Y.Yoshitake,et al.Vibration of a forced self-excited system with time lag.Trans JSME(Series C),1983,49:439.
    [39]徐龙河,周云,李忠献.MRFD半主动控制系统的时滞与补偿,地震工程和工程振动,2001,21(3):127-131.
    [40]S.Wirkus,R.Rand.The dynamics of two coupled van der Pol oscillators with delay coupling.Nonlinear Dynamics,2002,30:205-221.
    [41]A.Raghothama,S.Narayanan.Periodic response and chaos in nonlinear systems with parametric excitation and time delay.Nonlinear Dynamics,2002,27:341-365.
    [42]T.Azuma,et al.Memory state feedback control synethsis for linear systems with time delay via a finite number of linear matrix inequalities.Computers and Electrical Engineering,2002,28:217-228.
    [43]N.Olgac,D.M.Mcfarland,B.T.Holm-Hansen.Position feedback-induced resonce:the delayed resonator.ASME Winter Annual Meeting,1992,38:113-119.
    [44]N.Olgac,B.T.Holm-Hansen.A novel active vibration absorption technique:delayed resonator.Journal of Sound and Vibration,1994,176(1):93-104.
    [45]N.Olgac,B.T.Holm-Hansen.Design considerations for delayed-resonator vibration absorbers.Journal of Engineering Mechanics,1995,121:80-89.
    [46]N.Olgac,N.Jalili.Modal analysis of flexible beams with delayed resonator vibration absorber:theory and experients.Journal of Sound and Vibration,1998,218(2):307-331.
    [47]N.Olgac,R.Sipahi.An exact method for the stability analysis of time-delayed linear time-invariant(LTI)system.IEEE Transactions on Automatic Control,2002,47(5):793-797.
    [48]赵艳影,徐鉴.时滞动力吸振器及其对主系统振动的影响.振动工程学报,2006,19(4):548-552.
    [49]Y.Y.Zhao,J.Xu.Effects of delayed feedback control on nonlinear vibration absorber system.Journal of Sound and Vibration,2007,308(1-2):212-230.
    [50]A.Maccari.The response of a parametrically excited van der Pol oscillator to a time delay state feedback,Nonlinear Dynamics,2001,26:105-109.
    [51]J.C.Ji,A.Y.T.Leung.Bifurcation control of a parametrically excited Duffing system.Nonlinear Dynamics,2002,27:411-417.
    [52]J.Xu,K.W.Chung.Effects of time delayed position feedback on a Van der Pol-Duffing oscillator,Physica D,2003,180:17-39.
    [53]J.Xu,P Yu,Delay-reduced bifurcations in a non-autonomous system with delayed velocity feedbacks.International Journal of Bifurcation and Chaos,2004,14:2777-2798.
    [54]H.L.Shang,J.Xu.The influence of delayed position feedback on safe basins in a parametrically excited system.The Proceedings of the Fifth International Conference on Nonlinear Mechanics,2007,1335-1339.
    [55]尚慧琳,徐鉴.时滞Duffing方程的多周期解.太原理工大学学报,2005,6(36):749-751.
    [56]尚慧琳,徐鉴.时滞位移反馈引发的单自由度参数激励系统的丰富动力学行为.振动与冲击,2007,26(s):86-88.
    [57]C.Marcus,R.Westervelt.Stability of analog neural networks with delay.Physical Review A,1989,39:347-359.
    [58]J.J.Wei,S.G.Ruan.Stability and bifurcation in a neural network model with two delays.Physica D,1999,130:255-272.
    [59]L.Wang,X.Zou.Harmless delays in Cohen-Grossberg neural networks.Physica D,2002,170:162-173.
    [60]T.W.Huang,A.Chan,Y.Huang,J.D.Cao.Stability of Cohen-Grossberg neural networks with time-varying delays.Neural Networks,2007,20:868-873.
    [61]T.Roska,L.Chua.Cellular neural networks with nonlinear and delay type template elements and non-uniform grids.International Journal Circuit Theory and Applications,1992,20:469-481.
    [62]H.Y.Zhao,N.Ding.Dynamic analysis of stochastic Cohen-Grossberg neural networks with time delays,Applied Mathematics and Computation,2006,183:464-470.
