用户名: 密码: 验证码:
玉米根系吸水调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根系吸水对于作物生长发育及产量有着重要的影响,深入了解根系吸水机理,分析不同调控措施对根系吸水的影响,对于实现节水、高效、高产的现代农业具有重要的科学价值和现实意义。本论文以玉米为研究对象,采用水培试验和盆栽试验相结合的方法,就不同玉米品种、水分条件和氮素形态调控措施下,作物生长、生理特性、根系吸水能力、水分利用效率等问题进行了研究,以期为作物的高效用水机理提供科学依据。研究主要取得以下结果:
     (1)水分条件明显影响了玉米根系形态特征,不同玉米品种间存在显著差异,与天四和478相比,户四具有较大的根系生长。与正常供水相比,干旱胁迫下三个玉米品种根系总表面积和总根长增加,根系干重降低。干旱胁迫显著增加玉米初生根长、次生根长、种子根主根长、种子根总根长、一级侧根密度和平均长度。两种水分条件下,三个玉米品种间的根系生长总体表现为户四优于478和天四的趋势。与其它两个品种相比,户四具有较高的根系干重、较大的总根长和总表面积。而户四较大的总根长主要是由于初生根特别是种子根长较大,一级侧根密度和长度也较大,而次生根长的品种间差异不显著。总体而言,户四的根系生长体现出在适应水分环境方面的优势。
     (2)水分条件明显影响了玉米根系吸水能力,不同品种在细胞、单根和整根水平的根系吸水能力存在显著差异,表现为户四根系吸水能力优于天四和478。细胞水平下,水分胁迫显著降低了三个玉米品种的根皮层细胞膨压,表现为户四>天四>478且品种间差异显著,但正常供水条件下品种间差异不显著。用HgCl2和2-巯基乙醇先后处理根皮层细胞,其水导先降低后升高,但并未恢复到初始水平,表明HgCl2抑制了水通道蛋白活性,2-巯基乙醇则使水通道蛋白活性部分恢复。两种水分条件下各处理阶段根皮层细胞水导均表现为户四>天四>478且品种间差异显著,水分胁迫显著降低了根皮层细胞水导。单根水平下,两种水分条件下的玉米静水压下单根水导均为户四>天四>478,品种间差异显著,且水分胁迫显著降低了其径向导度和轴向导度。不同品种在渗透压下也有相同趋势。单根解剖结构与单根水导具有显著的相关性,单根径向导度与皮层厚度占根直径的比例呈负相关关系(R=–0.77, P <0.01);单根轴向导度则主要受木质部导管的影响,与中央木质部导管直径(R=0.75, P <0.01)和木质部导管总横截面积(R=0.93, P <0.01)呈正相关关系。整根水平下,两种水分条件下三个品种的整根水导呈户四>天四>478的趋势,品种间差异显著,且水分胁迫显著降低了玉米整根水导。
     (3)土壤水分条件和氮素形态显著影响了玉米地上部和地下部生长。与正常供水相比,干旱胁迫对玉米地上部和地下部生长均有抑制作用,增加植株根冠比,促进光合作用产物在根部积累。施用氮肥能显著改善玉米生长,且随着施氮量增加效果更显著。相同供氮水平下,硝态氮和铵态氮混施显著提高玉米地上部和地下部生物量,显著降低根冠比,更有利于植株生长,特别是根系的生长发育。水分条件和氮素形态主要通过对玉米净光合速率和叶绿素等因子的调控,从而影响作物光合作用,调控作物生长。
     (4)土壤水分条件和氮素形态显著影响了玉米地上部蒸腾耗水和根系吸水能力,从而调控植株体内水分平衡。水分胁迫条件下玉米地上部蒸腾耗水和根系吸水能力较正常供水显著降低。同一供水条件下,施氮能显著提高玉米的地上部蒸腾速率和根系吸水能力,且高氮处理优于低氮处理。硝态氮和铵态氮混施较相同施用量单施处理能更有效增强地上部蒸腾作用,提高生物量水分利用效率;而单施硝态氮可增强细胞和整根水平的根系吸水能力,更有利于使植株保持较好的水分状况。
Water uptake by roots plays an important role in the growth and development aswell as the yield of crops. In-depth understanding of the mechanism water uptake byroots and analysis the impact of different control measures on water uptake by rootare of scientific values and practical significance to water-saving, high-efficiency,high-yielding modern agriculture. To investigate the mechanism of water uptake bycrop roots, this research project chose maize as the plant material and employed acombination method of water culture experiment and pot experiment. The key cropindices, e.g., crop morphogenesis, physiological characteristics, water uptake abilityby roots, and water use efficiency were determined under different control measuresin terms of corn genotype (i.e., Hu4, Tian4, and478), water condition (i.e., wellwatered and water deficit conditions), and nitrogen (N) form of the fertilizer(nitrate-N and ammonium-N). The results should contribute to understanding of themechanism of efficient water use by crops. The main findings of this study were asfollows:
