用户名: 密码: 验证码:
溶液中类胡萝卜素的结构与光谱性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,多烯类生物分子中的类胡萝卜素是自然界中最丰富的天然色素之一,广泛存在于包括人类在内的生物有机体内,在光合作用、预防人类疾病等方面起重要作用。β-胡萝卜素、番茄红素和角黄素是类胡萝卜素中最受关注和研究最为广泛的三种类胡萝卜素。尤其是β-胡萝卜素在光合作用中有光能采集、转移、淬灭单态氧等功能,番茄红素有预防人类老化和癌症的功能更是生物学、物理学和化学研究的热点之一。
     它们是具有共轭双键结构的多烯分子,是研究共振拉曼光谱、光学非线性等分子结构的理想样品,又是实现分子导线等光电器件的重要材料。因此对其研究既有理论价值又有光明应用前景。多烯类分子的性质、功能与其分子结构关系极大,尤其这种链状多烯分子结构有序性与分子的性质、功能密切相关。
     本论文采用计算机模拟结合光谱实验以及设计物理模型等方法,多角度多方面研究了多烯类线形生物分子(类胡萝卜素)在溶液中的光谱特性,涉及到计算化学、分子光谱学、溶液化学、生物物理化学等多个学科。值得一提的是,我们在研究拉曼光谱时,引进了一个重要的参量—拉曼散射截面。这是因为在拉曼光谱的研究和应用中,拉曼散射截面是一个重要的参量。正如拉曼频移和线宽一样,表现了分子的微观特性,拉曼散射截面表示了某一特定分子的光散射特性,并直接反映了分子极化率的大小及变化。散射截面不仅和激发光的频率,散射分子的结构有关,还和被散射分子所处的环境有关。
     我们从单一溶剂的不同浓度下类胡萝卜素的结构有序对π-电子离域和拉曼散射截面的影响出发,再扩展到不同溶剂中类胡萝卜素的结构有序对π-电子离域和拉曼散射截面的影响。在有机溶剂—类胡萝卜素体系的研究基础上,我们进一步研究了二元水溶液(有机溶剂—水)—类胡萝卜素体系中弱相互作用对类胡萝卜素的结构有序对其光学特性的影响,主要取得了以下创新性成果:
     1.在研究一元溶液对类胡萝卜素结构有序影响的研究中,测量不同浓度下类胡萝卜素的紫外—可见光谱和拉曼光谱。尤其是测量极低浓度拉曼光谱,我们采用课题组独立设计的液芯光纤内共振拉曼技术进行测量,获得了低浓度下乃至单分子状态类胡萝卜素分子结构有序性相关的性质、功能信息。我们测量β-胡萝卜素、番茄红素和角黄素等在溶液中拉曼光谱时,发现在10~(-6)—10~(-11)mol/L浓度下拉曼散射截面增加了四个数量级(达2.6×10~(-20)cm~2molecule_(-1)Sr_(-1))比一般分子拉曼散射截面大十个数量级,而且随浓度降低成指数关系增大。其紫外—可见光谱吸收峰型随浓度降低而变窄变陡。根据非线性相干弱阻尼电子—核振动模型,科学地解释了上面得到的实验结果,也为以后的研究中可以继续通过改变其他环境对类胡萝卜素结构与性质影响的研究提供参考资料和依据。
     2.改变不同溶剂是研究溶剂效应的一种基本方法。通过变化溶剂可以改变物质的结构以及其物理、化学性质,这是由于分子间的作用使物质内部的分子(原子)距离拉长或缩短,改变相邻电子轨道重叠。测得不同溶剂中角黄素的的紫外—可见光谱和拉曼光谱,并利用密度泛函理(DFT)论优化角黄素分子与溶剂之间形成的三聚体几何结构。通过对实验和理论结果进行分析,了解一些结构与性质之间的关系。利用密度泛函与分子光谱对此类分子微环境测量、微结构测量有潜在的应用前景,同时该方法也为此类研究提供实验依据。
     3.正是因为大多数的生物分子都是在水环境中进行其生物活性的,所以我们测量了角黄素在二元水溶液中的拉曼光谱与紫外-可见光谱。由于三元物质之间的相互作用相当复杂,我们首先利用光谱和密度泛函理论联用研究二元水溶液中有机溶剂与水之间的氢键作用。然后,我们对角黄素在二元水溶液中的拉曼光谱与紫外-可见光谱进行分析,建立了二元水溶液与角黄素的相互作用模型并解析了实验结果。这种研究思路与方法有利于深入理解水环境中生物分子结构变化和π—电子离域等的光学特性。同时,研究结果也为进一步研究复杂体系中类胡萝卜素的结构与性质提供了一定的光谱依据。
     综上所述,本论文将量子化学理论与拉曼光谱与电子光谱相结合,通过改变溶液浓度和变换溶剂研究类胡萝卜素结构有序对其性质的影响,并提出一个二元水溶液体系的物理模型。这为类胡萝卜素研究提供了一个新思路,也为人们深层次探讨类胡萝卜素的结构与性质问题提供了参考资料。
To our knowledge, carotenoids are one of the most abundant pigments found in nature. They are present in most organisms including humans.Carotenoids play an important role in photosynthesis, protection against various diseases in humans, etc.β-carotene, lycopene and canthaxanthin is the most attention and he most widely studied of the three ones of carotenoids. In particular,β-carotene has two main functions, i.e. photoprotection and photon harvesting in photosynthetic systems. Lycopene has functions defense aging and cancer prevention.
