用户名: 密码: 验证码:
ArF浸没光刻双工件台运动模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为微电子产业的核心设备,光刻机在摩尔定律的推动下经历了接近、接触式光刻机,步进重复投影光刻机,步进扫描投影光刻机的发展历程,现已进入ArF浸没式双工件台光刻机时代。在大规模工业生产中,要求光刻机能长时间、稳定地进行高速、高精度的曝光运动,故对其整机综合性能提出了苛刻的要求。基于此,本论文对ArF浸没式双工件台光刻机中的步进扫描运动模型、焦面控制运动模型、浸没光刻技术等关键单元技术进行研究,以期为光刻机整机性能的提升及我国ArF浸没式双工件台光刻机的发展打下坚实的理论基础。
     论文简介了光刻技术发展的最新动态并详述了主流的ArF浸没式双工件台光刻机发展现状,在此基础上确立本论文的研究对象。对ArF浸没式双工件台光刻机中步进扫描运动模型进行研究:在简述双工件台光刻机步进扫描运动机理的基础上,研究了其运动坐标系、运动中的坐标变换、步进扫描运动数学模型并对其运动轨迹进行了轨迹规划,最后对同步扫描运动进行了实验验证;对ArF浸没式双工件台光刻机中焦面控制运动模型进行研究:论述了焦面控制技术中硅片三维形貌生成、硅片表面曲面拟合、曝光狭缝离焦量计算、调平调焦解耦算法、调平调焦运动控制算法整个流程并进行了仿真分析;对其浸没光刻技术进行研究:在介绍了浸没光刻技术优势的基础上,着重对浸没光刻中的浸液密封性、气泡夹带、流场均一性等问题进行了理论分析并开展了相关仿真分析及实验研究;最后,对论文研究内容进行了总结,指出了本研究现有不足及下一步研究方向。
As the core equipment for the microelectronics industry, the lithographic system drivenby Moore's Law has experienced the history of close contact lithographic system,stepper, scanner, now it is entering the era of ArF immersion dual-stage lithographicsystem. In industrial production, a long time, stable, high-speed, and high-precisionexposure movement is needed, so it is the harsh demands of the overall performance ofthe lithographic system. Based on this, the cell technology for the step-and-scan motionmodel, focal control movement model and immersion lithography in ArF immersiondual-stage lithographic system was researched to upgrade the performance forlithography. It is hoped that a solid theoretical foundation would be established for ourArF immersion dual-stage lithographic system.
     The latest development trend in lithographic system and the detail of the ArF immersiondual-stage lithographic system was introduced in the beginning, and the research objectof this paper was fixed based on these. The step-and-scan motion model in ArFimmersion dual-stage lithographic system was studied: on the basis of the step-and-scanmotion mechanism, the coordinate system, the coordinate transformation, themathematical model for step-and-scan motion and the trace trajectory planning for itsmovement was studied carefully, and the experimental verification of synchronizedscanning movement was carried out. The control of the focal plane in ArF immersiondual-stage lithographic system was studied: the entire process of wafer map, surfacefitting of the wafer, defocus amount in exposure slit, decoupling algorithm for focusingand leveling, and the motion control algorithm for focusing and leveling was introducedand simulated lately. the immersion lithography was researched: based on the advantageof immersion lithography, the immersion sealing, the bubbles entrained in flow field andthe uniformity in flow field were focused on, also the theoretical analysis andsimulation analysis was carry out for them. Some related experimental was carried outsimultaneously. Finally, it was a summary for the paper, and the limitation and futureimprovement was pointed out.
引文
[1]姚汉民,胡松,邢廷文.光学投影曝光微纳加工技术[M].北京:北京工业大学出版社,2006:1-5.
    [2] Jun Zhu, Peng Wu, Qiang Wu, Hua Ding, Xin Li and Changjiang Sun. A study of doubleexposure process design with balanced performance parameters for line space applications[C].Proc.of. SPIE,2007,6520,6520H:1-11.