     (1) Water supply conditions substantially influenced the morphologicalcharacteristics of maize roots. There were significant variations among differentmaize genotypes. Hu4produced a larger root system than Tian4and478.Compared with well watered, water deficit increased the total root surface area andtotal root length while decreasing the root dry weight of different maize genotypes. Inaddition, water deficit significantly increased the length of primary and secondaryroots, the length and main root length of seminal roots, and the linear frequency andlength of first-order lateral roots. Under different water regimes, the root growth ofHu4was better than that of478and Tian4. As compared to478and Tian4, Hu4 had greater root dry weight, total root length, and total surface area. In particular, Hu4was characterized by large length of primary roots as well as large linear frequencyand length of first-order lateral roots, whereas the length of secondary roots showedno significant variations among different maize genotypes. Overall, the root growth ofHu4showed advantages in adapting to the water conditions.
     (2) Water supply conditions substantially influenced water uptake by maizeroots. There were significant variations among different maize genotypes atcellular, single root and whole root system levels, with the water uptake ability ofHu4was higher than that of Tian4and478. At cellular level, the turgor of corticalroot cells of the three maize genotypes decreased under water deficit, and the turgorranking was in the order Hu4> Tian4>478. But, the turgor of the three maizegenotypes was with no genotypic differences under the well watered condition. Aftertreated by HgCl2and2-mercaptoethanol under two water levels,cell hydraulicconductivity (Lpc) of the three maize genotypes were firstly decreased,then increased,and the final values were even lower than the original values. The results indicatedHgCl2inhibited the activity of aquaporins, and2-mercaptoethanol parted reversed theactivity of aquaporins. The Lpcof the three genotypes substantially decreased in thewater deficit treatment, and the Lpcranking was in the order Hu4> Tian4>478inthe two water treatments. At single root level, the hydrostatic hydraulic conductivity(Lpsr) of single roots varied among genotypes under the two water levels, with thehighest in Hu4and the lowest in478. Radial hydraulic conductivity (radial Lpsr) andaxial hydraulic conductance (Lax) of the three genotypes varied similarly as Lpsr, andwater stress decreased radial Lpsrand Lax. The osmotic Lpsrin the Hu4was thehighest (Hu4> Tian4>478) across the water conditions. The variations in hydraulicparameters were related to root anatomy. Radial Lpsrwas negatively correlated withthe ratio of cortex width to root diameter (R=–0.77, P <0.01), whereas Laxwaspositively correlated with the diameter of the central xylem vessel (R=0.75, P <0.01)and the cross-sectional area of xylem vessels (R=0.93, P <0.01). At whole rootsystem level, hydraulic conductivity (Lpwr) of the whole root system followed thesame trend under the two water conditions, with the highest values in the Hu4.Moreover, the Lpwrof each genotype substantially decreased under water deficit.
