用户名: 密码: 验证码:
结构振动的时滞反馈控制及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动控制系统中不可避免的存在着时滞现象,它有时是控制系统本身所固有的,如传感器信号的采集和传输、控制器的计算、作动器的作动过程等,有时是人为引入进去的,如数字滤波器的使用等。时滞会使得最后作用于结构的控制力产生不同步,导致在系统不需要能量时作动器向系统输入能量,有可能引起控制效率的下降或控制系统失稳。另外,即使原动力学系统本身是线性的,在加入控制环节和考虑时滞后,系统也会呈现出非线性诸多复杂的动力学行为。因此,对控制系统中时滞问题的研究具有重要的理论意义和实际应用价值。时滞问题也是目前数学、控制、力学和结构工程等研究领域的热点前沿方向之一。
     时滞问题的研究大体可以分为两方面:时滞消除技术,时滞利用技术。时滞消除技术认为时滞是“坏”因素,应当在控制设计中消除它对系统性能所造成的负面影响,目前常采用的方法有泰勒技术展开法、移项技术、状态预估法等。时滞利用技术则是不考虑控制系统本身所固有的时滞量,而是人为地向系统中引入时滞量,将时滞作为一个设计参数和利用时滞进行控制反馈,通过调整时滞量的大小以取得满意的系统性能和控制效果,如时滞阻尼器、时滞滤波器、混沌时滞控制、利用时滞改善系统稳定性等。虽然目前人们关于时滞问题已经进行了大量研究,取得了许多成果,但是多数的研究是在理论上进行探讨,少有实验研究报道。另外,目前的研究多数考虑的是单时滞问题,多时滞问题的研究较少。
     本论文在国家自然科学基金(编号:10772112,10472065)、教育部重点项目(编号:107043)、教育部博士点专项基金(编号:20070248032)和上海市教育委员会科研重点项目(编号:09ZZ17)的资助下,开展了结构主动控制中多时滞问题的研究,并且进行了大量实验验证。主要研究内容和成果总结如下:
     (1)对离散形式的多时滞问题处理方法进行了研究。结构模型分别考虑了有限自由度系统(建筑结构)和分布参数系统(柔性梁、柔性板)。在时滞控制律设计中,通过一种特殊的状态变量增广,将包含有时滞项的时滞微分方程转换成形式上不包含有时滞项的标准差分状态方程形式,然后采用离散最优控制方法和离散变结构控制方法进行了时滞控制律的设计。论文中给出了时滞控制律的详细设计过程和各个变量详细的迭代计算格式,并且给出了时滞系统的稳定性判据。在所设计的时滞控制律的表达式中,不但包含有当前步的状态反馈,而且包含有前若干步控制项的线性组合。由于时滞控制律是直接通过时滞微分方程进行设计而得出,而且在设计过程中无需做任何近似和假设处理,因此这种时滞问题处理方法易于保证控制系统的稳定性,不但可以处理小时滞量问题,也能处理大时滞量问题。仿真结果显示出,该方法是可行的和有效的。另外,论文中还采用可控Gramian矩阵和粒子群优化算法对柔性板上压电作动器的优化位置进行了详细研究。
     (2)对连续形式的多时滞问题处理方法进行了研究。结构模型考虑了柔性机械臂系统,系统模型采用了一次近似模型,控制方法采用了最优跟踪控制方法,柔性机械臂上粘贴有压电作动器。在连续形式的多时滞控制律的设计中,通过一种特殊形式的积分变换,将系统的时滞微分方程转换成形式上不包含有时滞项的标准状态方程形式,系统维数保持不变,控制律的设计可以针对该标准状态方程进行设计而得出。论文中给出了连续形式多时滞控制律的设计过程,以及积分变换中的积分项的迭代计算格式。仿真中分别考虑了如下三种情况:(i)仅使用关节扭矩进行系统控制,关节扭矩存在时滞,(ii)使用关节扭矩和压电作动器同时进行系统控制,仅压电作动器存在时滞;(iii)使用关节扭矩和压电作动器同时进行系统控制,两者存在不同的时滞量。仿真结果显示,时滞控制律能够有效地保证机械臂系统在有限时间到达预定位置,并且机械臂的残余振动可以得到有效抑制。
     (3)基于DSP控制卡开展了柔性梁、柔性板和柔性机械臂系统的单时滞和多时滞的主动控制实验研究,进行了实验方案的设计和DSP程序的二次开发,解决了数据处理、差分电路、摩擦补偿等诸多实验中的问题,通过实验验证了以上离散和连续形式多时滞控制律的有效性。
     (4)对时滞动力学系统的时滞辨识问题进行了研究和探索。研究中,将时滞辨识转化为一个优化问题,以一段时间内系统的预估响应与真实响应之差的绝对值之和作为目标函数,采用粒子群算法作为优化算法,开展了单时滞和多时滞的辨识研究。仿真结果显示,所给时滞辨识方法能够有效地辨识出控制系统中的时滞量。
     时滞问题是一个具有挑战性的研究课题,许多方面还需要进一步深入研究与探讨,因此在论文的最后,对本文的研究工作和成果进行了全面总结,对未来的研究问题进行了展望。
Time delay inevitably exists in active control systems. Sometimes it is inherent in control systems such as sensor signals gathering and conveying, controller calculating and process for actuator to build up the required control force; sometimes it is a voluntary introduction into the system such as the using of data filter. Time delay may result in non-synchronization of control force, making the actuator input energy into the controlled system when energy is not needed. This may cause the degradation of control efficiency or even the instability of the control system. Moreover, even original dynamic system is linear, the system may behave with many complex nonlinear dynamic behaviors when active control is applied and time delay is taken into account. Therefore, the research on time delay is of important theoretical significance and practical value. Today time delay is also one of the hot frontiers in mathematics, control mechanics and structural engineering etc.