    [63]W.L.Lu,T.P.Chen.R_n~+ -global stability of a Cohen-Grossberg neural network system with non-negative equilibria.Neural Networks,2007,20:714-722.
    [64]Z.S.Mao,H.Y.Zhao.Dynamical analysis of Cohen-Grossberg neural networks with distributed delays.Physics Letters A,2007,364:38-47.
    [65]K.N.Lu,D.Y.Xu,Z.C.Yang.Global attraction and stability for Cohen-Grossberg neural networks with delays.Neural Networks,2006,19:1538-1549.
    [66]Y.K.Li.Existence and stability of periodic solutions for Cohen-Grossberg neural networks with multiple delays.Chaos,Solitons and Fractals,2004,20:459-466.
    [67]J.Wu,X.Zou.Patterns of Sustained Oscillations in Neural Networks with Delayed Interactions.Applied Mathematics and Computation,1995,73:55-75.
    [68]X.B.Zhou,Y.Wu,Y.Li,X.Yao.Stability and Hopf bifurcation analysis on a two-neuron network with discrete and distributed delays.Chaos,Solitons and Fractals,2007,in press
    [69]E.Kaslik,S.Balint.Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections.Chaos,Solitons and Fractals,2007,in press
    [70]K.Gopalsamy,I.Leung.Delay induced periodicity in a neural netlet of excitation and inhibition.Physica D,1996,89:395-426.
    [71]H.Y.Zhua,L.H.Huang.Stability and bifurcation in a tri-neuron network model with discrete and distributed delays.Applied Mathematics and Computation,2007,188:1742-1756.
    [72]L.H.Huang,C.X.Huang,Bingwen Liu.Dynamics of a class of celluar neural networks with time-varying delay.Physics Letter A,2005,345:330-334.
    [73]B.W.Liu,L.H.Huang.Existence and exponential of periodic solutions for cellular neural networks with time-varying delays.Physics letter A,2006,349:474-483.
    [74]K.Pakdaman,C.G.Ragazzo,C.P.Malta,et al.Effect of delay on the boundary of the basin of attraction in a system of two neurons.Neural Networks,1998,11(3):509-519.
    [75]K.Pakdaman,C.P.Malta,C.G Ragazzo.Asymptotic behavior of irreducible excitatory networks of analog graded-response neurons.IEEE Transactions on Neural Networks,1999,10(6):1375-1381.
    [76]H.Wang,X.F.Liao,C.D.Li.Existence and exponential stability of periodic solution of BAM neural networks with pulse and time-varying delays.Chaos,Solitons and Fractals,2007,33(3):1028-1039.
    [77]刘可文,杨惟高等.基于神经网络吸引子纠错译码的初步研究,信息技术,2001.
    [78]A.Esposito,Rampone S.A neural network for error correcting decoding of binary linear codes.Neural Networks,1994,7(1):195-202.
    [79]J.S.Bruck,M.Blaom.Neural networks,error-correcting codes and polynomials over th binary n-cube.IEEE Trans.on Information Theory.1989,35(5):213-230.
    [80]Y.J.Wu.A supervised learning neural network coprocessor for soft-decision maximum likehood decoding.IEEE Trans on N.N.,1995,6(4):988-992.
    [81]K.Green,B.Krauskopf,D.Lenstra.External cavity mode structure of a two-mode VCSEL subject to optical feedback.Optics Communications,2007,277(2):359-371.
    [82]S.A.Campbell,I.Ncube,J.Wu.Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system.Physica D:Nonlinear Phenomena,2006,214(2):101-119.
    [83]L.P.Shayer,S.A.Campbell.Stability,bifurcation,and multi-stability of two coupled neurons with multiple time delays,SIAM J.APPL.MATH.2000,61(2):673-700.
    [84]C.Y.Cheng,K.H.Lin,C.W.Shih.Multistability and convergence in delayed neural networks.Physica D,2007,225:61-74.
    [85]V.S.Udaltsov,J.P.Goedgebuer,L.Larger,W.T.Rhodes.Dynamics of non-linear feedback systems with short time-delays.Optics Communications,2001,195(1-4):187-196.
    [86]Y.Jiang.Globally coupled maps with time delay interactions.Physics Letters A,2000,267(5-6):342-349.
