用户名: 密码: 验证码:
一类多自由度机械系统的时滞反馈镇定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,在计算机、传感器和驱动器等技术的带动下,主动控制技术得到了快速发展。然而,随着人们对控制速度和性能要求的不断提高,控制回路中不可避免的时滞成为制约主动控制技术发展和应用的一个重要因素。另一方面,时滞并非总是不利因素,若主动巧妙地利用时滞则可在某些情况下改善控制系统的性能。此外,非线性时滞系统具有丰富的动力学现象,在动力学分析的基础上设计控制器可获得一些独特的控制效果。所以,时滞系统的动力学与控制研究具有重要的科学意义和工程应用价值。
     本文以一类具有多个不稳定平衡点的多自由度机械系统作为主要对象,研究时滞反馈镇定方法和相关的非线性动力学问题,进而深化对时滞系统动力学与控制的认识。论文的主要研究工作与学术贡献如下:
     1.根据研究目的,设计并研制了一套可用于时滞动力学与控制研究的小车~二级摆控制实验系统。通过理论、数值和实验手段研究了数字滤波器对该系统稳定性和分叉的影响。实验发现,若滤波器设计指标设置过高会因引入过长的群时延量而导致系统平衡点失稳,发生Hopf分叉。在理论和数值分析中,将滤波器简化为纯滞后环节,得到连续的时滞动力系统,进而可分析其稳定性和平衡点失稳后的Hopf分叉。理论、数值和实验结果的一致性肯定了将数字滤波器等效为纯滞后环节的合理性。
     2.对现有的几种基于状态变换的时滞线性二次型(LQ)控制方法做了简要的介绍,并在小车~二级摆控制实验中尝试使用时滞LQ控制方法避免滤波器群时延引起的闭环系统失稳。实验的成功证实了控制方法的有效性,并说明了将滤波器简化为时滞环节的合理性。
     3.揭示了针对输入时滞系统的一种连续状态变换和一种离散状态变换之间的比例关系。在研究两者关系的过程中,提出了一种新的连续时滞LQ控制方法。在该方法设计的控制律中,反馈增益矩阵不随着时滞量的变化而改变,为控制含时变时滞的系统提供了可能。随后探讨了新方法在慢变输入时滞系统中的应用。
     4.提出了一套通过位移和滞后位移(PDP)反馈来镇定多自由度线性无阻尼机械系统的方法。对于全驱动系统,先通过模态解耦和单自由度系统的稳定区域图完成对应每个模态自由度的控制器设计,然后按照反解耦过程重构物理空间的反馈控制器。对于欠驱动系统,提出一种两步控制策略:先设计位移反馈控制,将闭环系统极点配置到虚轴上;再基于非线性特征值灵敏度分析设计位移和滞后位移差分反馈控制,使闭环系统极点移动到左半复平面。数值仿真演示了PDP反馈控制器的设计过程并验证了其有效性。
Last two decades have witnessed a rapid development of active control of various mechanical systems, owing to the recent advances in computing, sensing and driving technology. However, with increasingly strict requirements for control speed and system performance, the unavoidable time delays in control loop have become a severe limitation to the development and application of active control. On the other hand, several studies have shown that the voluntary introduction of time delays can also benefit the control. Moreover, the nonlinear time-delay systems exhibit rich interesting dynamic behaviors, which can be employed to design controls to achieve some special kinds of motion. Therefore, dynamics and control of time-delay systems are of great scientific significance and practical value.
     This dissertation mainly focuses on the stabilization of mechanical systems of multiple degrees of freedom with multiple unstable equilibrium points via delayed feedback and the conrresponding nonlinear dynamics, so as to deepen understanding of dynamics and control of time-delay systems. The contents and contribution of the dissertation are as follows.