     Generally speaking, study on time delay falls into two categories: elimination technology and utilization technology. Elimination technology takes time delay as a“bad”factor and, in control design, tries to eliminate its negative effect on system performance. General practices in elimination technology include the Taylor series expansion, phase shift technique and advance state estimation etc. While time-delay utilization technology not only ignores the inherent delay in the system but introduces a voluntary delay and takes it as a design parameter for control feedback and, by adjusting the magnitude of time delay, to get satisfying control performance and effectiveness. This technology includes time-delay resonator, time-delay filter, time-delay utilization for controlling chaotic motion and for improving system stability etc. Although up to now researches have been done much on the elimination and utilization of time delay, most work is theoretically based and little on the experiment. Furthermore, the work is more about single time-delay problems and little about multiple time-delays. This dissertation presents theoretical and experimental studies on multiple time delays in active control of flexible structures. The research was funded by the National Natural Science Foundation of China (Grant No.’s 10772112, 10472065), the Key Project of Ministry of Education of China (Grant No. 107043), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070248032), and the Key Scientific Project of Shanghai Municipal Education Commission (Grant No. 09ZZ17). Some achievements are obtained both in theory and application and a few highlights are as follows:
     (1)This dissertation studies the Discrete Processing Method for multiple time-delay problems, with the finite degree-of-freedom system (building structure) and the distributing parameter system (flexible beam and plate) being regarded as structure models. In design of the discrete time-delay controller, by a particular augmentation of state variables, the system state equation with multiple time delays is discretized and transformed into a standard discrete form without any explicit time delay, then the controller with time delays is designed using the discrete optimal control method and the discrete variable structure control method. The detailed design process of this controller, the iterative algorithm for all parameters and the stability criteria for the delay system are all provided. The designed time-delay controller contains not only the state feedback of current step but also the linear combination of some previous steps of control. Since the time-delay controller is designed directly from the time-delay differential equation and no approximation and hypothesis involved, it tends to guarantee the stability of control systems, and is suitable for both small time delay and large time delay. Simulation results have shown that this controller is feasible and effective in the vibration suppression of flexible structures. In addition, the location of piezoelectric (PZT) actuator on the flexible plate is optimized by using the controllable Gramian matrix and the particle swarm optimizer (PSO) algorithm.
     (2)This dissertation also probes the Continuous Processing Method for multiple time delays, with a manipulator system being the structural model; the first-order approximation equation being the dynamics model; the optimal tracking control method being the controller and a piezoelectric patch being the actuator adhered on the flexible arm. In design of continuous multiple-time-delay controller, by a particular integral transformation for state variables, the system state equation with multiple time delays is first transformed into a standard form without any explicit time delay and system dimensions stay unchanged, and then the active controller can be designed based on the standard state equation. The design process of continuous multiple-time-delay controller and the iterative algorithm of integral term in the integral transformation are both detailed in the paper. The following three cases are considered in the numerical simulations: (i) Only the joint torque is applied for system control and it has time delay; (ii) Both the joint torque and PZT actuator are applied for system control and only the PZT actuator has time delay; (iii) Both the joint torque and PZT actuator are applied for system control and they have different time delays. Simulation results indicate that the designed time-delay controller can make the manipulator system arrive at an expected position in a specified time and the vibration of flexible arm can also be suppressed.
     (3)Based on a DSP control board, the experimental study is conducted for active control of the flexible beam, plate and manipulator, in which single time delay and multiple time delays are both considered. Experimental scheme is programmed and secondary development of the DSP program is also implemented. All practical problems encountered in the experiment such as signal differential, circuit and friction compensation are effectively solved. Both the discrete and continuous time-delay processing methods prove effective in the experiment.
     (4)This dissertation explores the delay identification problem in the time-delay dynamic system as well. When doing this, delay identification is converted to an optimization problem, where the sum of absolute values of the difference between the predicted response and actual response of the controlled system in a period of time makes the objective function and the particle swarm optimizer makes the optimization algorithm. The identifications of single time delay and multiple time delays are both discussed. Simulation results indicate that the identification method presented is effective in determining the real delay in control systems.