     Research on that they has been carried out extensively in physics, chemistry and biology. Carotenoids are the chemically simplyπ-conjugated polyene, is which the polyene chain consists of a sequences of carbon-carbon (CC) bonds (...-C=C-C=...), characterized by a strong electron-phonon (e-ph) coupling due to delocalizedπelectrons. They are the study of resonance Raman spectroscopy, optical nonlinear, the ideal molecular structure of the ideal sample, but also the realization of molecular wires and other important materials for optoelectronic devices. Therefore, the research has theoretical value and a bright application prospect. Carotenoids molecular nature of the great relationship between functional and molecular structures. In particular, this chain of molecular structure is closely related to molecular ordering properties and function.
     In the paper, UV-visible spectroscopy, Raman spectroscopy and Quantum computing are combined to investigate carotenoids in solution. It is worth mentioning that we introduce an important parameter-the Raman scattering cross section for analyzing Raman spectroscopy. Raman scattering cross section (RSCS) is an important parameter in the studies and applications of the Raman spectroscopy. It relates not only to the incident frequency and the structure of a scattered molecule but also to the environment where the scattered molecule is located. It is usually obtained bycomparing the Raman intensity of an unknown molecule with that of a standard molecule with known cross section.
     1. We study on Effect of the structural order of all-trans-β-carotene on the Raman scattering cross section at low concentrations. Using the technique of liquid-core optical fiber (LCOF), we measured the Raman scattering cross sections (RSCSs) of the carbon-carbon stretching vibrational modes of all-trans--carotene in carbon disulfide (CS_2) at concentrations ranging from 10~(-6) to 10~(-11) M. It was found that the RSCSs of all-trans-β-carotene were extremely high with decreasing concentration, and the absolute RSCS of C=C stretching modes of all-trans-β-carotene reached the value of 2.6×10~(-20) cm~2 molecule_(-1) Sr_(-1) at 8×10~(-11) M, which is larger than at 8×10-6 M by 4 orders of magnitude. A theoretical interpretation of the anomalous experimental results is given, which introduces a qualitative nonlinear model of coherent weakly damped electron-lattice vibrations in structural order of all-trans-β-carotene.
     2. Changing solvent is one of the basic research methods of Solvent effect. Solvent has relationship with the total energy of the compressed substance, and the phase structure and reaction way may be controlled by changing solvent because the interatomic distance can be reduced or increased during compression. UV-Visible absorption spectra and Raman spectra of canthaxanthin in different solvents. Our assignments and interpretations are supported by quantum mechanical calculations of structures, which are canthaxanthin/solvents complexes. Through the analysis of experimental and theoretical results, find the relationship between structure and properties. The combination of experimental Raman data with quantum mechanical calculation leads to a better knowledge of the nature of the hydrogen bonding and the structures of the studied hydrogen-bonded complexes. The micro-environmental and micro structures measurements for such molecules of the studied the complexes, while the method is also a powerful tool for such research.
     3. It is because of all the biological molecules are in the water environment to carry out its biological activity. Therefore, we measured in binary aqueous solutions of canthaxanthin in the Raman and UV-visible spectroscopy. First of all, because of the complex interaction between the ternary matter, our vibrational spectroscopic analysis on hydrogen-bonding between dimethyl sulfoxide and water comprises both experimental Raman spectra and ab initio calculations on structures of various dimethyl sulfoxide/water clusters with increasing water content.Later, we have established physical model for explaining the experimental results.At last, this method could be used as a suitable tool for investigating the structure and properties of biological molecules in aqueous environment.
     In summary, this work realized the combination of quantum mechanical calculation and molecular spectroscopic technique, and established physical model for explaining carotenoids in solution. This is a new technique to investigate carotenoids, and therefore opens a new approach to deeply explore physical and chemical issues.
引文
[1]. Cogdell R J. Hipkins M F, MacDonald W, Tmscott T G, Energy transfer between the carotenoid and bacteriochlo-rophyll within the B800-850 light-harvesting pigment-protein complex of Rps. Sphaeroides [J]. Biochim. Biophys. Acta 1981,634,191-202.
    [2]. Noguchi T, Hayashi H, Tasumi T, Factor controlling the efficiency of energy transfer from carotenoids to bacteriochlorophyll in purple photosynthetic bacteria. Biochim. Biophys. Acra,1990,1017,280-290.
    [3]. Shreve A P, Trautman J K, Frank H A, Owens T G, Beek J B V, Albrecht A C, On subpicosecond excitation energy transfer in light harvesting complexes (LHC):the 8800-850 LHC of Rhodobacter sphaeroides [J], J. Lumin.1992,53:179-186.
    [4]. Grondelle V R, Kramer H J M, Rijgersberg C P, Energy transfer in the B800-850 carotenoid light-harvesting complex of various mutants of Rhodopseudomonas sphaeroidesand of Rhodopseudornonas capsulate [J]. Biochim. Biophys. Acta,1982,682, 208-215.