    [87]J.Wu,T.Faria,Y.S.Huang.Synchronization and stable phase-locking in a network of neurons with memory.Mathematical and Computer Modelling,1999,30(1-2):117-138.
    [88]P.D.Gupta,N.C.Majee,A.B.Roy.Stability,bifurcation and global existence of a Hopf-bifurcating periodic solution for a class of three-neuron delayed network models.Nonlinear Analysis,2007,67:2934-2954.
    [89]D.Y.Xu,H.Y.Zhao,H.Zhu.Global dynamics of Hopfield neural networks involving variable delays.Computers and Mathematics with Applications,2001,42:39-45.
    [90]D.Y.Xu,S.Y.Li,Z.L.Pu,Q.Y.Guo.Domain of attraction of nonlinear discrete systems with delays,Computers Math.Applic.1999,38(5-6):155-162.
    [91]X.X.Liao,Q.Luo,Z.G.Zeng.Positive invariant and global exponential attractive sets of neural networks with time-varying delays.Neurocomputing,2008,71(4-6):513-518.
    [92]C.V.Pao.The global attractor of a competitor-competitor-mutualist reaction-diffusion system with time delays.Nonlinear Analysis:Theory,Methods & Applications,2007,67(9):2623-2631.
    [93]F.M.Atay.Total and partial amplitude death in networks of diffusively coupled oscillators.Physica D:Nonlinear Phenomena,2003,183(1-2):1-18.
    [94]A.P.Tchangani,M.Dambrine,J.P.Richard.Stability,attraction domains,and ultimate boundedness for nonlinear neutral systems.Mathematics and Computers in Simulation,1998,45(3-4):291-298.
    [95]季策,张化光.具有参数摄动的时滞Hopfield神经网络的鲁棒稳定性.电子学报,2005,33(1):115-118.
    [96]K.Tateno,H.Hayashi,S.Ishizuk.Complexity of spatio-temporal activity of a neural network model which depends on the degree of synchronization.Neural Networks,1998(11):985-1003.
    [97]Y.Arash,G.Stephen.Fast synchronization of perceptual grouping in laminar visual cortical circuits.Neural Networks,2004,17:707-718.
    [98]H.Fuid,H.Ito,K.Aihara,et al.Dynamical cell assembly hythothesis:theoretical possibility of spatio-temporal coding in the cortex.Neural Network,1996,19(8):1303-1350.
    [99]E.M.Izhikevich,Polychronization:Computation with spikes.Neural Computation,2006,18:245-282.
    [100]A.R.Laird,B.P.Rogers,J.D.Carew,et al.Characterizing instantaneous phase relationships in whole-brain fMRI activation data.Hum.Brain Mapp.,2002,16(2):71-80.
    [101]M.Meister,R.O.Wong,D.A.Baylor,C.J.Shatz.Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina.Science,1991,252:939 - 943.
    [102]H.Kitajima,H.Kawakami.Bifurcations in synoptically coupled neurons with external impulsive forces.IEIC Technical Report,2003,103(183):33-36.
    [103]B.Nikola,T.Dragana.Dynamics of Fitzugh-Nagumo excitable systems with delayed coupling.Phys Rev E,2003,67:066222.
    [104]B.Nikola,I.Grozdanovic,N.Vasovic,Type I vs.type II excitable systems with delayed coupling,Chaos,Solitons & Fractals,2005,23(4):1221-1233.
    [105]Q.Y.Wang,Q.S.Lu,G R.Chen,et al.Bifurcation and synchronization of synaptically coupled FHN models with time delay.Chaos,Solitons and Fractals,2007,in press.
    [106]M.Dhamala,V.K.Jirsa,M.Ding.Enhancement of Neural synchrony by Time Delay.Phys.Rev.Lett.,2004,92:074104.
    [107]B.Nikola,R.Dragana.Bursting neurons with coupling delays.Physics Letter A,2007,363:282-289.
    [108]J.Xu,L.J.Pei,Z.Q.Lu.Lyapunov stability for a class of predator-prey model with delayed nutrient recycling.Chaos,Solitons & Fractals,2006,28(1):173-181.
    [109]W.P.Zhang,D.M.Zhu,P.Bi.Multiple positive periodic solutions of a delayed discrete predator-prey system with type IV functional responses.Applied Mathematics Letters,2007,20(10):1031-1038.