     Time-delay problem is a challenging research topic, where many aspects need further study and more efforts. At conclusion, a summary of work done in this dissertation is given out and some problems of interest are also brought forward for future research.
引文
[1] Harison CM and Sykes AO, Martin M. Wave effects in isolation mounts. Journal of Acoustical Society of America, 1952, 24: 61-70
    [2] Snowdon JC. Representation of the mechanical damping possessed by rubber materials and structures. Journal of the Acoustical Society of America, 1963, 35(6): 821-821
    [3] Snowdon JC. Transverse vibration of simply clamped beams. Journal of the Acoustical Society of America, 1963, 35(8): 1152-1161
    [4] Denhartog JP.机械振动学.北京:科学出版社. 1961
    [5] Xiea S, Ora SW, Lai WC, Kong C and Chou KL. Analysis of vibration power flow from a vibrating machinery to a floating elastic panel. Mechanical Systems and Signal Processing, 2007, 21(1): 389-404
    [6] Kerwin Jr EM. Damping of flexural waves by a constrained viscoelastic layer. Journal of Acoustical Society of America, 1959, 31(7): 952-962
    [7]申智春,郑钢铁.附加约束阻尼层的复合材料梁单元建模分析.振动工程学报, 2006, 19(4): 481-487
    [8] Kim TW and Kim JH. Eigensensitivity based optimal distribution of a viscoelastic damping layer for a flexible beam. Journal of Sound and Vibration, 2004, 273(1-2): 201-218
    [9] Lane JS and Dickerson SL. Contribution of passive damping to the control of flexible manipulators. Proceedings of the International Computers in Engineering Conference, 1984: 175-180
    [10] Alberts TE, Dickerson SL and Book WJ. On the transfer function modeling of flexible structures with distributed damping. ASME DSC, 1986, 3: 23-30
    [11]范子杰.机器人弹性手臂的动力学分析及其粘弹性大阻尼控制的研究.西安交通大学学位论文, 1989
    [12] Ramesh TC and Ganesan N. Finite element analysis of cylindrical shells with a constrained viscoelastic layer. Journal of Sound and Vibration, 1994, 172(3): 359-370
    [13] Ramesh TC and Ganesan N. Finite element analysis of conical shells with a constrained viscoelastic layer. Journal of Sound and Vibration, 1994, 171(5): 577-601
    [14]李恩奇,唐国金,雷勇军,李道奎.约束层阻尼板动力学问题的传递函数解.国防科技大学学报, 2008, 30(1): 5-9
    [15]李恩奇,李道奎,唐国金,雷勇军.约束层阻尼圆柱壳动力学分析.工程力学, 2008, 25(5): 6-11
    [16]杜华军,于百胜,郑钢铁,黄文虎.蜂窝锥壳卫星适配器约束阻尼层振动抑制分析.应用力学学报, 2003, 20(3): 5-9
    [17]黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进展.力学进展, 1997, 27: 5-18
    [18]张景绘,李新民.主、被动振动控制一体化理论及技术(Ⅲ)-杂交阻尼.强度与环境, 2004, 31: 51-64
    [19] Goh CJ and Caughey TK. On the stability problem caused by finite actuator dynamics in the collocated control of large space structures. International Journal of Control, 1985, 41(3): 787-802
    [20]陈岩.利用压电陶瓷对柔性悬臂梁进行主动控制试验研究.甘肃联合大学学报(自然科学版), 2008, 22(6): 43-54
    [21] Song G, Schmidt SP and Agrawal BN. Experimental robustness study of positive position feedback control for active vibration suppression. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 179-182
    [22]刘明治,刘春霞.柔性机械臂动力学建模和控制研究.力学进展, 2001, 31(1): 1-8
    [23]王树新,员今天,石菊荣,刘又午.柔性机械臂建模理论与控制方法研究综述.机器人, 2002, 24(1): 86-91
    [24] Qiu ZC, Zhang XM, Wu HX and Zhang HH. Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. Journal of Sound and Vibration, 2007, 301(3-5): 521-543
    [25] Ozen F. New nonlinear stabilizing control law for flexible-link manipulators. Proceedings of the Japan/USA Symposium on Flexible-link manipulators, 1996, 1: 291-298
    [26] Cai GP and Yang SX. A discrete optimal control method for a flexible cantilever beam with time delay. Journal of Vibration and Control, 2006, 12(5): 509-526
    [27] Pieper JK. Optimal control of a flexible manipulator and controller order reduction. Optimal Control Applications & Methods, 1998, 19 (5): 331-343
    [28]戈新生,崔玮,赵秋玲.刚柔性耦合机械臂轨迹跟踪与振动抑制.工程力学, 2005, 22(6): 188-191
    [29]蔡国平,李琳,洪嘉振.中心刚体-柔性梁系统的最优跟踪控制.力学学报, 2006, 38(1): 97-105
    [30] Ingole AK and Bandyopadhyay B. Variable structure control application for flexible manipulators. Proceedings of the IEEE Conference on Control Applications, 1994, 2: 1311-1316