     (3) Soil moisture conditions and N forms significantly influenced the growthof the shoot and root system of maize. Compared with well watered condition,water deficit had an inhibitory effect on the growth of the shoot and root system ofmaize, which increased the root-to-shoot ratio and promoted the accumulation ofproducts of photosynthesis in the roots. Application of N fertilizer significantlyimproved plant growth in a dose-dependent manner. When applied at the same level,the mixture of nitrate-N and ammonium-N significantly increased plant biomass ofthe shoot and root system while significantly reducing the root-to-shoot ratio. Thus,this application of mixed N fertilizers was more conducive to plant growth, especiallythe root growth and development. Soil moisture conditions and N forms mainlythrough regulation of the net photosynthetic rate and the chlorophyll content of maizeleaves, further influencing the photosynthesis process and regulating growth of thecrop.
     (4) Soil moisture conditions and N forms significantly influenced thetranspiration and root water uptake capability of the above-ground part ofmaize, thereby regulating water balance in plant body. Under water deficit, thetranspiration and root water uptake capability of the above-ground part of maize weresignificantly lower than those under well watered condition. Under the same waterconditions, application of N fertilizers significantly improved transpiration rate of theabove-ground part and water uptake ability of maize roots, and the improvementeffect was stronger in higher-N treatments than in low-N treatments. Application ofnitrate-N mixed with ammonium-N was more effective than single use of the Nfertilizer in enhancing th e transpiration of the above-ground part of maize andimproving the water use efficiency of the biomass. On the other side, application ofnitrate-N alone enhanced the water uptake ability by roots at cellular and whole rootsystem levels, thus facilitating the plants to maintain good water conditions.
引文
[1]山仑,邓西平,康绍忠.我国半干旱地区农业用水现状及发展方向[J].水利学报.2002,(9):27-31.
    [2]山仑,邓西平.黄土高原半干旱地区的农业发展与高效用水[J].中国农业科技导报.2000,(4):34-38.
    [3]山仑.发展半旱地农业,促进农业用水方式转变[J].科技导报.2011,29(23):3.
    [4]山仑.植物抗旱生理研究与发展半旱地农业[J].干旱地区农业研究.2007,25(1):1-5.
    [5]山仑.旱地农业技术发展趋向[J].中国农业科学.2002,35(7):848-855.
    [6]张岁岐,山仑.根系吸水机理研究进展[J].应用与环境生物学报.2001,7(4):396-402..
    [7]武维华.植物生理学[M].北京:科学出版社,2003.
    [8]张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究.2002,20(4):1-5.
    [9] Steudle E. Transport of water in plants [J]. Environment Control in Biology.2002,40(1):29-38.
    [10]阳园燕,郭安红,安顺清,等.土壤-植物-大气连续体(SPAC)系统中植物根系吸水模型研究进展[J].气象科技.2004,32(5):316-321.
    [11]郭庆荣,李玉山.植物根系吸水过程中根系水流阻力的变化特征[J].生态科学.1999,18(1):30-34.
    [12] Javot H, Maurel C. The role of aquaporins in root water uptake [J]. Annals of Botany.2002,90(3):301.
    [13]赵成义.作物根系吸水特性研究进展[J].中国农业气象.2004,25(2):39-42,46.
    [14]李文娆,张岁岐,山仑.水分胁迫对紫花苜蓿根系吸水与光合特性的影响[J].草地学报.2007,15(3):206-211.
    [15]慕自新,张岁岐.根系发育的营养调控及对其生境的影响[J].西北植物学报.2003,23(10):1818-1828.
    [16] Steudle E, Peterson C A. How does water get through roots?[J]. Journal ofExperimental Botany.1998,49(322):775-788.
    [17] Zimmermann H M, Steudle E. Apoplastic transport across young maize roots: effectof the exodermis [J]. Planta.1998,206(1):7-19.
    [18] Tester M, Leigh R A. Partitioning of nutrient transport processes in roots [J]. Journalof Experimental Botany.2001,52(suppl1):445-457.
    [19] Kramer P J, Boyer J S. Water relations of plants and soils [M]. Academic Press, Inc.,1995.
    [20] Sanderson J. Water uptake by different regions of the barley root. Pathways of radialflow in relation to development of the endodermis [J]. Journal of ExperimentalBotany.1983,34(3):240-253.