    [110]X.P.Yan.Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects.Applied Mathematics and Computation,2007,192(2):552-566.
    [111]R.Xu,Z.Ma.The effect of stage-structure on the permanence of a predator-prey system with time delay.Applied Mathematics and Computation,2007,189(2):1164-1177.
    [112]Y.H.Fan,W.T.Li.Permanence in delayed ratio-dependent predator-prey models with monotonic functional responses,Nonlinear Analysis:Real World Applications,2007,8(2):424-434.
    [113]G.I.Marchuk.Mathematical Models in Immunology.Nauka Press,1980.
    [114]M.Bodnar,U.Forys.Behavior of solutions to Marchuk's model depending on a time delay.International Journal of Application and Mathematical Computation.2000,10(l):101-116.
    [115]U.Forys.Some remarks on the stability of chronic state in Marchuk's model depending on time delay.In Proceedings of the Sixth National Conference on Application of Mathematics in Biology and Medicine,ed.Roksana Cieciak,Cracow,2000,p.40-43.
    [116]A.A.Canabarro,I.M.Gleria,M.L.Lyra.Periodic solutions and chaos in a non-linear model for the delayed cellular immune response.Physica A:Statistical Mechanics and its Applications,2004,342(1-2):234-241.
    [117]S.J.Gao,L.S.Chen,Z.D.Teng.Pulse vaccination of an SEIR epidemic model with time delay.Nonlinear Analysis:Real World Applications,2008,9(2):599-607
    [118]M.C.Mackey,L.Glass.Oscillation and chaos in physiological control system.Science,1977,197:287-289.
    [119]J.D.Farmer.Chaotic attractors of an infinite-dimensional dynamical system.Physica D,1982,4(2):366-393.
    [120]H.Lu,Z.He.Chaotic behaviors in first-order autonomous continous-time systems with delay.IEEE Trans.Circ.Syst.I,1996,43:700-702.
    [121]卢辉斌,李丽香等.超混沌M-G系统参数辨识及其在通讯中的应用.电子学报,2002,30(2):289-291.
    [122]B.Mensour,A.Longtin.Synchronization of delay-differential equations with application to private communication.Physics Letter A,1998,244(1):59-70.
    [123]K.Pyragas.Transmission of signals via synchronization of chaotic time-delay systems.International Journal of Bifurcation and Chaos,1998,8(9):1839-1842.
    [124]C.Cruz-Hernandez.Synchronization of time-delay Chua's oscillator with application to secure communication.Nonlinear Dynamics of System Theory,2004,4(1):1-13.
    [125]H.Huang,H.X.Li,J.Zhong.Master-slave synchronization of general Lure systems with time-varying delay and parameter uncertainty.International Journal of Bifurcation and Chaos,2006,16(2):281-294.
    [126]X.F.Wang,G Q.Zhong,K.F.Tang,Z.F.Liu.Generating chaos in Chua's circuit via time-delay feedback.IEEE Trans Circ Syst 1,2001,48(9):1151-1156.
    [127]C.Cruz-Hernandez,N.Romero-Haros.Communicating via synchronized time-delay Chua's circuits.Communications in Nonlinear Science and Numerical Simulation,2008,13(3):645-659.
    [128]D.V.Gregory,R.Rajarshi.Chaotic communication using time-delayed optical systems.International Journal of Bifurcation and Chaos,1999,11(9):2129-2156.
    [129]A.Khadra,X.Z.Liu,X.Shen.Impulsively synchronizing chaotic systems with delay and applications to secure communication.Automatica,2005,41(9):1491-1502.
    [130]E.W.Bai,K.E.Lonngren,A.Ucar.Secure communication via multiple parameter modulation in a delayed chaotic system.Chaos,Solitons & Fractals,2005,23(3):1071-1076.
    [131]C.M.Kim,W.H.Kye,S.Rim,S.Y.Lee Communication key using delay times in time-delayed chaos synchronization,Physics Letters A,2004,333(3-4):235-240.
    [132]C.D.Li,X.F.Liao,K.W.Wong.Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication.Physica D:Nonlinear Phenomena,2004,194(3-4):187-202.