    [31] Li Y and Kang J. Combined robust control method for trajectory tracking of multi-link flexible manipulator. Modeling. Measurement and Control, 1998, 65(2): 27-37
    [32]樊晓平,徐建闽,毛宗源,周其节.受限柔性机器人臂的鲁捧变结构混合位置/力控制.自动化学报, 2000, 26(2): 176-183
    [33]刘才山,王建明,阎绍泽,刘又午.滑模变结构控制在柔性机械臂中的应用.天津大学学报, 1999, 32(2): 244-247
    [34]李元春,陆佑方,唐保健.双连杆柔性臂轨迹跟踪的鲁棒控制.自动化学报, 1999, 25(3): 330-336
    [35]蔡国平,滕悠优,洪嘉振.中心刚体-柔性梁系统的旋转运动控制.宇航学报, 2005, 26(4): 487-490
    [36]刘明治,刘春霞.柔性机械臂动力学建模和控制研究.力学进展, 2001, 31(1): 1-8
    [37]马扣根,顾仲权,顾明.柔性建筑结构风振自适应控制方法与试验研究.振动工程学报, 1998, 11(2): 131-137
    [38] Lin LC and Yeh S. A composite adaptive control with flexible quantity feedback for flexible-link manipulators. Journal of Robotic Systems, 1996, 13(5): 289-302
    [39]张治国,李俊峰.卫星编队飞行轨道和姿态控制研究.应用数学与力学, 2008, 29(1): 38-46
    [40]申铁龙. H∞控制理论及应用.北京:清华大学出版社, 1996
    [41] Zhang X, Shao C and Li S. Robust H∞vibration control for flexible linkage mechanism systems with piezoelectric sensors and actuators. Journal of Sound and Vibration, 2001, 243(1): 145-155
    [42]邱志成,谢存禧,吴宏鑫.压电挠性板的H∞鲁棒控制.系统仿真学报, 2004 ,16(8): 1816-1821
    [43] Song G and Cai L. New approach to robust position/force control of flexible-joint robot manipulators. Journal of Robotic Systems, 1996, 13(7): 429-444
    [44] Bossert D and Ly U. Experimental comparison of robust reduced-order hybrid position and force optimization techniques for a two-link flexible manipulator. IEEE Conference on Control Applications, 1996, p. 982-987
    [45] Yazdenpanah MJ and Khorasani K. Uncertainty compensation for a flexible-link manipulator using nonlinear Hinf control. International Journal of Control, 1998, 69(6): 753-771
    [46]刘才山,王建明,刘又午.柔性机械臂运动轨迹变结构双模控制.非线性动力学报, 1997, 4(1): 19
    [47] Choi SB and Shin HC. A hybrid actuator scheme for robust position/force control of flexible-joint robot manipulators. Journal of Robotics Systems, 1996, 13(6): 359-37
    [48]郭军慧.大跨空间网格结构风振的神经网络控制研究.上海交通大学硕士学位论文, 2008
    [49] Yesildirek A, Vandegrift MW and Lewis FL. A neural network controller for flexible link robots. Proceedings of IEEE Int Symp on Intelligent Control, Columbus, Ohio, 1994, p. 63-68
    [50] Yesildirek A, Vandegrift MW and Lewis FL. A neural network controller for flexible-link robots. Journal of Intelligent and Robotics Systems, 1996, 17(4): 327-349
    [51]孙富春,孙增圻.柔性连杆机器人的多速率神经网络混合控制器设计.控制与决策(增刊), 1997,: 425-429
    [52] Takahashi K and Yamada I. The study control based on neural network in flexible structure and its application in single-link flexible arms. ASME Transactions on Measurement and control, 1994, 16(4): 792-795
    [53] Talebi HA and Khorasani K. Neural network based control schemes for flexible-link manipulators: simulations and experiments. Neural Networks, 1998, 11(7-8): 1337-1357
    [54] Talebi HA and Khorasani K. Tip-position tracking for flexible-link manipulators using artificial neural networks: Experimental results. IEEE international Conference on Neural Networks Conference Proceedings, 1998, 3(4-9): 2063-2068
    [55]罗晓平,黄海.智能桁架结构振动的仿人智能控制.振动与冲击, 2006, 25(6): 92-96
    [56] Lee JX and Vukovich G. Fuzzy control of a flexible link manipulator, Proceedings of the American Control Conference, 1994, 1: 568-574
    [57]李志军,邓子辰.建筑结构离散变结构控制的模糊趋近律方法.西北工业大学学报, 2007, 25(5): 747-751
    [58]吕永桂.基于压电致动器的柔性构件振动主动控制技术研究.浙江大学博士学位论文, 2007
    [59] Crawley EF and De Luis J. Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal, 1987, 25: 1373–1385
    [60] Tzou HS and Fu HQ. A study of segmentation of distributed piezoelectric sensors and actuators, Part 1: Theoretical analysis. Journal of Sound and Vibration, 1994, 172(2): 247-259
    [61] Fuller CR, Elliott SJ and Nelson PA. Active Control of Vibration. Academic Press, San Diego, CA92101, 1996
    [62] Clark RL, Saunders WR and Gibbs G. Adaptive Structures Dynamics and Control. Wiley, Inc., 1998
    [63] Tzou HS and Wan GC. Distributed structural dynamics control of flexible manipulators, part I-II. Computers and Structures, 1990, 35(6): 667-687