    [21] Barrowclough D E, Peterson C A, Steudle E. Radial hydraulic conductivity alongdeveloping onion roots [J]. Journal of Experimental Botany.2000,51(344):547-557.
    [22] Taiz Lincoln, Zeiger Eduardo.植物生理学[Z].北京:科学出版社,2009.
    [23] Steudle E. Water uptake by plant roots: an integration of views [J]. Plant and Soil.2000,226(1):45-56.
    [24] Steudle E, Oren R, Schulze E D. Water transport in maize roots [J]. Plant Physiology.1987,84(4):1220-1232.
    [25] Zhu G L, Steudle E. Water Transport across Maize Roots SimultaneousMeasurement of Flows at the Cell and Root Level by Double Pressure ProbeTechnique [J]. Plant Physiology.1991,95(1):305-315.
    [26] Boyer J S. Water transport [J]. Annual Review of Plant Physiology.1985,36(1):473-516.
    [27] Steudle E, Jeschke W D. Water transport in barley roots [J]. Planta.1983,158(3):237-248.
    [28] Steudle E, Frensch J. Water transport in plants: role of the apoplast [J]. Plant andSoil.1996,187(1):67-79.
    [29] Clarkson D T, Carvajal M, Henzler T, et al. Root hydraulic conductance: diurnalaquaporin expression and the effects of nutrient stress [J]. Journal of ExperimentalBotany.2000,51(342):61-70.
    [30] Steudle E, Heydt H. Water transport across tree roots [M].1997,239-255.
    [31] Rüdinger M, Hierling P, Steudle E. How to use a characean internode for measuringthe alcohol content of beer [J]. Botanica acta.1992,105(1):3-12.
    [32] Steudle E, Murrmann M, Peterson C A. Transport of Water and Solutes across MaizeRoots Modified by Puncturing the Endodermis (Further Evidence for the CompositeTransport Model of the Root)[J]. Plant Physiology.1993,103(2):335-349.
    [33] Peterson C A, Murrmann M, Steudle E. Location of the major barriers to water andion movement in young roots of Zea mays L.[J]. Planta.1993,190(1):127-136.
    [34] Steudle E. Water transport across plant tissue: role of water channels [J]. Biology ofthe Cell.1997,89(5-6):259-273.
    [35] Steudle E, Henzler T. Water channels in plants: do basic concepts of water transportchange?[J]. Journal of Experimental Botany.1995,46(9):1067-1076.
    [36] Tyerman S D, Bohnert H J, Maurel C, et al. Plant aquaporins: their molecularbiology, biophysics and significance for plant water relations [J]. Journal ofExperimental Botany.1999,50(Special Issue):1055.
    [37] Hertel A, Steudle E. The function of water channels in Chara: the temperaturedependence of water and solute flows provides evidence for composite membranetransport and for a slippage of small organic solutes across water channels [J]. Planta.1997,202(3):324-335.
    [38] Johansson I, Karlsson M, Shukla V K, et al. Water transport activity of the plasmamembrane aquaporin PM28A is regulated by phosphorylation [J]. The Plant CellOnline.1998,10(3):451-459.
    [39] Henzler T, Steudle E. Reversible closing of water channels in Chara internodesprovides evidence for a composite transport model of the plasma membrane [J].Journal of Experimental Botany.1995,46(2):199-209.
    [40] Henzler T, Steudle E. Transport and metabolic degradation of hydrogen peroxide inChara corallina: model calculations and measurements with the pressure probesuggest transport of H2O2across water channels [J]. Journal of Experimental Botany.2000,51(353):2053-2066.
    [41] Zhang W, Tyerman S D. Inhibition of water channels by HgCl2in intact wheat rootcells [J]. Plant Physiology.1999,120(3):849-858.
    [42] Lopez F, Bousser A, Sisso ff I, et al. Diurnal regulation of water transport andaquaporin gene expression in maize roots: contribution of PIP2proteins[J]. Plant andCell Physiology.2003,44(12):1384-1395.
    [43] Gaspar M, Bousser A, Sissoeff I, et al. Cloning and characterization of ZmPIP1-5b,an aquaporin transporting water and urea [J]. Plant Science.2003,165(1):21-31.