    [5]. Andersson P O. Cogdell R J, Gillbro T, Carotenoids as light-harvesting pigments in Chromatiurn purpurutum studie by femtosecond time-resolution. Abstracts of the 6th Congress of the European Society for Photobiology, p4. Cambridge.1995.
    [6]. Snyder R, E. Arvidson E, Foote C, et al., Christensen Electronic energy levels in long polyenes:S2+S0 emission in all-trans-1,3,5,7,9,11,13-tetradecaheptaene [J]. J. Am. Chem. SOC.1985,107,41174122.
    [7]. Polivka T,Sundstrm V, Ultrafast Dynamics of Carotenoid Excited States From Solution to Natural and Artificial Systems. [J]. Chem.Rev.,2004,104:2021-2071.
    [8]. Dutton H J, Manning, Evidence for carotenoid sensirized Photosynthesis in the diatom Nitzschia closterium [J]. Am J Bot.1941,28:516-526.
    [9]. Jablonski A Z, Ueber den Mechanismus des Photolumineszenz von FarbstoffPhosPhoren. Zs Phys,1935,94:38-46.
    [10].王水才,蔡霞,贺俊芳等,从捕光天线到反应中心能量传递研究,光子学报,2003,32(6):641-645.
    [11].王水才,蔡霞,贺俊芳等.从核心天线到反应中心分子传能研究.光子学报,2003,32(7):848-852.
    [12]. Mimuro M, Tomo T. Nishimura Y, et al., Identification of a Photoehemieally inaetive PheoPhytin molecule in the spinach D1-D2-cyt b559 complex [J], Bioehim BioPhys Acta, 1995,1232:81-88.
    [13].韩雅珊,类胡萝卜素的功能研究进展[J].中国农业大学学报,1999,4(1),5-9.
    [14].李长龄,毕升序,朱志刚.类胡萝卜素的新功能与临床评估[J].上海预防医学杂志,2006,18(6):285-287.
    [15].赵红霞,詹勇,许梓荣.类胡萝卜素的研究进展[J].中国饲料,2002,11.10-12.
    [16]. Hemley R, Kohler B E.Electronic structure of polymers related to the visual chromophore:a simple model for the observed band shapes [J]. Biophys. J.,1977,20: 377-382.
    [17]. Christensen RL.Goyette M,Gallagher L. et al. S1 and S2 states of apo-and diapocarotenes.[J]. J.Phys.Chem.A,1999,103:2399-2407.
    [18]LIU W, ZHENG Z,ZHU R, et al. Effect of Pressure and Solvent on Raman Spectra of All-trans-β-Carotene [J]. The Journal of Physical Chemistry A.2007. 111:10044-10049.
    [19]LIPINSKA-KALITA K E. PRAVICA M G, NICOL M. Raman Scattering Studies of the High-Pressure Stability of Pentaerythritol Tetranitrate, C(CH2ONO2)4 [J]. The Journal of Physical Chemistry B.2005,109:19223-19227.
    [20]KAVITHA G, NARAYAYANA C. Raman Scattering Studies on n-Heptane under High Pressure [J]. The Journal of Physical Chemistry B.2006.110:8777-8781.
    [21]KAVITHA G, NARAYAYANA C. Pressure-Induced Structural Transition in n-Pentane: A Raman Study [J]. The Journal of Physical Chemistry B.2007,111:8003-8008.
    [22]KAVITHA G, NARAYAYANA C.Raman Spectroscopic Investigations of Pressure-Induced Phase Transitions in n-Hexane [J]. The Journal of Physical Chemistry B. 2007. 111:14130-14135.
    [23]BANER A. DEB S K. Raman Scattering Study of High-Pressure Phase Transition in Thiourea [J]. The Journal of Physical Chemistry B.2007. 111:10915-10919.
    [24]HO Z Z. HANSON R C, LIN S. Studies of resonance Raman scattering:high pressure effects in(3-Carotene [J]. The Journal of Physical Chemistry.1985.89:1014-1019.
    [25]LONG Y, ZHANG W. YANG L. YU Y. et al. Pressure-induced structural phase transition in CaCrO4:Evidence from Raman scattering studies [J]. Applied Physics Letters. 2005.87:181901.
    [26]BARSAN M M, GILSON D F R. REBER C, et al. High-pressure micro-Raman spectroscopic study of methyltrioxorhenium(VII) [J]. Journal of Raman Spectroscopy.2006. 37:1321-1326.
    [27]. Sashima T, Koyama Y, Yamada T, et al. The 1Bu+,1Bu-, and 2Ag- Energies of Crystalline Lycopene,P-Carotene, and Mini-9-β-carotene as Determined by Resonance-Raman Excitation Profiles:Dependence of the 1Bu- State Energy on the Conjugation Length [J], J. Phys. Chem. B 2000.104,5011-5019.
    [28]. Parker S F, Tavender S M, Dixon N M, et al. Raman Spectrum ofβ-Carotene Using Laser Lines from Green (514.5nm) to Near-Infrared (1064 nm):Implications for the Characterization of Conjugated Polyenes [J], APPLIED SPECTROSCOPY 1999.53:86-91.