    [64] Moallem M, Kermani MR, Patel RV and Ostojic M. Flexible control of a positioning system using piezoelectric transducers. IEEE Transaction on Control Systems Technology, 2004, 12(5): 757-762
    [65] Choi SB, Thompson BS and Gandhi MV. Elastodynamic analysis and control of industrial robotic manipulators with piezoelectric material based elastic members. ASME Transactions on Journal of Mechanical Design, 1995, 117: 640-643
    [66] Chen Q and Levy C. Active vibration control of elastic beam by means of shape memory alloy layers. Smart Materials and Structures, 1995, 4: 252-263
    [67]胡海岩.振动主动控制中的时滞动力学问题.振动工程学报. 1997, 10(3): 273-279
    [68]胡海岩,王在华.非线性时滞动力系统的研究进展.力学进展, 1999, 29(4): 501-512
    [69]徐鉴,裴利军.时滞系统动力学近期研究进展与展望.力学进展, 2006, 36(1): 17-30
    [70] Hu HY and Wang ZH. Dynamics of Controlled Mechanical Systems with Delayed Feedback. Berlin: Springer-Verlag, 2002
    [71]秦元勋,刘永清,王联.带有时滞的动力系统的稳定性. (第二版),北京:科学出版社, 1989
    [72] Xu J and Chung KW. Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D, 2003, 180: 17-39
    [73] Liao XF and Cheng GR. Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays. International Journal of Bifurcation and Chaos, 2001, 11(8): 2105-2121
    [74] Gourley SA and Chaplain MAJ. Travelling fronts in a food-limited population model with time delay. Proceedings of the Royal Society of Edinburgh, 2002, 132A: 75-89
    [75] Hong T and Hughes PC. Effect of time delay on the stability of flexible structures with rate feedback control. Journal of Vibration and Control, 2001, 7: 33-49
    [76] Azuma T, Ikeda K, Kondo T and Uchida K. Memory state feedback control synthesis for linear systems with time delay via a finite number of linear matrix inequalities. Computers and Electrical Engineering, 2002, 28: 217-228
    [77] Olgac N and Sipahi R. An exact method for the stability analysis of time-delayed lineartime-invariant (LTI) systems. IEEE Transactions and Automatic Control, 2002, 47(5): 793-797
    [78] Agrawal AK, Fujino Y and Bhartia BK. Instability due to time delay and its compensation in active control of structures. Earthquake Engineering and Structural Dynamics, 1993, 22(3): 211-224
    [79] Chu SY, Soong TT, Lin CC and Chen YZ. Time-delay effect and compensation on direct output feedback controlled mass damper systems. Earthquake Engineering and Structural Dynamics, 2002, 31: 121-137
    [80] Wang ZH and Hu HY. Delay-independent stability of retarded dynamic systems of multiple degrees of freedom. Journal of Sound and Vibration, 2000, 226(1): 57-81
    [81] Hu HY and Wang ZH. Stability analysis of damped SDOF systems with two time delays in state feedback. Journal of Sound and Vibration, 1998, 214(2): 213-225
    [82] Hu HY, Dowell EH and Virgin LN. Stability estimation of high dimensional vibrating systems under state delay feedback control. Journal of Sound and Vibration, 1998, 214(3): 497-511
    [83] Wang ZH and Hu HY, Kupper T. Robust Hurwitz stability test for linear systems with uncertain commensurate time delays. IEEE Transactions and Automatic Control, 2004, 49(8): 1389-1393
    [84]严怀成,黄心汉,王敏.多时滞不确定网络控制系统的稳定性分析.华中科技大学学报(自然科学版), 2008, 36(2): 30-34
    [85] Olgac N and Sipahi R. Active vibration suppression with time delayed feedback. ASME Journal of Vibration and Acoustics, 2003, 125:384-388
    [86] Olgac N and Sipahi R. A novel stability study on multiple time-delay systems (MTDS) using the root clustering paradigm. Proceeding of the 2004 American Control Conference, Boston, 2004, pp. 5422-5427
    [87] Olgac N and Sipahi R. A unique methodology for the stability robustness of multiple time delay systems. Systems and Control Letters, 2006, 55(10): 819-825
    [88] Olgac N and Sipahi R. Kernel and offspring concepts for the stability robustness of Multiple Time Delayed Systems (MTDS). Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2007, 129(3): 245-251
    [89] Sipahi R, Fazelinia H and Olgac N. Generalization of cluster treatment of characteristic roots for robust stability of multiple time-delayed systems. International Journal of Robust and Nonlinear Control, 2008, 18(14): 1430-1449