     1. According to the research objective, an experimental setup of a double pendulum on a cart is designed and established to study the dynamics and control of mechanical system with delayed feedback. Effects of digital filters on the stability and dynamic behaviors of the controlled double pendulum are studeied theoretically, numerically and experimentally. The experiment results show that an over demanding selection of the filter specifications will lead to the instability of the closed-loop system through a Hopf bifurcation, because the group delay of the filter exceeds a critical value. In the theoretical and numerical analysis, the filters are modeled into the dynamic equation of closed loop system as the components of pure time delays. This simplification yields a continuous time-delay system so that one can make not only the stability analysis, but also the Hopf bifurcation analysis. The experimental results show a good agreement with the theoretical and numerical results, and positively confirm the simplification of the digital filters as the components of pure time delays.
     2. A brief review on three existing state-transformation based delayed linear quadratic (LQ) control methods is presented. A discrete delayed LQ controller is successfully applied to the stabilization experiment of the double pendulum system to avoid the instablility induced by the group delay of a digital filter. The experimental results indicate the effectiveness of the control methods and support the adequacy of simplifying the digital filter as a time delay component.
     3. The relations between a continous transformation and a discrete transformation for the system with an input delay are revealed and inspired by which, a new continuous delayed LQ control is proposed. The new control method has a very interesting property that the feedback gain matrix keeps the same for different values of an input delay. Based on this property, the new delayed LQ control method, intended to deal with the dynamic system with a constant delay, can also be applied to the dynamic system with a slowly time-varying input delay.
     4. A systematic approach to stabilizing a kind of linear undamped systems of multiple degrees of freedom by using both position and delayed position (PDP) feedbacks is proposed. For the fully-actuated system, the approach enables one to complete the design of controller directly through the use of modal decoupling and a stability chart. For the under-actuated system, the approach includes two steps. The first step is to move all the eigenvalues of the system on the imaginary axis of the complex plane by using a position feedback, and the second step is to drag all the eigenvalues of the system to the open left half of the complex plane through the use of a delayed position feedback, which can be determined on the basis of sensitivity analysis of eigenvalues. Two illustrative examples well demonstrate the design procedure of PDP feedback controllers and their efficacy.
引文
[1]丁继斌,封士彩.机械系统设计及其控制技术.北京:化学工业出版社, 2007.
    [2]张文丰,胡海岩.含时滞的LQ控制车辆悬架的研究.应用力学学报, 2003, 20(1): 37-41.
    [3] Liu H H T, Brandel F. Compensator design for large time delay in a flight control system. Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference, Providence, RI, United states: American Institute of Aeronautics and Astronautics Inc., 2004.
    [4] Sun W, Hu H Y. Semi-active vibration control for wing aileron using stepped magneto-rheological damper. International Journal of Nonlinear Sciences and Numerical Simulation, 2005, 6(1): 25-30.
    [5]于明礼,文浩,胡海岩.二维翼段颤振的H_∞控制.振动工程学报, 2006(03): 326-330.
    [6]于明礼,文浩,胡海岩,等.二维翼段颤振的μ控制.航空学报, 2007(02): 340-343.
    [7] Ardelean E V, Mcever M A, Cole D G, et al. Aeroelastic control using V-stack piezoelectric actuator and Q-parameterized system identification. Smart Structures and Materials 2004 - Modeling, Signal Processing, and Control, San Diego, CA, United states: SPIE, 2004.
    [8] Hu H Y, Wang Z H. Dynamics of Controlled Mechanical Systems with Delayed Feedback. Berlin: Springer-Verlag, 2002.
    [9]顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社, 1997.
    [10] Alkhatib R, Golnaraghi M F. Active structural vibration control: A review. Shock and Vibration Digest, 2003, 35(5): 367-383.
    [11] Kao C Y, Rantzer A. Stability analysis of systems with uncertain time-varying delays. Automatica, 2007, 43(6): 959-970.
    [12] Sbarciog M, De Keyser R, Cristea S, et al. Nonlinear predictive control of processes with variable time delay. A temperature control case study. 2008 IEEE International Conference on Control Applications (CCA) part of the IEEE Multi-Conference on Systems and Control, Piscataway, NJ, USA: IEEE, 2008.
    [13] Richard J P. Time-delay systems: an overview of some recent advances and open problems. Automatica, 2003, 39(10): 1667-1694.