    [29]Rumi M, Zerbi G, Mullen K, et al. Nonlinear optical and vibrational properties of conjugated polyaromatic molecules [J]. J. Chem. Phys.1997,106:24-34.
    [30]. PU Y, RAGAUSKAS A J, LUCIA L A,NAITHANI V, JAMEEL H. Near-Infrared spectroscopy and chemometric analysis for determining oxygen delignification yield [J]. J Wood Chemistry and Technology,2008,28(2):122-136.
    [31].商金卓,王彬,任瑞冰,赵羚志,任玉林.PLS-近红外漫反射光谱法对氢氧化铝粉末药品非破坏定量分析[J].生命科学仪器,2009.7(6):43-45.
    [32]. LI W, QU H. Rapid quantification of phenolic acids in Radix Salvia Miltrorrhiza extract solutions by FT-NIR spectroscopy in transflective mode[J]. J.Pharm.Biomed.Anal.2010, 52(4):425-431.
    [33]. Srivastavaa S K. Animesh K. Ojhaa A K, Koster J, Isotopic dilution, self-association, and Raman non-coincidence in the binary system reinvestigated by polarized Raman measurement and ab initio calculations [J], Journal of Molecular Structure 2003,661-662: 11-21.
    [34]. Srivastavaa S K, Ojhaa A K, Kiefer W. Asthana B P, Investigation of v(N-H) and v(C-N) stretching modes of propylamine (C3H7NH2) in a binary system C3H7NH2+CH3OH via concentration dependent Raman study and ab initio calculations [J], Spectrochimica Acta Part A.2005,61:2832-2839.
    [35]. Ojhaa A K, Srivastavaa S K, Peicab N, et al., Concentration dependent wavenumber shifts and linewidth changes of some prominent vibrational modes of C4H8O investigated in a binary system (C4H8OCH2O) by polarized Raman study and ab initio calculations [J], Journal of Molecular Structure,2005,735-736:349-357.
    [36]. Singh D. Vikram K. Singh D K. et al.,Raman and DFT study of hydrogen-bonded 2-and 3-chloropyridine with methanol [J]. J. Raman Spectrosc.2008,39:1423-1432.
    [37]. S. Schlucker. J. Koster. R. K. Singh. B. P. Asthana. Hydrogen-Bonding between Pyrimidine and Water:A Vibrational Spectroscopic Analysis [J]. J. Phys. Chem. A 2007,111. 5185-5191.
    [38]. Ojhaa A K, Srivastavaa S K. Koster J. et al.,Investigation of hydrogen bonding and self-association in neat HCONH2 and the binary mixture (HCONH2+CH3OH) by concentration dependent Raman study and ab initio calculations [J]. Journal of Molecular Structure,2004,689:127-135.
    [39]. Raghuvansh P, Srivastava S K,Singh R K, Kiefer W, Hydrogen-bonding and self association investigated in the binary mixture (C6H5CN+CH3OH) via concentration dependent Raman study of the CN stretching mode of benzonitrile (C6H5CN) and ab-initio calculations [J], Phys. Chem. Chem. Phys.,2004.6.531-536.
    [40]. Singh R K, Asthana B P, Verma A L. Pathak C M, Raman study of the concentration dependence of the frequency shifts and linewidth changes in a (3Cl-pyridine+methanol) system [J]. Chemical Physics Letters 1997,278:35-40.
    [41]. Singh R K, Bhriguvansh P, Asthana B P. Verma A L,Raman study of vibrational dephasing in hydrogen-bonded binary and ternary complexes of C6H5Cl and methanol [J], Chemical Physics Letters,1998.296,611-618.
    [42]. Singh D K, Srivastava S K, Ojha A K. Asthana B P. Vibrational study of thiophene and its solvation in two polar solvents, DMSO and methanol by Raman spectroscopy combined with ab initio and DFT calculations [J]. Journal of Molecular Structure 2008.892:384-391.
    [43]. Srivastava S K. Ojha A K, Raghuvansh P, Influence of self-association and inter-molecular hydrogen bonding on the n(CN) stretching mode of CH3CN and C2H5CN in binary mixtures with CH3OH—A comparative study via concentration-dependent polarized Raman study and ab initio calculation [J]. J. Raman Spectrosc.2006,37:1287-1295.
    [44]. Singh D K. Mishra S. Ojha A K. Hydrogen bonding in different pyrimidine-methanol clusters probed by polarized Raman spectroscopy and DFT calculations [J].2010,54: 1367-1371.
    [45]. Sashima T. Koyama Y, Yamada T. et al. The 1Bu+,1Bu-. and 2Ag- Energies of Crystalline Lycopene,β-Carotene. and Mini-9-P-carotene as Determined by Resonance-Raman Excitation Profiles:Dependence of the 1Bu- State Energy on the Conjugation Length [J]. J. Phys. Chem. B 2000,104,5011-5019.
    [46]. Parker S F. Tavender S M, Dixon N M. et al. Raman Spectrum ofβ-Carotene Using Laser Lines from Green (514.5 nm) to Near-Infrared (1064 nm):Implications for the Characterization of Conjugated Polyenes [J]. APPLIED SPECTROSCOPY,1999.53:86-91.