    [90] Zheng D, Ren ZY and Fang JA. Stability analysis of multiple time–delayed system. ISA Transactions, 2008, 47(4): 439-447
    [91] Ailon A. Asymptotic stability in a flexible-joint robot with model uncertainty and multiple time delays in feedback. Journal of the Franklin Institute, 341(6): 519-531
    [92]曹登庆,张克跃.多参数线性时滞系统的稳定性准则.控制与决策, 2000, 15(1): 101-103
    [93]张克跃,曹登庆.不确定多时滞线性系统的稳定性.西南交通大学学报, 2004, 39(2): 176-180
    [94]尚慧琳,徐鉴.时滞状态反馈Lienard系统的原点稳定性分析.石河子大学学报(自然科学版), 2005, 23(3): 292-295
    [95]顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社. 1997
    [96] Chung LL, Reinhorn AM and Soong TT. Experiments on active control of seismic structures. ASCE Journal of Engineering Mechanics, 1988, 114(2): 241-256
    [97] Abdel-Rohman M. Time-delay effects on active damped structures. Journal of Engineering Mechanics, 1987, 113(11): 1709-1719
    [98] Mc Greery S, Soong TT and Reinhorn AM. An experiments study of time delay compensation in active structural control. Proceedings of the sixth International Modal Analysis Conference, SEM, 1988, p. 1733-1739
    [99] Abdel-Mooty M and Roorda J. Time-delay compensation in active damping of structures. Journal of Engineering Mechanics, 1991, 117(11): 2549-2570
    [100] Qi K and Kuang JS. Time delay compensation in active closed-loop structural control. Mechanics Research Communications, 1995, 22(2): 129-135
    [101]田石柱,李暄,欧进萍.结构主动控制系统时间滞后测量与补偿方法.地震工程与工程振动, 2000, 20(4): 101-105
    [102]孙清,张智谦等.时滞对结构振动半主动控制效果的影响.应用力学学报, 2002, 19(3): 77-80
    [103] Cai GP and Huang JZ. Optimal control method for seismically excited building structures with time-delay in control. Journal of Engineering Mechanics, ASCE, 2002, 128(6): 602-612
    [104] Cai GP and Huang JZ, Yang SX. An optimal control method for linear systems with time delay. Journal of Computers and Structures, 2003, 81(15): 1539-1546
    [105] Moon YS, Park PG and Kwon WH. Robust stabilization of uncertain input-delayed systems using reduction method. Automatica, 2001, 37: 307–312
    [106]侯晓丽,胥布工.不确定多时滞系统的滑模控制.电机与控制学报, 2007, 11(4): 384-387
    [107] Du HP and Zhang N. H∞control of active vehicle suspensions with actuator time delay. Journal of Sound and Vibration, 2007, 31: 236-252
    [108] Ge ZM, Hsiao CL and Chen YS. Nonlinear dynamics and chaos control for a time delay Duffing system. International Journal of Nonlinear Sciences and Numerical Simulations, 2005, 6(2): 187-199
    [109] Xiao M and Cao JD. Bifurcation analysis and chaos control for Lu system with delayed feedback. International Journal of Bifurcation and Chaos, 2007, 17(12): 4309-4322
    [110] Xu J and Chung KW. Delay reduced double Hopf bifurcation in a limit cycle oscillator: extension of a perturbation-incremental method. Dynamics of Continuous and Impulsive Systems B, 2004, 11: 136-143
    [111] Olgac N and Sipahi R. Optimum delayed feedback vibration absorber for MDOF mechanical structures. Proceedings of the 37th IEEE Conference on Decision & Control Tampa, Florida USA, 1998, p. 4734-4739
    [112] Jalili N and Olgac N. Multiple delayed resonator vibration absorbers for multi-degree- of-freedom mechanical structures. Journal of Sound and Vibration, 1999, 223(4): 567-585
    [113] Cavdaroglu ME and Olgac N. Robust control of cart-pendulum dynamics against uncertain multiple time delays. Proceedings of the American Control Conference, 2008, p. 2178-2183
    [114]赵艳影,徐鉴.时滞非线性动力吸振器的减振机理.力学学报, 2008, 40(1): 98-106
    [115] Maccari A. Vibration control for the primary resonance of a cantilever beam by a time delay state feedback. Journal of Sound and Vibration, 2003, 259(2): 241-251
    [116] Cai GP and Lim CW. Optimal tracking control of flexible hub-beam system with time delay. Multibody System Dynamics, 2006, 16(4): 331-350
    [117] Park JY, Cho BH and Lee JK. Trajectory control of underwater robot using time delay control. Transactions of the Korean Society of Mechanical Engineers, A, 2008, 32(8): 685-692