    [133]M.D.Prokhorov,V.I.Ponomarenko.Encryption and decryption of information in chaotic communication systems governed by delay-differential equations.Chaos,Solitons & Fractals,2008,35(5):871-877.
    [134]X.F.Wang,N.N.Schulz,S.Neuman.CIM extension to Electrical Distribution and CIM XML for the IEEE Radial Test Feeders.IEEE Transactions on Power Systems,2003,18(3):1021-1028.
    [135]F.L.Lian,J.Moyne,D.Tilbury.Network design consideration for distributed control systems.IEEE Transactions on Control Systems Technology,2002,10(2):297-307
    [136]李丽春,蒋静坪,于晓明.时滞独立的网络控制系统H_∞控制器设计.机电工程,2007,24(8):43-45.
    [137]王庆鹏,谈大龙,陈宁.基于Internet的机器人控制中网络时延测试及分析.机器人,2001,23(4):316-321.
    [138]J.Q.Huang,F.L.Lewis,K.Liu.A neural predictive control for telerobots with time delay.Journal of Intelligent and Robotic Systems,2000,29:1-25.
    [139]M.Szydlowski,A.Krawiec,J.Tobola.Nonlinear oscillations in business cycle model with time lags.Chaos,Solitons and Fractals,2001,12:505-517.
    [140]T.D.Howroyd,A.M.Russel.Cournot oligopoly models with time lags.Journal of Mathematical Economics,1984,13:97-103.
    [141]A.Zimbidis,S.Haberman.The combined effect of delay and feedback on the insurance pricing process:a control theory approach.Insurance:Mathematics and Economics,2001,28:263-280.
    [142]J.K.Hale.Theory of Functional Differential Equations.New York:Springer-Verlag,1977.
    [143]B.D.Hassard.Counting roots of the characteristic function for linear delay-differential systems.Journal of Sound and Vibration,1997,136:222-235.
    [144]S.Busenberg,M.Martelli.Delay Differential Equations and Dynamical Systems,Berlin:Springer-Verlag,1990.
    [145]B.D.Hassard,N.D.Kazarinoff,Y.H.Wan.Theory and Applications of Hopf Bifurcation,U.S.A.:Cambridge University Press,1981.
    [146]李森林.温立志.泛函微分方程.长沙:湖南科学技术出版社,1987.
    [147]O.Diekmann,S.A.V.Gils,S.M.V.Lunel,H.O.Walther.Delay Equations,Functional-,Complex-,and Nonlinear Analysis,New York:Springer-Verlag.
    [148]郑祖庥,泛函微分方程理论,安徽教育出版社,合肥,1992.
    [149]J.Hale,S.M.Lunel.Introduction to functional,complex and nonlinear analysis.Springer-Verlag,New York,1995.
    [150]K.Gopalsamy.Stability and oscillations in delay differential equations of population dynamics,Kluwer Academic Publishiers,Boston,1992.
    [151]J.K.Hale,L.T.Magalhaes,W.M.Oliva.Dynamics in infinite Dimensions,New York:Springer-Verlag,2002.
    [152]X.F.Liao,G.R.Cheng.Local stability,Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays.International Journal of Bifurcation and Chaos,2001,11(8):2105-2121.
    [153]J.Kato.Lyapunov's second method in functional differential equations.Tohoku Math.J.,1980,32:487-497.
    [154]H.F.Huo,W.T.Li.Positive periodic solutions of a class of delay differential system with feedback control.Applied Mathematics and Computation,2004,148:35-46.
    [155]L.Wang,M.Wang.The Lyapunov functionals in the stability theory of retarded systems,Acta Math.Appl.Sinica,1993,9:317-327.
    [156]T.Yoshizawa.Stability theory by Lyapunov's second method.Math.Soc.Japan,1966.
    [157]Y.Zhang,M.Wang.Two families of Lyapunov functions for functional differential systems.Acta.Mathematica Sinica(English Series),1999,15:197-206.
    [158]T.Hong,P.C.Hughes.Effect of time delay on the stability of flexible structers with rate feedback control.Journal of Vibration and Control,2001,7:33-49.
    [159]E.Fridman.New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems.Systems and Control Letters,2001,43:309-319.
    [160]李霄剑,王克.一类无穷时滞微分系统的周期解和全局吸引性.生物数学学报,2007,22(2):219-226.