    [44] Frensch J, Hsiao T C, Steudle E. Water and solute transport along developing maizeroots [J]. Planta.1996,198(3):348-355.
    [45] Cruz R T, Jordan W R, Drew M C. Structural changes and associated reduction ofhydraulic conductance in roots of Sorghum bicolor L. following exposure to waterdeficit [J]. Plant Physiology.1992,99(1):203-212.
    [46] Richards R A, Passioura J B. A breeding program to reduce the diameter of themajor xylem vessel in the seminal roots of wheat and its effect on grain yield inrain-fed environments [J]. Crop and Pasture Science.1989,40(5):943-950.
    [47] Maurel C, Simonneau T, Sutka M. The significance of roots as hydraulic rheostats[J]. Journal of Experimental Botany.2010,61(12):3191-3198.
    [48] Wan X, Steudle E, Hartung W. Gating of water channels (aquaporins) in corticalcells of young corn roots by mechanical stimuli (pressure pulses): effects of ABAand of HgCl2[J]. Journal of Experimental Botany.2004,55(396):411-422.
    [49] Hose E, Steudle E, Hartung W. Abscisic acid and hydraulic conductivity of maizeroots: a study using cell-and root-pressure probes [J]. Planta.2000,211(6):874-882.
    [50] Martínez-Ballesta M C, Aparicio F, Pallás V, et al. Influence of saline stress on roothydraulic conductance and PIP expression in Arabidopsis.[J]. Journal of PlantPhysiology.2003,160(6):689-697.
    [51] North G B, Martre P, Nobel P S. Aquaporins account for variations in hydraulicconductance for metabolically active root regions of Agave deserti in wet, dry, andrewetted soil [J]. Plant, Cell&Environment.2004,27(2):219-228.
    [52] Parent B, Hachez C, Redondo E, et al. Drought and abscisic acid effects onaquaporin content translate into changes in hydraulic conductivity and leaf growthrate: a trans-scale approach [J]. Plant Physiology.2009,149(4):2000-2012.
    [53] Tournaire-Roux C, Sutka M, Javot H, et al. Cytosolic pH regulates root watertransport during anoxic stress through gating of aquaporins [J]. Nature.2003,425(6956):393-397.
    [54] Bramley H, Turner N C, Turner D W, et al. The contrasting influence of short-termhypoxia on the hydraulic properties of cells and roots of wheat and lupin [J].Functional Plant Biology.2010,37(3):183-193.
    [55] Clarkson D T, Carvajal M, Henzler T, et al. Root hydraulic conductance: diurnalaquaporin expression and the effects of nutrient stress [J]. Journal of ExperimentalBotany.2000,51(342):61-70.
    [56] Gorska A, Ye Q, Holbrook N M, et al. Nitrate control of root hydraulic properties inplants: translating local information to whole plant response [J]. Plant physiology.2008,148(2):1159-1167.
    [57] Kim Y X, Steudle E. Light and turgor affect the water permeability (aquaporins) ofparenchyma cells in the midrib of leaves of Zea mays [J]. Journal of ExperimentalBotany.2007,58(15-16):4119-4129.
    [58] Kim Y X, Steudle E. Gating of aquaporins by light and reactive oxygen species inleaf parenchyma cells of the midrib of Zea mays [J]. Journal of Experimental Botany.2009,60(2):547-556.
    [59] Maathuis F J, Filatov V, Herzyk P, et al. Transcriptome analysis of root transportersreveals participation of multiple gene families in the response to cation stress [J].The Plant Journal.2003,35(6):675-692.
    [60] Alexandersson E, Fraysse L, Sj vall-Larsen S, et al. Whole gene family expressionand drought stress regulation of aquaporins [J]. Plant Molecular Biology.2005,59(3):469-484.
    [61] Boursiac Y, Boudet J, Postaire O, et al. Stimulus‐induced downregulation of rootwater transport involves reactive oxygen species‐activated cell signalling andplasma membrane intrinsic protein internalization [J]. The Plant Journal.2008,56(2):207-218.