    [14] Liu B, Hu H Y. Stabilization of linear undamped systems via position and delayed position feedbacks. Journal of Sound and Vibration, 2008, 312(3): 509-525.
    [15] Olgac N, Holm-Hansen B. Tunable active vibration absorber: the delayed resonator.Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control, 1995, 117(4): 513-519.
    [16] Grillo G, Olgac N. The Influence Region Analysis for the Delayed Resonator Vibration Absorber. 2001 ASME International Mechanical Engineering Congress and Exposition, New York, NY, United states: American Society of Mechanical Engineers, 2002.
    [17] Hosek M, Olgac N. A single-step automatic tuning algorithm for the delayed resonator vibration absorber. IEEE/ASME Transactions on Mechatronics, 2002, 7(2): 245-255.
    [18] Pyragas K. Continuous control of chaos by self-controlling feedback. Physics Letters A, 1992, 170(6): 421-428.
    [19] Pyragas K, Tamasevicius A. Experimental control of chaos by delayed self-controlling feedback. Physics Letters A, 1993, 180(1-2): 99-102.
    [20] Pyragas K. Application of extended delay feedback to control chaos. Journal of Technical Physics,International Conference on Nonlinear Dynamics, Chaotic and Complex Systems, Poland: Polish Acad. Sci. Inst. Fundamental Technol. Res, 1996.
    [21] Pyragas K. Delayed feedback control of chaos. Philosophical Transactions of the Royal Society London, Series A (Mathematical, Physical and Engineering Sciences), 2006, 364(1846): 2309-2334.
    [22] Wang Z H, Hu H Y. Stability switches of time-delayed dynamic systems with unknown parameters. Journal of Sound and Vibration, 2000, 233(2): 215-233.
    [23]胡海岩,王在华.非线性时滞动力系统的研究进展.力学进展, 1999, 29(4): 501-512.
    [24]徐鉴,裴利军.时滞系统动力学近期研究进展与展望.力学进展, 2006(01): 17-30.
    [25]秦元勋,刘永清,王联,等.带有时滞的动力系统的稳定性(第二版).北京:科学出版社, 1989.
    [26] Stepan G. Retarded Dynamical Systems: Stability and Characteristic Functions. Essex: Longman Scientific and Technical, 1989.
    [27] Kuang Y. Delay Differential Equations: with Applications to Population Dynamics. New York: Academic Press, 1993.
    [28] Hassard B D. Counting Roots of the Characteristic Equation for Linear Delay-Differential Systems. Journal of Differential Equations, 1997, 136(2): 222-235.
    [29] Olgac N, Elmali H, Vijayan S. Introduction to the dual frequency fixed delayed resonator. Journal of Sound and Vibration, 1996, 189(3): 355-367.
    [30] Zhang L, Yang C Y, Chajes M J, et al. Stability of Active-Tendon Structural Control withTime Delay. Journal of Engineering Mechanics, 1993, 119(5): 1017-1024.
    [31] Palkovics L, Venhovens P J T. Investigation on stability and possible chaotic motions in the controlled wheel suspension system. Vehicle System Dynamics, 1992, 21(5): 269-296.
    [32] Lam J. Convergence of a class of Pade approximations for delay systems. International Journal of Control, 1990, 52(4): 989-1008.
    [33] Wang Z H, Hu H Y. Calculation of the rightmost characteristic root of retarded time-delay systems via Lambert W function. Journal of Sound and Vibration, 2008, 318(4-5): 757-767.
    [34] Jarlebring E, Damm T. The Lambert W function and the spectrum of some multidimensional time-delay systems. Automatica, 2007, 43(12): 2124-2128.
    [35] Shinozaki H, Mori T. Robust stability analysis of linear time-delay systems by Lambert W function: Some extreme point results. Automatica, 2006, 42(10): 1791-1799.
    [36] Hu H Y, Dowell E H, Virgin L N. Stability estimation of high dimensional vibrating systems under state delay feedback control. Journal of Sound and Vibration, 1998, 214(3): 497-511.