    [161]Z.H.Wang,H.Y.Hu.Stability of linear time variant dynamic systems with multiple time delays,Acta Mechanica Sinica,1998,14(3):276-282.
    [162]N.G Hairston,et al.,Community structure,population control and competition,Am.Nat.,1960,94:421.
    [163]N.N.Chafee.A bifurcation problem for a functional differential equation of finitely retarded type,Journal of Mathematical Analysis and Applications,1971,35:312-348.
    [164]J.Belair,et al.Frustration,stability,and delay-induced oscillations in a neural network model,SIAM Journal on Applied Mathematics,1996,56(1):245-255.
    [165]P.Yu,Y.Yuan,J.Xu.Study of double Hopf bifurcation and chaos for an oscillator with time delayed feedback.Communications in Nonlinear Science and Numerical Simulation,2002,7(1):69-91.
    [166]H.L.Shang,J.Xu.Delay induced multiple attractors and basins in a controlled system.DCDIS Series B,2007,14(S5):117-122.
    [167]黄羽,徐鉴.一类平面自治非线性时滞控制系统的多稳态和混沌.力学季刊,2005,26(4):669-672.
    [168]X.F.Liao,S.W.Li,K.W.Wong.Hopf bifurcation on a two-neuron system with distributed delays:a frequency domain approach.Nonlinear Dynamics,2003,31(3):299-326.
    [169]V.Wulf,N.J.Ford.Numerical Hopf bifurcation for a class delay differential equations,Journal of Computational and Applied Mathematics,2000,115(1-2):601-606.
    [170]徐鉴,陆启韶,黄玉盈.Van der Pol型时滞系统的两参数余维一Hopf分岔及其稳定性.固体力学学报,1999,20(4):297-302.
    [171]X.F.Liao,G.R.Chen.Local stability,Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays,International Journal of Bifurcation and Chaos,2001,11(8):2105-2121.
    [172]J.Belair,S.A.Campell.Stability and bifurcations of equilibria in a multipl-delayed differential equation,SIAM Journal on Applied Mathematics,1994,54(5):1402-1424.
    [173]A.Maccari.Vibration control for parametrically excited Lienard systems.Nonlinear Mechanics,2006,41:146-155.
    [174]M.Dhamala,Y.C.Lai.Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology.Physical Review E,1999,59(2):1646-1655.
    [175]C.P.Lewis,A.Ucar,S.R.Bishop.Stability of nonlinear systems and the effects of time delay control.Transactions of the Institute of Measurement and Control.1998,20(1):29-36.
    [176]张强,王宝华,杨成梧.电力系统安全盆侵蚀及其控制.电网技术,2005,29(24):63-67.
    [177]J.M.T.Thompson,F.C.T.Rainey,M.S.Soliman.Ship stability criteria based on chaotic transients from incursive fractals.Philosophical Transactions of the Royal Society,1995,332(1):149-67.
    [178]M.S.Soliman.Fractal erosion of basins of attraction in coupled nonlinear systems.Journal of Sound and Vibration,1995,182(5):729-40.
    [179]J.M T.Thompson,F.A.McRobie.Indeterminate bifurcation and the global dynamics of driven oscillators.In:Proceedings of 1st European Nonlinear Oscillation's Conference.Hamburg,German;1993.p.107-28.
    [180]C.B.Gan.Noise-Induced chaos and safe basin in softening Duffing oscillator.Chaos,Solitons
    [182] M. S. T. Freitas, R. L. Viana, C. Grebogi. Erosion of the safe basin for the transversal oscillations of a suspension bridge. Chaos, Solitons & Fractals, 2003,18: 829-41.
    [183] S. Lend, G Rega. Optimal control of homoclinic bifurcation: theoretical treatment and practical reduction of safe basin in the Helmholtz oscillator. Journal of Vibration and Control, 2003, 9: 281-316.
    [184] M. S. Soliman, J. M. T. Thompson. Intergrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration, 1989,35: 453-75.
    [185] S. W. McDonald, C. Grebogi, E. Ott, J. A. Yorke. Fractal basin boundaries. Physica D, 1985, 17:125-53.
    [186] J. Xu, Q. S. Lu, K. L. Huang. Controlling erosion of safe basin in nonlinear parametrically excited systems. ACTA Mechanica Sinica, 1996,12(3): 281-8.