    [47]. Rumi M. Zerbi G.Mullen K. et al. Nonlinear optical and vibrational properties of conjugated polyaromatic molecules [J],J. Chem. Phys.1997,106:24-34.
    [1]张寒奇、王芬蒂、金钦汉等。光谱化学分析[M]。长春:吉林大学出版社,1996.
    [2]PARSON W W. Modern Optical Spectroscopy:With Example From Biophysics and Biochemistry [M]. Berlin:Springer,2006, P109-182.
    [3]蒋月顺, 杨文胜,化学中的电子过程[M].北京:科学出版社,2004.2.1.2
    4. Schulten K.Karplus M. On the origin of a low-lying forbidden transition in polyenes and related molecules. [J]. Chem.Phys.Lett.,1972.14:305-309.
    5. Britton G.In Carotenoids.Birkh user Verlag:Basel.1995
    6. Hemley R,Kohler BE.Electronic structure of polymers related to the visual chromophore:a simple model for the observed band shapes.[J]. Biophys. J.,1977,20:377-382.
    7. Christensen R L, Goyette M, Gallagher L, et al. S1 and S2 states of apo-and diapocarotenes.[J], J.Phys.Chem.A,1999,103:2399-2407.
    8. Polivka T, Sundstrum V, Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems.[J].Chem.Rev.,2004,104:2021-2071.
    [9]LONG D A. The Raman Effect:A Unified Treatment of the Theory of Raman Scattering by Molecules [M]. Chichester:John Wiley & Sons,2002.
    [10]吴国桢。分子振动光谱学——原理与研究[M]。北京:清华大学出版社,2001
    [11]郑顺旋。激光拉曼光谱学[M]。上海:上海科学技术出版社,1985
    [12]MCHALE J L. Molecular Spectroscopy [M]. Beijing:Science Press,2003.
    [13]AKINS D L, ZHU H,GUO C. Aggregation of tetraaryl-substituted porphyrins in homogeneous solution [J]. The Journal of Physical Chemistry.1996,100:5420-5425.
    [14]. L. Rimai, M. E. Heyde, D. Gill, Vibrational Spectra of Some Carotenoids and Related Linear Polyenes. A Raman Spectroscopic Study [J]. J. Am. Chem. Soc.,1973,95: 4493-4501.
    [15]. Oliveira V E D, Castro H V. Edwardsb H G M,et al.,Carotenes and carotenoids in natural biological samples:a Raman spectroscopic analysis[J], J. Raman Spectrosc.2010,41, 642-650.
    [16].Maia L F,Fleury B G,Lages B G, et al.,Identification of reddish pigments in octocorals by Raman spectroscopy [J],2010.41,960-967.
    [17]. Mori Y,Introductory studies on the growth and characterization of carotenoid solids:an approach to carotenoid solid engineering [J]. J. Raman Spectrosc.2001; 32:543-550.
    [18]. Lopez-Ramirez M R. Sanchez-Cortes S. Perez-Mendez M. Trans-cis isomerisation of the carotenoid lycopene upon complexation with cholesteric polyester carriers investigated by Raman spectroscopy and density functional theory [J], J. Raman Spectrosc.2010.41, 1170-1177.
    [19]. Schlucker S, Szeghalmi A, Schmitt M. et al.. Density functional and vibrational spectroscopic analysis of β-carotene [J], J. Raman Spectrosc.2003;34:413-419.
    [20]Alajtal A I, Edwardsa H G M, Scowen I J. et al., The effect of spectral resolution on the Raman spectra of polyaromatic hydrocarbons and beta-carotenemixtures [J]. J. Raman Spectrosc.2011,42,179-185.
    [21]Born M. Oppenheimer R. Zur Quantentheorie der Molekeln Ann. Phsik [M]. (Quantum Theory of the Molecules Ann.Phys.).1927,84,457-469.
    [22]W.J.Hehre, L.Radom, P.v.R.Schleyer.et al.,Ab Initio Molecular Orbital Theory [M], John Wiley&Sons.Inc.,1986.
    [23]McQuarrie D A, Quantum Chemistry[M], University Science Books:Mill Vally. CA. 1983.
    [24]唐敖庆,杨忠志,李前树,量子化学[M],北京,科学出版社.1982.
    [25]徐光宪,黎乐民.王德民,量子化学基本原理和从头计算法[M],北京,科学出版社,1985.
    [26]Trudel S, Gilson D F R. High-Pressure Raman Spectroscopic Study of the Ammonia-Borane Complex.Evidence for the Dihydrogen Bond [J]. Inorg.Chem.2003.42. 2814-2823.
    [27]Custelcean R,Jackson J E, Dihydrogen Bonding:Structures, Energetics, and Dynamics [J], Chem.Rev,2001.101.1963-1975.
    [28]Cubero E, M.Orozco M, Hobza P, Luque F J, Hydrogen Bond versus Anti-Hydrogen Bond:A Comparative Analysis Based on the Electron Density Topology. J.Phys.Chem.A. 1999,103.6394-6403.