    [3] Finders J, Dusa M, Vleeming B, Hepp B, Maenhoudt M, Shaunee C, Tom V. Double patterninglithography for32nm: critical dimensions uniformity and overlay control considerations [J].J.Micro/Nanolith.MEMS MOEMS2009,8(1),011002:1-11.
    [4] J.H.Andrew, W.Shinji, H.Shigeru, M.Martin, M.Nobutaka, I.Jun, L.Celine, G.Isabelle,B.Sebastien, G.Stephanie. Double-patterning requirements for optical lithography and prospectsfor optical extension without double patterning [C]. Proc.of. SPIE,2008,6924,69240R:1-13.
    [5] P. J. Silverman. Extreme ultraviolet lithography: overview and development status [J]. Journalof Microlithography, Microfabrication, and Microsystems,2005,4(1),011006:1-5.
    [6] H. J. Levinson. Extreme ultraviolet lithography's path to manufacturing [J]. Journal ofMicro/Nanolithography, MEMS and MOEMS,2009,8(4),041501:1-9.
    [7]占平平,刘卫国. EUV光刻技术进展[J].科技信息,2011,21:44,418.
    [8] B. J. Lin. Sober view on extreme ultraviolet lithography [J]. Journal of Microlithography,Microfabrication, and Microsystems,2006,5(3),033005:1-12.
    [9] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang. Sub-10nm imprint lithography andapplications [J]. Journal of Vacuum Science&Technology B,1997,15(6):2897-2904.
    [10]张鸿海,胡晓峰,范细秋,刘胜.纳米压印光刻技术的研究.华中科技大学学报(自然科学版,2004,32(12):57-59.
    [11]杨向荣,张明.新型光刻技术的现状与进展[J].材料导报,2007,21(5):102-104.
    [12] H. Yoon, H. S. Cho, K. Y. Suh, and K. Char. step and repeat process for thermal nanoimprintlithography[J]. Nanotechnology,2010,21(10),10532:1-6.
    [13] K. H. Hsu, P. L. Schultz, P. M. Ferreira, and N. X. Fang. Electrochemical Nanoimprinting withSolid-state Superionic Stamps [J]. Nano Lett,2007,7(2):446-451.
    [14] R. H. Ritchie. Plasma Losses by Fast Electrons in Thin Films [J]. Physical Review,1957,106(5):874-881.
    [15] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. Extraordinary opticaltransmission through sub-wavelength hole arrays [J]. Nature,1998,391:667-669.
    [16] W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen. Surface PlasmonPolaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays ofSubwavelength Holes in a Metal Film [J]. Physical review letters,2004,92(10):1-4.
    [17] N. Fang, H. Lee, C. Sun, Xiang Zhang. Sub-Diffraction-Limited Optical Imaging with a SilverSuperlens. Science,2005,308(5721):534-537.
    [18]蒋文波,胡松.无掩模光刻技术研究[J].微细加工技术,2008,4:1-4.
    [19]陈宝钦.电子束光刻技术与图形数据处理技术[J].微纳电子技术,2011,48(6):345-352
    [20]李金龙,赵立新,胡松,周绍林.双工件台光刻机中的调平调焦技术[J].微纳电子技术,2010(8):494-498.
    [21] Jinlong Li, Lixin Zhao, Song Hu, Shaolin Zhou. Focusing and leveling in dual stagelithographic system[C]. SPIE,2010,7657:76571H1-7.
    [22]李金龙,胡松,赵立新.双工件台光刻机中焦面控制技术[J].光学学报,2012,32(12):12230021-5.
    [23]袁琼雁,王向朝.国际主流光刻机研发的最新进展[J].激光与光电子学进展,2007,44(1):57-64.
    [24] Wei A, Abdo A. et al. simulating fluid flow characteristics during the scanning process forimmersion lithography [J]. Vac. Sci. Technol. B2003,21(6):2788-2793.
    [25] Wei A., Abdo A. et al. Modeling fluid thermomechanical response for immersion lithographyscanning.[J].Microelectronic Engineering.2004,73-74(6):2934.