    [187] S. R. Bishop, U. Galvanetto. The influence of ramped forcing on safe basins in a mechanical oscillator. Dynamics and Stability of Systems, 1993,8(2): 73-80.
    [188] F. C. Moon, G X. Li. Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential. Phys Rev Lett, 1985,55:1439-42.
    [189] I. Senjanovic, J. Parunov, G Cipric. Safety analysis of ship rolling in rough sea. Chaos, Solitons& Fractals, 1997,4: 659-80.
    [190] U. Feudel, C. Grebogi, L. Poon, J. A. York. Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors. Chaos, Soliton & Fractals, 9(1-2):171-180.
    
    [191] C. S. Hsu. A generalized theory of cell-to-cell mapping for nonlinear dynamical systems. ASME J. Applied Mech. Trans., 1980,47(2): 634-642.
    [192] C. S. Hsu. A theory of cell-to-cell mapping dynamical systems. ASME J. Applied Mech. Trans., 1980,47(3): 931-939.
    [193] L. Hong, J. X. Xu. Discontinuous bifurcations of chaotic attractors in forced oscillators by generalized cell mapping digraph (GCMD) method. Int. J. of Bifurcation And Chaos, 2003, 113: 723-736.
    [194] J. Guckenheimer, P. Holms. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag; 1983.
    [195] K. FalconeT. Fractal Geometry: Mathematical Foundation and Applications. London: John Wiley & Sons, 1990.
    [196] Tatlier M, Cenatalar AE. Fractal dimension of zeolite surfaces by calculation. Chaos, Solitons & Fractals 2001;12(6):1145-55.
    [197] P. Fischer, W. R. Smith. Chaos, Fractals, and Dynamics. New York: Marcel Dekker, Inc.; 1985.
    [198] P. Holmes, D. Rand. Phase portraits and bifurcation of nonlinear oscillator x|¨ + (a + γx~2)x|· + βx|· + δx~3 = 0 . International Journal of Nonlinear Mechanics, 1980, 15(6): 449-485.
    [199] L. Berezanskya, E. Bravermanb. Oscillation properties of a logistic equation with distributed delay. Nonlinear Analysis: Real World Applications, 2003,4(1): 1-19.
    [200] R. H. Plaut, J. C. Hsieh. Nonlinear structural vibrations involving a time delay in damping. Journal of Sound and Vibration, 1987,117(3): 497-510.
    [201] Y. F. Jin, H. Y. Hu. Principal resonance of a Duffing oscillator with delayed state feedback under narrow-band random parametric excitation. Nonlinear Dynamics, 2006,50: 213-27.
    [202] L. D. Zavodney, A. H. Nayfeh, N. E. Sanchez. The response of a single -degree-of-freedom system with quadratic and cubic parametric resonance. Journal of Sound and Vibration, 1989, 129(3): 417-442.
    [203] G Li, F. C. Moon. Criteria for chaos of a three-well potential oscillator with homoclinic and heteroclinic orbits. Journal of Sound and Vibration, 1990,136:17-34.
    [204] R. Chacon, F. Palmero, F. Balinrea. Taming chaos in a driven Josephson junction, Journal of Bifurcation and Chaos, 2001,7:1897-1909.
    [205] H. Cao, X. Chi, G. Chen. Suppressing or inducing chaos by weak resonant excitations in an externally-forced Froude pendulum. International Journal of Bifurcation and Chaos, 2004, 14(3): 1115-1120.
    [206] H. Cao, X. Chi, G Chen. Suppressing or inducing chaos in a model of robot arms and mechanical manipulators. Journal of Sound and Vibration, 2004, 217, 705-724.
    [207] S. Rajasekar. Controlling of chaos by weak periodic perturbations in Duffing-van der Pol oscillator. J. Phys. Pramana, 1993,41: 295-309.
    [208] K. Pyragas. Continuous control of chaos by self-controlling feedback. Phys. Lett. A, 1992, 170:421-8.
    [209] I. E. Hairer, S. P. N0rsett, G Wanner. Solving Ordinary Differential Equations. Beijing: World Publishing Corporation; 1993.
    
    [210] J. M. T. Thompson, H. B. Stewart. Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists. Chichester: John Wiley and son

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700