    [37]王在华.高维时滞动力系统的稳定性, [博士学位论文].南京,南京航空航天大学, 2000.
    [38] Lyapunov A M. The General Problem of the Stability of Motion. London: Taylor and Francis, 1990.
    [39] Gu K Q. A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. International Journal of Control, 2001, 74(10): 967-976.
    [40] Gu K. Discretized LMI set in the stability problem of linear uncertain time-delay systems. International Journal of Control, 1997, 68(4): 923-934.
    [41] Han Q L, Gu K. On robust stability of time-delay systems with norm-bounded uncertainty. IEEE Transactions on Automatic Control, 2001, 46(9): 1426-1431.
    [42] Fridman E, Shaked U. Delay-dependent stability and H_∞control: constant and time-varying delays. International Journal of Control, 2003, 76(1): 48-60.
    [43] Yoshizawa T. Stability Theory by Liapunov’s Second Method. Tokyo: Mathematical Society of Japan, 1966.
    [44] Claeyssen J R. The integral-averaging bifurcation method and the general one-delay equation. Journal of Mathematical Analysis and Applications, 1980, 78(2): 429-439.
    [45] Hale J K, Lunel S M V. Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993.
    [46] Ioos G, Joseph D D. Elementary Stability and Bifurcation Theory. New York: Springer-Verlag, 1980.
    [47] Nayfeh A H, Chin C, Pratt J. Perturbation methods in nonlinear dynamics - applications to machining dynamics. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1997, 119(4): 485-493.
    [48] Hassard B D, Kazainof D, Wan Y H. Theory and Applications of Hopf Bifurcations. Cambridge: Cambridge University Press, 1981.
    [49] Wang H L, Wang Z H, Hu H Y. Hopf bifurcation of an oscillator with quadratic and cubic nonlinearities and with delayed velocity feedback. ACTA Mechanica Sinica, 2004, 20(4): 426-434.
    [50] Hu H Y. Abundant dynamic features of a nonlinear system under delayed feedback control. Asia-Pacific Vibration Conference 2001, 2001, 1: 11-15.
    [51] Xu J, Lu Q S. Hopf bifurcation of time-delay Lienard equations. International Journal of Bifurcation and Chaos, 1999, 9(5): 939-951.
    [52]徐鉴,陆启韶,黄玉盈. van der Pol型时滞系统的两参数余维一Hopf分岔及其稳定性.固体力学学报, 1999(04): 297-302.
    [53] Nayfeh A H. Order reduction of retarded nonlinear systems - the method of multiple scales versus center-manifold reduction. Nonlinear Dynamics, 2008, 51(4): 483-500.
    [54]王怀磊.时滞状态反馈下Duffing系统动力学研究, [博士学位论文].南京航空航天大学, 2004.
    [55] Engelborghs K, Luzyanina T, Samaey G. DDE-BIFTOOL v. 2.00 user manual: a matlab package for bifurcation analysis of delay differential equations, Technical Report TW-330. Belgium: Department of Computer Science,K. U. Leuven, 2001.
    [56] Ermentrout B. XPPAUT 3.0--The Differential Equations Tool. Pittsburgh: University of Pittsburgh, 1997.
    [57] Hu H Y, Dowell E H, Virgin L N. Resonances of a harmonically forced duffing oscillator with time delay state feedback. Nonlinear Dynamics, 1998, 15(4): 311-327.
    [58] Belhaq M, Sah S M. Fast parametrically excited van der Pol oscillator with time delay state feedback. International Journal of Non-Linear Mechanics, 2008, 43(2): 124-130.
    [59] Raghothama A, Narayanan S. Periodic response and chaos in nonlinear systems with parametric excitation and time delay. Nonlinear Dynamics, 2002, 27(4): 341-365.
    [60]李欣业,陈予恕,吴志强,等.参数激励Duffing-Van der Pol振子的动力学响应及反馈控制.应用数学和力学, 2006(12): 1387-1396.
    [61] Xu X, Hu H Y, Wang H L. Stability, bifurcation and chaos of a delayed oscillator withnegative damping and delayed feedback control. Nonlinear Dynamics, 2007, 49(1-2): 117-129.