    [26] Wei A., G.Dicks, et al. Predicting microfluidic response during immersion lithography scanning.Proceeding of SPIE European Conference on Mask Technology for Integrated Circuits andMicrocomponents.5504:155-163.
    [27] Wei A., M. EI-Morsi, et al. Predicting air entrainment and scanning process for immersionlithography.[J]. Vac. Sci. Technol. B2004,22(6):3444-3449.
    [28] So-Yeon Baek, A.Wei, et al. Simulation of the coupled thermal optical effects for liquidimmersion micro-nano-lithography. Proceeding of SPIE Optical MicrolithographyXVII.5377-5427.
    [29] H. B. Burnett, T. Shedd, et al. Static and dynamic contact angles of water on photoresist.[J].Vac. Sci. Technol. B2005,23(6):2721-2727.
    [30] Donis Flagello, Jan Mulkens. Status ASML Immersion[C]. SEMATECH ImmersionLithography. Workshop II.2003.7
    [31] Shao. Yang, Darry Keenan, et al. A193nm detector nonlinearity measurement system at NIST.Proceeding of SPIE Optical Microlithography XVI.5040:1651-1656
    [32] Roger H. French, Min K. Yang, et al. Immersion fluid refractive indices using prism minimumdeviation techniques[C].Proceeding of SPIE Optical Microlithography XVII.5377:1689-1694.
    [33] M. Switkes, R. R. Kunz, et al. Immersion liquids for lithography in the deep ultraviolet[C].Proceeding of SPIE Optical Microlithography XVI.5040:690-699.
    [34] M.Switkes, T. M. Bloomstein. Scattering in liquid immersion lithography [C]. Proceeding ofSPIE Optical Microlithography XVII.5377:469-476.
    [35]翟立奎,浸没光刻液体传送及控制系统研究[D].浙江大学,2006:25-26.
    [36]井科学,浸没系统环境控制和表面处理的研究[D].浙江大学,2006:25-26
    [37]陈文昱,浸没式光刻中浸液控制单元的液体供给及密封研究[D].浙江大学,2010:45-50.
    [38]陈晖,浸没式光刻机浸液流动特性及其对物镜影响[D].浙江大学,2011:35-36.
    [39] Nikon Pricision Inc. Announcing the sale of Nikon ArF immersion scanner NSR-S609B.http:/www.nikon.co.jp/main/eng/news/2005/0630_nsrs-609b_01.
    [40] ASML.TWINSCAN.http://www.asml.com/asml/show.do?ctx=6720&rid=36951.
    [41] NIPPON. Environmental system including an electro-osmotic element for an immersionlithography apparatus[P]. USA, US2006023187.
    [42] Akihiro Y. ArF immersion lithography for45nm and beyond[C]. Proceedings of InternationalSociety for Optical Engineering,2007,6607:66071G
    [43] B. Sluijk, T. Castenmiller, R. du Croo de Jongh, et al. Performance results of a new generationof300mm lithography systems[C]. SPIE,2001,(4346):544-557.
    [44] R. Rubingh, Y. v. Dommelen, S. Tempelaars, et al. Performance of a High Productivity300mmDual Stage193nm0.75NA TWINSCAN AT:1100System for100nm Applications[C]. SPIE,2003,(4691):8-18.
    [45] Marc Boonman, Coen van de Vin, Sjef Tempelaars, et al. The performance advantages of adual stage system[C]. SPIE,2004,(5377):742-757.
    [46] Yuichi Shibazaki, Hirotaka Kohno, Masato Hamatani. An innovative platform forhigh-throughput, high-accuracy lithography using a single wafer stage[C]. SPIE,2009,7274:72741I1-12.
    [47] Masahiko Yasuda, Osamu Furukawa, Masaharu Kawakubo, et al. Alignment Method AndApparatus Therefore. US patent6876946B2.