    [29]Rozas I, Alkorta I, Elguero J, Inverse Hydrogen-Bonded Complexes. J.Phys.Chem.A. 1997.101,4236-4245.
    [30]Hobza P, Zdenek V H, Konstantin B, et.al. Anti-hydrogen bond between chloroform and fluorobenzene[J]. Chem.Phys.Lett.1999,299,180-193.
    [31]Rozas I,Alkorta I,Elguero J. Bifurcated Hydrogen Bonds:Three-Centered Interactions [J],J.Phys.Chem.A.1998,102.9925-9942.
    [32]Deakyne C A. Meot-Ner(Mautner) M. Ionic Hydrogen Bonds in Bioenergetics.4.Interaction Energies of Acetylcholine with Aromatic and Polar Molecules[J]. J.Am.Chem.Soc.1999.121.1546-1551.
    [33]Meot-Ner(Mautner) M, The Ionic Hydrogen Bond [J], Chem.Rev.2005,105,213-228.
    [l]Halliwell B, Gutteridge J M, The chemistry of oxygen radicals and other derived spcies. Pp.22-85. Clarendon Press,Oxfoed 1989.
    [2]Koyama Y, Kuki M, Andersson P O, Gillbro T, Singlet Excited States and the Light-Harvesting Function of Carotenoids in Bacterial Photosynthesis [J], Photochem. Photobiol.1996.63:243-256.
    [3]Frank H A, Cogdell R J, Carotenoids in Phtosynthesis [J], Photochem. Photobiol.1996, 63:257-264.
    [4]Sashima T, Koyama Y, Yamada T, et al. The 1Bu+,1Bu-,and 2Ag- Energies of Crystalline Lycopene,β-Carotene, and Mini-9-β-carotene as Determined by Resonance-Raman Excitation Profiles:Dependence of the 1Bu- State Energy on the Conjugation Length [J],J. Phys. Chem. B 2000,104,5011-5019.
    [5]Parker S F, Tavender S M, Dixon N M, et al. Raman Spectrum ofβ-Carotene Using Laser Lines from Green (514.5 nm) to Near-Infrared (1064 nm):Implications for the Characterization of Conjugated Polyenes [J], APPLIED SPECTROSCOPY 1999,53:86-91.
    [6]Rumi M, Zerbi G, Mullen K, et al. Nonlinear optical and vibrational properties of conjugated polyaromatic molecules [J], J. Chem. Phys.1997,106:24-34.
    [7]McLaughlin R P. Nyholm B P. Reid P J, Absolute Resonance Raman Intensity Analysis of Isopropyl Nitrate in the Condensed Phase [J], J. Phys. Chem. A 2003,107:9105-9112.
    [8]Shafer-Peltier K E, Haynes C L, Glucksberg M R, et al., Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering, J. AM. CHEM. SOC.2003,125:588-593.
    [91 SKINNER J G, NILSEN W G. Absolute Raman Scattering Cross-Section Measurement of the 992 cm-1 Line of Benzene [J], JOURNAL OF THE OPTICAL SOCIETY OF AMERICA.1968.58:113-119.
    [10]R, Geschwind S, Devlin G E, Measurement of Spin Flip Raman Scattering Cross Section and Exchange Effects for Donors in CdS by Faraday Rotation [J], Phy. Rev. Lett., 1975,35:803-806.
    [11]Aggarwal R L, Farrar L W, Dieboldb E D et al.,Measurement of the absolute Raman scattering cross section of the 1584cm-1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates [J], J. Raman Spectrosc.2009,40,1331-1333.
    [12]Faris G W, Copeland R A, Wavelength dependence of the Raman cross section for liquid water [J], APPLIED OPTICS,1997,36:2686-2688.
    [13]NESTOR J R,LIPPINCOTT E R, THE EFFECT OF THE INTERNAL FIELD ON RAMAN SCATTERING CROSS SECTIONS [J]. Journal of Raman Spectroscopy.1973. 1:305-318.
    [14]Dudik J M, C.R. Johnson, S.A. Asher, Wavelength dependence of the preresonance Raman cross sections of CH3CN,SO42-,CIO4- and NO3-[J], J. Chem. Phys.1985,82:1732-1740.
    [15]N. Biswas. S. Umapathy, Simple Approach to Determining Absolute Raman Cross Sections Using an Optical Parametric Oscillator [J]. Appl. Spectrosc.1998.52:496-499.
    [16]Gao S Q. Huang B K, Li Z W. Application of liquid-core optical fiber in the measurements of Fourier transform Raman spectra [J], Chemical Physics Letters.2004, 392:123-126.
    [17]Yin J H. Gao S Q, Li Z W. Yu Y N. Lu G H, Tian Y J. Effect of solution concentration on the Raman scattering cross-section of carbon tetrachloride [J],J. Raman Spectrosc.2004; 35: 1042-1046.
    [18]Tian Y J, Zuo J. Zhang L Y,Li Z W, Gao S Q, Lu G H, Study of resonance Raman cross section of aqueous β-carotene at low concentrations [J],Appl. Phys. B.2007.87.727-730.