    [62] Boursiac Y, Prak S, Boudet J, et al. The response of Arabidopsis root water transportto a challenging environment implicates reactive oxygen species-andphosphorylation-dependent internalization of aquaporins [J]. Plant Signaling&Behavior.2008,3(12):1096-1098.
    [63] Toernroth-Horsefield S, Wang Y, Hedfalk K, et al. Structural mechanism of plantaquaporin gating [J]. Nature.2006,439(7077):688-694.
    [64] Verdoucq L, Grondin A, Maurel C. Structure-function analysis of plant aquaporinAtPIP2;1gating by divalent cations and protons [J].2008,415(3):409-416.
    [65] Benabdellah K, Ruiz-Lozano J M, Aroca R. Hydrogen peroxide effects on roothydraulic properties and plasma membrane aquaporin regulation in Phaseolusvulgaris [J]. Plant Molecular Biology.2009,70(6):647-661.
    [66] Vandeleur R K, Mayo G, Shelden M C, et al. The role of plasma membrane intrinsicprotein aquaporins in water transport through roots: diurnal and drought stressresponses reveal different strategies between isohydric and anisohydric cultivars ofgrapevine [J]. Plant Physiology.2009,149(1):445-460.
    [67] Zimmermann H M, Hartmann K, Schreiber L, et al. Chemical composition ofapoplastic transport barriers in relation to radial hydraulic conductivity of corn roots(Zea mays L.)[J]. Planta.2000,210(2):302-311.
    [68] Vartanian N, Marcotte L, Giraudat J. Drought rhizogenesis in Arabidopsis thaliana(differential responses of hormonal mutants)[J]. Plant Physiology.1994,104(2):761-767.
    [69] Mu Z, Zhang S, Zhang L, et al. Hydraulic conductivity of whole root system is betterthan hydraulic conductivity of single root in correlation with the leaf water status ofmaize [J]. Botanical Studies.2006,47:145-151.
    [70] Barrowclough D E, Peterson C A, Steudle E. Radial hydraulic conductivity alongdeveloping onion roots [J]. Journal of Experimental Botany.2000,51(344):547-557.
    [71] North R B, Kidd D H, Campbell J N, et al. Dorsal root ganglionectomy for failedback surgery syndrome: a5-year follow-up study[J]. Journal of neurosurgery.1991,74(2):236-242.
    [72] Knipfer T, Fricke W. Water uptake by seminal and adventitious roots in relation towhole-plant water flow in barley (Hordeum vulgare L.)[J]. Journal of ExperimentalBotany.2011,62(2):717-733.
    [73] Segal E, Kushnir T, Mualem Y, et al. Water uptake and hydraulics of the root hairrhizosphere[J]. Vadose Zone Journal.2008,7(3):1027-1034.
    [74] Passioura J B. Roots and drought resistance [J]. Agricultural water management.1983,7(1):265-280.
    [75]邵明安,杨文治,李玉山.植物根系吸收土壤水分的数学模型[J].土壤学报.1987,24(4):295-304.
    [76] Lopez F B, Nobel P S. Root hydraulic conductivity of two cactus species in relationto root age, temperature, and soil water status [J]. Journal of Experimental Botany.1991,42(2):143-149.
    [77] Bramley H, Turner N C, Turner D W, et al. Roles of morphology, anatomy, andaquaporins in determining contrasting hydraulic behavior of roots [J]. PlantPhysiology.2009,150(1):348-364.
    [78] Zhao C X, Deng X P, Shan L, et al. Changes in root hydraulic conductivity duringwheat evolution [J]. Journal of Integrative Plant Biology.2005,47(3):302-310.
    [79]杨晓青,张岁岐,刘小芳,等.不同抗旱型冬小麦品种根系水力导度与解剖结构的关系[J].西北农林科技大学学报(自然科学版).2007,35(8):160-164.
    [80] Zwieniecki M A, Boersma L. A technique to measure root tip hydraulic conductivityand root water potential simultaneously [J]. Journal of Experimental Botany.1997,48(2):333-336.