    [62] Yuan Y. Dynamics in a delayed-neural network. Chaos, Solitons & Fractals, 2007, 33(2): 443-454.
    [63] Campbell S A, Ncube I, Wu J. Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system. 2006, 214(2): 101-119.
    [64] Shayer L P, Campbell S A. Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays. 2001, 61(2): 673-700.
    [65] Reddy D V R, Sen A, Johnston G L. Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks. Physica D: Nonlinear Phenomena, 2000, 144(3-4): 335-357.
    [66] Xu J, Chung K W. Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D: Nonlinear Phenomena, 2003, 180(1-2): 17-39.
    [67] Xu X, Hu H Y, Wang H L. Dynamics of a two-dimensional delayed small-world network under delayed feedback control. International Journal of Bifurcation and Chaos, 2006, 16(11): 3257-3273.
    [68] Xu J, Yu P. Delay-induced bifurcations in a nonautonomous system with delayed velocity feedbacks. International Journal of Bifurcation and Chaos, 2004, 14(8): 2777-2798.
    [69] Smith O J M. Posicast Control of Damped Oscillatory Systems. Proceedings of the IRE, 1957, 45(9): 1249-1255.
    [70] Smith O J M. A controller to overcome dead time. ISA Journal, 1959, 6(2): 28-33.
    [71] Sanchez-Pena R S, Bolea Y, Puig V. MIMO Smith predictor: Global and structured robust performance analysis. Journal of Process Control, 2009, 19(1): 163-177.
    [72] Tan K K, Chua K Y, Zhao S, et al. Repetitive control approach towards automatic tuning of Smith predictor controllers. ISA Transactions, 2009, 48(1): 16-23.
    [73] Dahalin E B. Designing and tuning digital controllers. Instruments and Control Systems, 1968, 41(7): 77-83.
    [74]刘金琨.先进PID控制MATLAB仿真.北京:电子工业出版社, 2004.
    [75]梁读勇,陈金醮.大林算法几个问题的仿真研究.中南大学学报(自然科学版), 1984(01): 103-112.
    [76] Jankovic M. Control of nonlinear systems with time delay. 42nd IEEE Conference on Decision and Control, Maui, HI, United states: Institute of Electrical and Electronics Engineers Inc., 2003.
    [77] Jankovic M. Control Lyapunov-Razumikhin functions for time delay systems. The 38th IEEE Conference on Decision and Control (CDC), Phoenix, AZ, USA: IEEE, 1999.
    [78] Jankovic M. Control lyapunov-razumikhin functions and robust stabilization of time delay systems. IEEE Transactions on Automatic Control, 2001, 46(7): 1048-1060.
    [79] Moon Y S, Park P, Kwon W H. Robust stabilization of uncertain input-delayed systems using reduction method. Automatica, 2001, 37(2): 307-312.
    [80] Yue D, Han Q. Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 2005, 41(2): 233-240.
    [81] Wang Z, Goldsmith P, Tan D. Improvement on robust control of uncertain systems with time-varying input delays. IET Control Theory and Applications, 2007, 1(1): 189-194.
    [82] Basin M, Rodriguez-Gonzalez J, Fridman L. Optimal and robust control for linear state-delay systems. Journal of the Franklin Institute, 2007, 344(6): 830-845.
    [83]唐功友,胡乃平,赵艳东.受扰非线性时滞系统近似最优跟踪控制.电机与控制学报, 2008(02): 206-212.
    [84] Kwon W, Pearson A. Feedback stabilization of linear systems with delayed control. Automatic Control, IEEE Transactions on, 1980, 25(2): 266-269.
    [85] Franklin G F, Powell J D, Workman M. Digital Control of Dynamic Systems, 3rd Edition. California: Addison Wesley Longman. Inc., 1997.
    [86]孙增圻.计算机控制理论及应用.北京:清华大学出版社, 1989.
    [87] Cai G P, Huang J Z, Yang S X. An optimal control method for linear systems with time delay. Computers and Structures, 2003, 81(15): 1539-1546.