    [19]Tian Y J. Zhang L Y. Zuo J. Li Z W,Gao S Q. Lu G H. Raman sensitivity enhancement for aqueous absorbing sample using Teflon-AF 2400 liquid core optical fibre cell [J]. Analytica Chimica Acta 2007,581.154-158.
    [20]Parascuk D K, Kobryanski V M, Coherent Electron-Lattice Vibrations in Trans-Nanopolyacetylene Probed by Raman Scattering [J], Physical Review Letters,2001,87: 207402.
    [21]Placzek G.Radiologie H D,Akademie Verlagsgesellschaft. Leipzig:Germany,1934.
    [22]W. Kiefer, Infrared and Raman Spectroscopy:Methods and Applications (Ed.:B. Schrader). VCH. Weinheim:New York,1995, p 465.
    [1]王水才,蔡霞,贺俊芳,刘晓,彭菊芳,刘晓,李良壁,匡廷云.从捕光天线到反应中心分子能量传递研究[J].光子学报.2003,32:641-645.
    [2]王水才,蔡霞,贺俊芳,刘晓,彭菊芳.李良壁,匡廷云.从核心天线到反应中心分子传能研究.光子学报.2003,32:848-852.
    [3]郭立俊,郭俊华,刘源,徐春和,钱士雄.高等植物外周捕光天线LHC Ⅱ中的超快光动力学过程.发光学报.2004.25:242-246.
    [4]VaswaniH M, Hsu C P, Gordon M H, Fleming G R. Quantum Chemical Evidence for an Intramolecular Charge-Transfer State in the Carotenoid Peridinin of Peridinin-Chlorophyll-Protein[J].J.Phys.Chem.B 2003,107:7940-7946.
    [5]Mcdermott G,Prince S M, Freer A A,et al., Crystal Structure of an Integral Membrance Light-Harvesting Comples from Photosynthetic Bacteria [J].Nature 1995,374:517-521.
    [6]Cramer C J, Trular D G, Implicit Solvation Models:Equilibria, Structure, Spectra,and Dynamics [J].Chem.Rev.1999,99:2161-2200.
    [7]Andersson P O, Gillbro T, Ferguson L, Cogdell R J, Absoption Spectral Shifts of Carotenoids Related to Medium Polarizability. Photochem. Photobiol [J],1991,54:353-359.
    [8]Nagae H, Kuki M, Cogdell R, Koyama J Y. Shifts of the 1Ag-→1Bu+ Electronic Absorption of Carotenoids in Nonpolar and Polar Solvents [J].J.Chem.Phys.1994,101: 6750-6765.
    [9]Renge I, Grondelle R V, Dekker J P. Matrix and Temperature Effects on Absorption Spectra of (3-Carotene and Pheophytina in Solution and in Green Plant Photosystem Ⅱ [J].J.Photochem.Photobiol.A.1996,96:109-121.
    [10]Abe T, Abboud J L M. Belio F, et al., Empirical Treatment of Solvent-Solute Interactions: Medium Effects on the Electronic Absorption Spectrum of P-Carotene [J]. J.Phys.Org.Chem. 1998,11:193-200.
    [11]Chen Z G, Lee C, Lenzer T, Oum K. Solvent Effects on the S0(lAg-)→S2(1Bu+) Transition of β-Carotene, Echinenone. Canthaxanthin. and Astaxanthin in Supercritical CO2 and CF3H[J]. J.Phys.Chem.A 2006,110:11291-11297.
    [12]Macpherson A N, Gillbro T. Solvent Dependence of the Ultrafast S2-S1 Internal Conversion Rate of β-Carotene [J]. J.Phys.Chem.A 1998,102:5049-5058.
    [13]Frisch M J, Truck G W,Schlegel H B. Scuseria G E, et al., GAUSSIAN 03, revision A.l ed.; Guassian, Inc.:Pittsburgh, PA,2003.
    [14]NESTOR J R, LIPPINCOTT E R, THE EFFECT OF THE INTERNAL FIELD ON RAMAN SCATTERING CROSS SECTIONS [J]. Journal of Raman Spectroscopy,1973,1: 305-318.
    [15]Dudik J M, C.R. Johnson, S.A. Asher, Wavelength dependence of the preresonance Raman cross sections of CH3CN, SO42-. ClO4- and NO3-[J], J. Chem. Phys. 1985,82:1732-1740.
    [16]Guo J D, Luo Y, Himo F. Density Functional Theory Study of the Canthaxanthin and Other Carotenoid Radical Cations [J]. Chem.Phys.Lett.2002,366:73-81.
    [17]Andersson M P, Uvdal P, New Scale Factors for Harmonic Vibrational Frequencies using the B3LYP Density Functional Method with the Triple-Z Basis Set 6-311+G(d,p) [J]. J. Phys. Chem. A,2005,109:2937-2941.
    [1]Frank H A. Cogdell R J. Carotenoids in Photosynthesis [J]. Photochem. Photobiol.1996. 63:257-264.
    [2]T.Polivka, Sundstrom V. Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems [J].Chem.Rev.2004,104:2021-2071.
    [3]Wasielewski M R. Kispert L D. Direct Measurement of the Lowest Excited Singlet State Lifetime of All-Trans-β-Carotene and Related Carotenoids [J]. Chem.Phys.Lett.1986,128: 238-243.