    [118]袁芳.时滞反馈控制对悬臂输液管系统稳定性的影响.同济大学硕士学位论文, 2008
    [119] Von Bremen HF and Udwadia FE. Can time delays be useful in the control of structural systems? AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2000, p. 619-626
    [120] Udwadia FE and Van Bremen HF, Kumar R and Hosseini M. Time delayed control of structural systems. Earthquake Engineering and Structural Dynamics, 2003, 32: 495-535
    [121]谢剑英,钟庆昌.时滞控制及其应用.控制理论与应用. 2002, 19(4): 500-504
    [122] Wang ZH and Hu HY. Stabilization of vibration systems via delayed state difference feedback. Journal of Sound and Vibration, 2006, 296(1-2): 117-129
    [123] Xu J, Chung KW and Chan CL. An efficient method for studying weak resonant double Hopfbifurcation in nonlinear systems with delayed feedbacks. SIAM Journal of Applied Dynamical Systems, 2007, 6(1): 29-60
    [124] Orlov Y, Belkoura L, Richard JP and Dambrine M. Adaptive identification of linear time-delay systems. International Journal of Robust and Nonlinear Control, 2003, 13(9): 857-872
    [125] Drakunov SV, Perruquetti W, Richard JP and Belkoura L. Delay identification in time-delay systems using variable structure observers. Annual Reviews in Control, 2006, 30: 143-158
    [126] Ferretti G, Maffezoni C and Scattolini R. Recursive estimation of time delay in sampled systems. Automatica, 1991, 27(4): 653-661
    [127]胡海岩.线性受控系统的反馈时滞可辨识性.振动工程学报, 2001, 14(2): 161-165
    [128] Gawthrop PJ and Nihtila MT. Identification of time delays using a polynomial identification method. Systems & Control Letters, 1985, 5(4): 267-271
    [129]张文丰,胡海岩.含反馈时滞的非线性动力系统参数识别.振动工程学报, 2001, 14(3): 314-318
    [130]潘峰,冯冬梅,韩如成.基于遗传算法的时变时滞参数辨识.仪器仪表学报(增刊), 2004, 25(4): 910-912
    [131]王家祥,何信.误差补偿和时滞辨识预测控制算法.电子科技大学学报, 2005, 34(6): 817-820
    [132]阮荣耀,杨昌利,龚妙昆.关于系统时滞、阶数何系数的在线辨识.华东师范大学学报(自然科学版), 2003, 3: 13-23
    [133] Buono PL and Belair J. Restrictions and unfolding of double Hopf bifurcation in functional differential equations. Journal of differential equations, 2003, 189(1): 234-266
    [134] Chen Y and Wu J. Minimal instability and unstable set of a phase-locked periodic orbit in a delayed neural network. Physica D, 1999, 134: 185-199
    [135] Ucar A. On the chaotic behaviour of a prototype delayed dynamical system. Chaos, Solitons and Fractals, 2003, 16: 187-194
    [136] Das SL and Chatterjee A. Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dynamics, 2002, 30(4): 323-335
    [137]周进,刘曾荣.具有脉冲效应复杂时滞动力网络的同步动力学与控制.科技导报, 2008, 26(2): 56-60
    [138]周进,蔡水明,向兰.不确定复杂时滞动力网络的脉冲鲁棒同步. Proceedings of the 7th World Congress on Intelligent Control and Automation, China, 2008, p. 1901-1906
    [139] Zhou J, Chen TP and Xiang L. Chaotic lag synchronization of coupled delayed neural networksand its applications in secure communication. Circuits Systems and Signal Processing, 2005, 24: 599-613
    [140] Zhou J and Chen TP. Synchronization in general complex delayed dynamical networks. IEEE Transactions on Circuits and System, 2006, 53(3): 733-744
    [141] Zhou J, Xiang L and Liu ZR. Synchronization in complex delayed dynamical networks with impulsive effects. Physica A, 2007, 384(2): 684-692
    [142] Xu J and Yu P. Delay-reduced bifurcation in an nonautonmous system with delayed velocity feedbacks. International Journal of Bifurcation and Chaos, 2004, 14(8): 2777-2798
    [143]徐鉴,陈予恕.时滞速度反馈对强迫自持系统动力学行为的影响.应用数学与力学, 2004,25(5): 455-466
    [144] Yu P, Yuan Y and Xu J. Study of double Hopf bifurcation and chaos for an oscillator with time delayed feedback. Comunications in Nonlinear Science and Numerical Simulation, 2002, 7: 69-91
    [145]徐鉴.时滞位移反馈引起系统周期和混沌振动.力学学报, 2002, 34(增刊): 122-126
    [146] Yao JTP. Concept of structural control. ASCE Journal of Structural Division, 1972, 98(7): 1567-1574
    [147] Park EC, Lee SH, Min KW, Chung L, Lee SK, Cho SH, Yu E and Kang KS. Design of an actuator for simulating wind-induced response of a building structure. Smart Structures and Systems, 2008, 4(1): 85-98