    [88] Cai G, Huang J. Optimal control method with time delay in control. Journal of Sound and Vibration, 2002, 251(3): 383-394.
    [89] Huanshui Z, Guangren D, Lihua X. Linear quadratic regulation for linear time-varying systems with multiple input delays part I: discrete-time case. International Conference on Control and Automation, 2005.
    [90] Zhu Q, Fei S, Zhang T, et al. Adaptive RBF neural-networks control for a class of time-delay nonlinear systems. Neurocomputing, 2008, 71(16-18): 3617-3624.
    [91] Wang M, Chen B, Liu K, et al. Adaptive fuzzy tracking control of nonlinear time-delay systems with unknown virtual control coefficients. Information Sciences, 2008, 178(22): 4326-4340.
    [92] Li G, Tsang K M, Ho S L. Fuzzy based variable step approaching digital control for plantswith time delay. ISA Transactions, 1998, 37(3): 167-176.
    [93]贾明兴,王福利,何大阔,等.时滞多变量系统PCA优化建模.控制与决策, 2007(06): 707-710.
    [94]杨磊,田作华,刘山,等.时滞系统控制参数优化的遗传模拟退火算法.计算机仿真, 2006(02): 154-156.
    [95]李丽.非线性模糊时滞系统的鲁棒控制研究, [博士学位论文].大连理工大学, 2008.
    [96] Hu S S, Liu Y. Robust H infinity control of multiple time-delay uncertain nonlinear system using fuzzy model and adaptive neural network. Fuzzy Sets and Systems, 2004, 146(3): 403-420.
    [97] Fridman E, Gouaisbaut F, Dambrine M, et al. Sliding mode control of systems with time-varying delays via descriptor approach. International Journal of Systems Science, 2003, 34(8-9): 553-559.
    [98] Gouaisbaut F, Dambrine M, Richard J P. Robust control of delay systems: a sliding mode control design via LMI. Systems and Control Letters, 2002, 46(4): 219-230.
    [99] Liu G P, Xia Y Q, Rees D, et al. Design and stability criteria of networked predictive control systems with random network delay in the feedback channel. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 2007, 37(2): 173-184.
    [100] Xia Y Q, Chen J, Liu G P, et al. Stability analysis of networked predictive control systems with random network delay. IEEE International Conference on Networking, Sensing and Control, 2007, 1&2: 815-820.
    [101] Youcef-Toumi K, Ito O. A time delay controller for systems with unknown dynamics. Journal of Dynamic Systems, Measurement and Control, 1990, 112(1): 133-142.
    [102] Youcef-Toumi K, Huang S Y. Analysis of a time delay controller based on convolutions. Proceedings of 1993 American Control Conference, Evanston, IL, USA: American Autom. Control Council, 1993.
    [103] Talole S E, Ghosh A, Phadke S B. Proportional navigation guidance using predictive and time delay control. Control Engineering Practice, 2006, 14(12): 1445-1453.
    [104] Wang Z H, Hu H Y. Hopf bifurcation control of delayed systems with weak nonlinearity via delayed state feedback. International Journal of Bifurcation and Chaos, 2005, 15(5): 1787-1799.
    [105] Ott E, Grebogi C, Yorke J A. Controlling chaos. Physical Review Letters, 1990, 64(11): 1196-1199.
    [106]胡海岩.力学系统混沌的主动控制.力学进展, 1996(04): 453-463.
    [107] Pyragas K. Control of chaos via extended delay feedback. Physics Letters A, 1995, 206(5-6): 323-330.
    [108] Gauthier D J, Sukow D W, Concannon H M, et al. Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization. Physical Review E, 1994, 50(3): 2343-2346.
    [109] Socolar J E S, Sukow D W, Gauthier D J. Stabilizing unstable periodic orbits in fast dynamical systems. Physical Review E, 1994, 50(4): 3245-3248.
    [110] Hu H Y. Using delayed state feedback to stabilize periodic motions of an oscillator. Journal of Sound and Vibration, 2004, 275(3-5): 1009-1025.