    [48] Chun-Yen Huang, Ai-Yi Lee, Chiang-Lin Shih, et al. Overlay Improvement by Zone AlignmentStrategy[C].SPIE,2008,6922:69221G1-G8.
    [49] Raf Wang, CY Chiang, Wilson Hsu, et al. Overlay Improvement by ASML HOWA5thAlignment Strategy[C]. SPIE,2009,7520:7520231-5.
    [50] Anna Minvielle, Lovejeet Singh, Jeffrey Schefske, et al. Advanced Modeling Strategies toImprove Overlay Control for32nm Lithography Processes[C].SPIE,2009,7272:72722X1-X5.
    [51] Peter Vanoppen, Thomas Theeuwes, Henry Megens, et al. Lithographic scanner stabilityimprovements through advanced metrology and control[C].SPIE,2010,7640:7640101-15.
    [52] Masahiko Yasuda, Shinji Wakamoto, Hiroto Imagawa, et al. Stability and Calibration ofOverlay and Focus Control for a Double Patterning Immersion Scanner[C].SPIE,2011,7973:79730Z1-12.
    [53] Koen D’havé, Shaunee Cheng, Modeling for Field-to-Field Overlay Error[C]. SPIE,2012,8326:83260U1-10.
    [54] Boo-Hyun Ham, Sangho Yun, Min-Cheol Kwak, et al. New Analytical Algorithm for OverlayAccuracy[C]. SPIE,2012,8324:83240A1-9.
    [55] Dana Klein, John C. Robinson, Guy Cohen, et al. Weighted least squares regression foradvanced overlay control[C].SPIE,2012,8324:8324251-7.
    [56]潘海鸿,杨微,陈琳,等.全程S曲线加减速控制的自适应分段NURBS曲线插补算法[J].中国机械工程,2010,21(2):190-195.
    [57]穆海华,周云飞,严思杰,等.超精密点对点运动4阶轨迹规划算法研究[J].中国机械工程,2007,18(19):2346-2354.
    [58]陈绪兵,熊蔡华,熊有伦. S曲线加减速模式下的加工轨迹效率评价[J].华中科技大学学报:自然科学版,2008,36(2):1-4.
    [59] Haddad M,Khalil W,Lehtihet H E. Trajectory Planning of Unicycle Mobile Robots With aTrapezoidal-Velocity Constraint [J].IEEE Trans. Robot(S1552-3098),2010,26(5):954-962.
    [60] Huang M S,Hsu Y L,Fung R F. Minimum-energy point-to-point trajectory planning of asimple mechatronic system [C]//The8th Asian Control Conference,Splendor Hotel,Kaohsiung,Taiwan,May15-18,2011:647-652.
    [61] Julius S G,Wu C H. A Minimum-Jerk Speed-Planning Algorithm for Coordinated Planningand Control of Automated Assembley Manufacturing [J]. IEEE Trans. Autom. Sci.Eng(S1545-5955),2006,3(4):454-462.
    [62] Svinin M,Goncharenko I,Luo Z W,et al. Reaching Movements in Dynamic Environments:How Do We Move Flexible Objects [J]. IEEE Trans. Robot (S1552-3098),2006,22(4):724-739.
    [63]武志鹏,陈兴林.精密硅片台步进扫描运动的5阶S曲线规划[J].光电工程,2012,39(8):99-104.
    [64] Doh Hoon Kim WIJ. Focusing and leveling system using PSDs for the wafer steppers. ProcSPIE1994;2197:997~1003.
    [65] Suzuki A YS, Ookubo M. Intelligent optical system of a new stepper. Proc SPIE1987;772:58~65.
    [66] Suwa K U, K. The optica stepper with a high numerical aperture i-line lens and field-by-fieldleveling system. Proc SPIE1988;922:270~276.
    [67] Oshida Y. Chip leveling and focusing with laser interferometry. SPIE1990;1264:244-251.
    [68] Watanabe M OY. Focusing and leveling based on wafer surface profile detection withinterferometry for optical lithography. Proc SPIE1994;2197.