    [148] Guclu R and Yazici H. Fuzzy logic control of a non-linear structural system against earthquake induced vibration. Journal of Vibration and Control, 2007, 13(11): 1535-1551
    [149] Nagaya K and Fukushima T. Intelligent beam transforming earthquake force into vibration control force and its optimal design. Journal of Sound and Vibration, 1998, 218(3): 445-461
    [150] Yang JN. Akbarpour A, Askar G. Effect of time delay on control of seismic-excited building. Journal of Structural Engineering, 1990, 116(10): 2801-2814
    [151]孙增祈.计算机控制理论及应用.北京:清华大学出版社, 1989
    [152]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1998
    [153] Wakernaak HK and Sivan R. Linear optimal control systems. Wiley-Interscience, 1972
    [154] Kolmanovskii V and Myshkis A. Introduction to the theory and applications of functional differential equations. Dordrecht: Kluwer Academic Publishers, 1999
    [155] Yang JN, Wu JC and Agrawal AK. Sliding mode control for seismically excited linear structures. Journal of Engineering Mechanics, 1995, 121(12): 1386-1390
    [156] Yang JN, Wu JC, Reinhorn AM and Riley M. Control of sliding-isolated buildings using sliding-mode control. Journal of Structural Engineering, 1996, 122(2): 179-186
    [157] Wang Q an Wang CM. A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures. Journal of Sound and Vibration, 2001, 242(3): 507-518
    [158]王波,殷学纲,黄尚廉.压电自感知悬臂梁振动的主动控制研究.固体力学学报, 2004, 25(1): 107-110
    [159]房元鹏,吴大方等.柔性悬臂梁振动主动控制实验研究.航空计测技术, 2004, 24(5): 11-14
    [160]潘继,蔡国平.柔性悬臂梁时滞主动控制的实验验证.宇航学报, 2008, 29(2): 596-600
    [161]董兴建.高速旋转压电柔性梁的动力学分析与控制.上海交通大学博士学位论文, 2006
    [162]王化详,张淑英.传感器原理及应用.天津:天津大学出版社, 1995
    [163]张福学,王丽坤.现代压电学(上册).北京:科学出版社, 2001
    [164] Crawley EF and Anderson EH. Detailed models of piezoceramic Actuation of beams. Journal of Intelligent Material Systems and Structures, 1990, 1: 4-25
    [165]滕悠优.柔性机械臂主动控制与实验研究.上海交通大学硕士学位论文, 2007
    [166]韩京清,袁露林.跟踪微分器的离散形式.系统科学与数学, 1999, 19(3): 268-273
    [167] St-Amant Y and Cheng L. Simulations and experiments on active vibration control of a plate with integrated piezoceramics. Thin-Walled Structures, 2000, 38: 105-123
    [168] Caruso G, Galeani S and Menini L. Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators. Simulation Modelling Practice and Theory, 2003, 11: 403-419
    [169]潘继.结构作动器/传感器的优化配置及其主动控制研究.上海交通大学硕士学位论文, 2008
    [170] Leleu S, Abou-Kandil H and Bonnassieux Y. Piezoelectric actuators and sensors location for active control of flexible structures. IEEE Transaction on Instrument and Measurement, 2001, 50(6): 1577-1582
    [171]王永,董卓敏,李红征,孙德敏.柔性结构振动主动控制中传感器/执行器位置优化研究.南京理工大学学报, 2002, 26: 29-35
    [172] Colornia A, Dorigo M and Maniezzo V. An investigation of Some Properties of an Ant Algorithm. Proceeding of the Parallel Problem Solving from Nature Conference (PPSN’92), Brussels, Belgium, Elsevier Publishing, 1992, p 509-520
    [173] Hac A and Liu L. Sensor and actuator location in motion control of flexible structures. Journal of Sound and Vibration, 1993, 167(2): 239-261
    [174]杨志鹏,朱丽莉,袁华.粒子群优化算法研究与发展.计算机工程与科学, 2007, 29(6): 61-64
    [175]李爱国,覃征,鲍复民,贺升平.粒子群优化算法.计算机工程与应用, 2002, 21: 1-3
    [176] Eberhart RC and Shi YH. Particle swarm optimization: developments, applications and resources. Proceeding Congress on Evolutionary Computation 2001, Piscataway, NJ, IEEE Press, 2001, p. 81-86
    [177]李艳灵,李刚.粒子群优化算法研究进展.重庆工学院学报, 2007, 21(5): 79-81
    [178] Shi YH and Eberhart RC. A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May, 1998, 69-73
    [179]杨辉.刚-柔耦合动力系统的建模理论与实验研究.上海交通大学博士学位论文, 2002
    [180]张铁民.柔性机械臂振动控制理论与实验研究.天津大学博士学位论文, 1996
    [181]曲振波,刘才山,陈滨,刘又午.柔性机械臂控制系统的实验研究.振动与冲击, 2000, 19(4): 14-17
    [182]滕悠优,蔡国平.柔性机械臂的时滞最优跟踪控制.应用力学学报, 2007, 24(3): 399-403
    [183]蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究.力学学报, 2005, 37(1): 48-56
    [184] Verduyn-Lunel SM. Identification problems in functional differential equations. Proceedings of the IEEE Conference on Decision and Control, 1997, 5: 4409-4413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700