    [4]Sashima T, Nagae H, Kuki M,Koyama Y.A New Singlet-Excited State of All-Trans-Spheroidene as Detected by Resonance-Raman Excitation Profiles [J]. Chem.Phys.Lett.1999.299:187-194.
    [5]Zhang J P. Inaba T, Watanabe Y, et al. Partition of carotenois-to-bacteriochlorophyll singlet-energy transfer through two channels in the LH2 complex from Rhodobacter sphaeroides GIC. [J]. Chem.Phys.Lett.,2001,340:484-492.
    [6]Akahane J, Rondonuwu F S, Fiedor L. et al. Dependence of singlet-energy transfer on the conjugation length of carotenoids reconstituted into the LH1 complex from Rhodospirillum rubrum G9.[J]. Chem.Phys.Lett.,2004,393:184-191.
    [7]Fujii R. Inaba T. Watanabe Y, Koyama Y, Zhang J P. Two Different Pathways of Internal Conversion in Carotenoids Depending on the Length of the Conjugated Chain [J]. Chem.Phys.Lett.2003.369:165-172.
    [8]Nagae H. Kakitani Y, Koyama Y. Theoretical Description of Diabatic Mixing and Coherent Excitation in Singlet-Excited States of Carotenoids [J]. Chem.Phys.Lett.2009,474: 342-351.
    [9]Niedzwiedzki D. Koscielecki J F. Cong H. et al., Frank.Ultrafast Dynamics and Excited State Spectra of Open-Chain Carotenoids at Room and Low Temperatures [J]. J.Phys.Chem.B 2007.111:5984~5998.
    [10]H.Cong H. Niedzwiedzki D M,Gibson G N,Frank H A.Ultrafast Time-Resolved Spectroscopy of Xanthophylls at Low Temperature [J]. J.Phys.Chem.B 2008,112: 3558~3567.
    [11]Gradinaru C C, Kennis J T M, Papagiannakis E, et al., An Unusual Pathway of Excitation Energy Deactivation in Carotenoids:Singlet-to-Triplet Conversion on an Ultrafast Timescale in a Photosynthetic Antenna [J]. Proc.Natl. Acad.Sci.U.S.A.2001,98:2364-2369.
    [12]张蕾,全冬晖,汪力,杨国桢,翁羽翔.全反式类胡萝卜醛(All-Trans-β-Apo-8'-Carotenal)的飞秒时间分辨瞬态吸收光谱[J].中国科学G. 2004,34:1~14.
    [13]郭立俊,郭俊华,刘源,徐春和,钱士雄.高等植物外周捕光天线LHC Ⅱ中的超快光动力学过程[J].发光学报2004,25:242~246.
    [14]Kosumi D, Komukai M, Hashimoto H, Yoshizawa M. Ultrafast Dynamics of All-Trans-(3-Carotene Explored by Resonant and Nonresonant Photoexcitations [J]. Phys.Rev.Lett.2005,95:213601-1-4.
    [15]Sugisaki M, Yanagi K, Cogdell R J, Hashimoto H.Unified Explanation for Linear and Nonlinear Optical Responses inβ-Carotene:A Sub-20-fs Degenerate Four-Wave Mixing Spectroscopic Study [J]. Phys.Rev.B.2007,75:155110-1-11.
    [16]Frisch M J, Truck G W, Schlegel H B, Scuseria G E. et al., GAUSSIAN 03, revision A.1 ed.; Guassian, Inc.:Pittsburgh, PA,2003.
    [1]刘伟龙,β-胡萝卜素的高压稳态和超快光谱研究[D].哈尔滨:哈尔滨工业大学,2009
    [2]Sashima T, Nagae H. Kuki M,Y.Koyama Y. A New Singlet-Excited State of All-Trans-Spheroidene as Detected by Resonance-Raman Excitation Profiles [J]. Chem.Phys.Lett.1999,299:187~194.
    [3]Fujii R, Inaba T, Watanabe Y,et al., Two Different Pathways of Internal Conversion in Carotenoids Depending on the Length of the Conjugated Chain [J]. Chem.Phys.Lett.2003, 369:165~172.
    [4]Niedzwiedzki D, oscielecki J F K, et al., Ultrafast Dynamics and Excited State Spectra of Open-Chain Carotenoids at Room and Low Temperatures [J]. J.Phys.Chem.B 2007,111: 5984~5998.
    [5]Gradinaru C C, M.Kennis J T M,Papagiannakis E, An Unusual Pathway of Excitation Energy Deactivation in Carotenoids:Singlet-to-Triplet Conversion on an Ultrafast Timescale in a Photosynthetic Antenna. Proc.Natl.Acad.Sci.U.S.A.2001.98:2364~2369.
    [6]Frank H A J.Bautista A. Josue J. et al., Effect of the Solvent Environment on the Spectroscopic Properties and Dynamics of the Lowest Excited States of Carotenoids [J]. J.Phys.Chem.B 2000,104:4569-4577.
    [7]Polivka T, Sundstrom V. Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems.[J]. Chem.Rev.,2004,104:2021-2071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700