    [111] Marzocca P, Librescu L, Silva W A. Time-delay effects on linear/nonlinear feedback control of simple aeroelastic systems. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 53-62.
    [112] Maccari A. Vibration control for parametrically excited Lienard systems. International Journal of Non-Linear Mechanics, 2006, 41(1): 146-155.
    [113] Sipahi R, Olgac N. Active vibration suppression with time delayed feedback. Journal of Vibration and Acoustics, Transactions of the ASME, 2003, 125(3): 384-388.
    [114] Udwadia F E, Von Bremen H F, Kumar R, et al. Time delayed control of structural systems. Earthquake Engineering and Structural Dynamics, 2003, 32(4): 495-535.
    [115] Udwadia F E, Phohomsiri P. Active control of structures using time delayed positive feedback proportional control designs. Structural Control and Health Monitoring, 2006, 13(1): 536-552.
    [116] Udwadia F E, Von Bremen H, Phohomsiri P. Time-delayed control design for active control of structures: Principles and applications. Structural Control and Health Monitoring, 2007, 14(1): 27-61.
    [117] Chen L X, Cai G P, Pan J. Experimental study of delayed feedback control for a flexible plate. Journal of Sound and Vibration, 2009, 322(4-5): 629-651.
    [118] Cai G P, Yang S X. A discrete optimal control method for a flexible cantilever beam with time delay. Journal of Vibration and Control, 2006, 12(5): 509-526.
    [119] Chatterjee S. Vibration control by recursive time-delayed acceleration feedback. Journal of Sound and Vibration, 2008, 317(1-2): 67-90.
    [120] Masoud Z N, Nayfeh A H, Al-Mousa A. Delayed position-feedback controller for the reduction of payload pendulations of rotary cranes. Journal of Vibration and Control, 2003,9(1-2): 257-277.
    [121] Olgac N, Mcfarland D M, Holm-Hansen B. Position feedback-induced resonance: The delayed resonator. Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, CA, USA: ASME, 1992.
    [122] Olgac N, Jalili N. Modal analysis of flexible beams with Delayed Resonator vibration absorber: Theory and experiments. Journal of Sound and Vibration, 1998, 218(2): 307-331.
    [123]赵艳影,徐鉴.时滞非线性动力吸振器的减振机理.力学学报, 2008(01): 98-106.
    [124]世界首例四级倒立摆实物控制系统在我校试验成功.北京师范大学学报(自然科学版), 2002(05).
    [125] Enikov E, Stepan G. Microchaotic motion of digitally controlled machines. Journal of Vibration and Control, 1998, 4(4): 427-443.
    [126] Sieber J, Krauskopf B. Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity. Nonlinearity, 2004, 17(1): 85-103.
    [127] Sieber J, Krauskopf B. Complex balancing motions of an inverted pendulum subject to delayed feedback control. Physica D, 2004, 197(3-4): 332-345.
    [128] Stachowiak T, Okada T. A numerical analysis of chaos in the double pendulum. Chaos, Solitons and Fractals, 2006, 29(2): 417-422.
    [129] Hu H Y, Yu M L. Robust Flutter Control of an Airfoil Section through an Ultrasonic Motor. IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, 2007, 2: 307-316.
    [130] Brennan M J, Ananthaganeshan K A, Elliott S J. Instabilities due to instrumentation phase-lead and phase-lag in the feedback control of a simple vibrating system. Journal of Sound and Vibration, 2007, 304(3-5): 466-478.
    [131] Zhang X. Design of maximally flat IIR filters with flat group delay responses. Signal Processing, 2008, 88(7): 1792-1800.
    [132] Lam H Y. Analog and Digital Filters: Design and Realization. New Jersey: Prentice-Hall Inc., 1979.
    [133] Landry M, Campbell S A, Morris K, et al. Dynamics of an inverted pendulum with delayed feedback control. SIAM Journal on Applied Dynamical Systems, 2005, 4(2): 333-351.
    [134] Artstein Z. Linear systems with delayed controls: A reduction. Automatic Control, IEEE Transactions on, 1982, 27(4): 869-879.