    [69] Tim Thomas CH. Nanometer-level autofocus air gauge. Precision Engineering1998;22:233-242.
    [70]严伟,李艳丽,陈铭勇.基于光闸叠栅条纹的纳米检焦方法[J].光学学报,2011,31(8):1-5.
    [71]曾欣.滤料表面性质的研究)润湿接触角的测定[J].西北民族大学学报(自然科学版),2006,27(3):25-27.
    [72]王凤清,姚同玉,李继山.润湿性反转剂的微观渗流机理[J].石油钻采工艺,2006,28(2):40-42.
    [73]张利,李树杰,张坤.活性粉末Ni-A1与Sic陶瓷的界面润湿特性和润湿机理研究[J].粉末冶金技术,2006,24(3):163-165.
    [74]朱涉瑶,赵振国.界面化学基础[D].化学工业出版社.北京.2001:56-60.
    [75] Mohamed S. El-Morsi, Scott D. Schuetter, Gregory F. Nellis. CFD Analysis of the RecedingMeniscus in Immersion Lithography[C]. SPIE,2006,6154:61544E.
    [76] Scott Schuetter. Measurements of the dynamic contact angle for conditions relevant toimmersion lithography [J]. J. Microlith., Microfab., Microsyst.,2006,5(2):0230021-9.
    [77] Holly B. Burnett, Alex C. Wei, Mohamed S. El-Morsi. Modeling and experimentalinvestigation of bubble entrapment for flow over topography during immersion lithography [J].J. Microlith., Microfab., Microsyst.,2006,5(1):0130081-8.
    [78]王云飞.气体润滑理论与气体轴承设计[D].机械工业出版社,1999:25-30.
    [79] A. Z. Szeri. Some extensions of the lubrication theory of Osborne Reynolds[J]. Journal oftribology,1987,109:21-36.
    [80]刘明.气体润滑轴承的类型与设计方法.机械设计与制造[J].1988,3:12-16.
    [81] Y.Narkisando. pinkus. On the stiffness and damping properties of gas bearings [J]. Journal oflubrication technology,1976,1:189-190.
    [82] John D. Anderson. Computational fluid dynamics [D].1995:12-19.
    [83] Fluent user guide6.3
    [84]谷芳,刘春江,袁希钢,余国琼.倾斜波纹板上液膜流动的CFD研究[J].化工学报.2005,56(3):462-467.
    [85]袁丽蓉,沈永明,郑永红.用VOF方法模拟横流下窄缝紊动射流[J].海洋学报.2005,27(4):155~160.
    [86]郭清杰,李伟.分叉巷道中水气两相流动的数值模拟[J].安徽理工大学学报(自然科学版),2003,23(4):9-13.
    [87] A.Wei, G.Nellis, etal. Preliminary micro fluidic simulation for immersion lithography[C]. SPIE,5040:713-723.
    [88] ChenH, FuX, ZouJ,et.al. Modeling fluid velocity response for wafer seaming in immersionlithography [J], Microelectronic Engineering,2010,87:1082-1089.
    [89]傅新,陈晖,陈文星,陈颖.光刻机浸没液体控制系统的研究现状及进展[J],机械工程学报,2010,46(16):170-175.
    [90]傅新,赵金余,陈晖,陈文星.浸没式光刻机浸没流场的仿真与试验研究[J],机械工程学报,2011,47(2):189-194.
    [91] Wenyu Chen, Xin Fu, Huayong yang, Simulating Pressure Distribution on Lens Relevant toFluid Injection for Immersion Lithography[C].JFPS,2008:847-850.
    [92] Xin Fu, Wenyu Chen, Ying Chen, Xiaodong Ruan,Huayong Yang, Designing and experimentalInvestigation of an Immersion Unit with Double Gas-Curtain Sealing for ImmersionLithography[C].JFPS,2008:221-224.
    [93]赵金余.光刻机浸没单元的流场检测与结构优化[D].杭州:浙江大学,2011:26-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700