    [135] Haraguchi M, Hu H Y. Using a new discretization approach to design a delayed LQGcontroller. Journal of Sound and Vibration, 2008, 314(3-5): 558-570.
    [136] Park P, Moon Y S, Kwon W H. A stabilizing output-feedback linear quadratic control for pure input-delayed systems. International Journal of Control, 1999, 72(5): 385-391.
    [137] Nortcliffe A, Love J. Varying time delay Smith predictor process controller. ISA Transactions, 2004, 43(1): 61-71.
    [138] Cho D, Hedrick J K. Automotive powertrain modeling for control. Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control, 1989, 111(4): 568-576.
    [139] Sipahi R, Niculescu S. Slow time-varying delay effects - Robust stability characterization of deterministic car following models. Joint 2006 IEEE Conference on Control Applications (CCA), Computer-Aided Control Systems Design Symposium (CACSD) and International Symposium on Intelligent Control (ISIC), Munich, Germany: Institute of Electrical and Electronics Engineers Inc., 2007.
    [140] Fridman E, Shaked U. Stability and guaranteed cost control of uncertain discrete delay systems. International Journal of Control, 2005, 78(4): 235-246.
    [141] Banks H T, Jacobs M Q, Latina M R. The synthesis of optimal controls for linear, time-optimal problems with retarded controls. Journal of Optimization Theory and Applications, 1971, 8(5): 319-366.
    [142] Roh Y H, Oh J H. Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation. Automatica, 1999, 35(11): 1861-1865.
    [143] Tian Y C, Gao F R. Compensation of dominant and variable delay in process systems. Industrial and Engineering Chemistry Research, 1998, 37(3): 982-986.
    [144]刘豹.现代控制理论(第二版).北京:机械工业出版社, 2000.
    [145] Jangid R S. Optimum Multiple Tuned Mass Dampers for base-excited undamped system. Earthquake Engineering and Structural Dynamics, 1999, 28(9): 1041-1049.
    [146] Coupe G M. The reduction of undamped oscillations with relay controls. IEEE Transactions on Automatic Control, 1977, A-22(1): 118-119.
    [147] Kobayashi T. Low-gain adaptive stabilization of semilinear second-order hyperbolic systems. Mathematical Methods in the Applied Sciences, 2004, 27(18): 2171-2184.
    [148] Wang Z H, Hu H Y. Stabilization of vibration systems via delayed state difference feedback. Journal of Sound and Vibration, 2006, 296(1-2): 117-129.
    [149] Shan J J, Liu H T, Sun D. Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics, 2005, 15(4): 487-503.
    [150] Atay F M. Balancing the inverted pendulum using position feedback. Applied Mathematics Letters, 1999, 12(5): 51-56.
    [151] Jnifene A. Active vibration control of flexible structures using delayed position feedback. Systems and Control Letters, 2007, 56(3): 215-222.
    [152] Olfati-Saber R. Global configuration stabilization for the VTOL aircraft with strong input coupling. IEEE Transactions on Automatic Control, 2002, 47(11): 1949-1952.
    [153] Spong M W. Control Problems in Robotics and Automation. International Workshop. Control Problems in Robotics and Automation. International Workshop, Berlin, Germany: Springer-Verlag, 1998.
    [154] Kosut R L. Suboptimal control of linear time-invariant systems subject to control structure constraints. IEEE Transactions on Automatic Control, 1970, AC-15(5): 557-563.
    [155] Bindolino G, Mantegazza P. Aeroelastic derivatives as a sensitivity analysis of nonlinear equations. AIAA journal, 1987, 25(8): 1145-1146.
    [156] Marshall J E, Gorecki H, Korytowski A, et al. Time-Delay Systems: Stability and Performance Criteria with Applications. New York: Ellis Horwood, 1992.
    [157] Efe M O, Kaynak O, Rudas I J. A novel computationally intelligent architecture for identification and control of nonlinear systems. Proceedings of International Conference on Robotics and Automation, Piscataway, NJ, USA: IEEE, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700