    [81]黄明斌,董翠云.根径向水流导度测定技术的改进[J].植物学报.2000,42(9):927-930.
    [82] Moreshet S, Fuchs M, Cohen Y, et al. Water transport characteristics of cotton asaffected by drip irrigation layout[J]. Agronomy Journal.1996,88(5):717-722.
    [83] Moreshet S, Cohen S, Assor Z, et al. Water relations of citrus exocortisviroid-infected grapefruit trees in the field [J]. Journal of Experimental Botany.1998,49(325):1421-1430.
    [84] Meinzer F C, Clearwater M J, Goldstein G. Water transport in trees: currentperspectives, new insights and some controversies [J]. Environmental andExperimental Botany.2001,45(3):239-262.
    [85]刘晚苟,山仑,邓西平.压力室测定根系导水率方法探讨[J].西北植物学报.2001,21(4):761-765.
    [86] Tyree M T, Pati o S, Bennink J, et al. Dynamic measurements of roots hydraulicconductance using a high-pressure flowmeter in the laboratory and field [J]. Journalof Experimental Botany.1995,46(1):83-94.
    [87] Huang B, Nobel P S. Hydraulic conductivity and anatomy along lateral roots of cacti:changes with soil water status [J]. New phytologist.2006,123(3):499-507.
    [88] Tyree M T, Velez V, Dalling J W. Growth dynamics of root and shoot hydraulicconductance in seedlings of five neotropical tree species: scaling to show possibleadaptation to differing light regimes [J]. Oecologia.1998,114(3):293-298.
    [89] Tyree M T, Sinclair B, Lu P, et al. Whole shoot hydraulic resistance in Quercusspecies measured with a new high-pressure flowmeter [J]. Annals of Forest Science,1993,50(5):417-423.
    [90] Zotz G, Tyree M T, Cochard H. Hydraulic architecture, water relations andvulnerability to cavitation of Clusia uvitana Pittier: a C3-CAM tropical hemiepiphyte[J]. New Phytologist.2006,127(2):287-295.
    [91] Steudle E. Pressure probe techniques: basic principles and application to studies ofwater and solute relations at the cell, tissue and organ level [J]. Water deficits: plantresponses from cell to community.1993:5-36.
    [92] Tomos A D, Leigh R A. The pressure probe: a versatile tool in plant cell physiology[J]. Annual Review of Plant Biology.1999,50(1):447-472.
    [93] Balling A, Zimmermann U. Comparative measurements of the xylem pressure ofNicotiana plants by means of the pressure bomb and pressure probe [J]. Planta.1990,182(3):325-338.
    [94] Wei C, Tyree M T, Steudle E. Direct measurement of xylem pressure in leaves ofintact maize plants. A test of the cohesion-tension theory taking hydraulicarchitecture into consideration [J]. Plant Physiology.1999,121(4):1191-1205.
    [95] Ranathunge K, Steudle E, Lafitte R. A new precipitation technique providesevidence for the permeability of Casparian bands to ions in young roots of corn (Zeamays L.) and rice (Oryza sativa L.)[J]. Plant, Cell&Environment.2005,28(11):1450-1462.
    [96] Schreiber L, Franke R, Hartmann K, et al. The chemical composition of suberin inapoplastic barriers affects radial hydraulic conductivity differently in the roots ofrice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix)[J]. Journal ofExperimental Botany.2005,56(415):1427-1436.
    [97] Gutknecht J. Salt transport in Valonia: Inhibition of potassium uptake by smallhydrostatic pressures [J]. Science.1968,160(3823):68-70.
    [98] Green P B. Growth physics in Nitella: a method for continuous in vivo analysis ofextensibility based on a micro-manometer technique for turgor pressure [J]. PlantPhysiology.1968,43(8):1169-1184.
    [99] Steudle E. Pressure probe techniques: basic principles and application to studies ofwater and solute relations at the cell, tissue and organ level [J]. Water deficits: plantresponses from cell to community.1993:5-36.
    [100] Zimmermann U, Rade H, Steudle E. Continuous pressure measurement in plant cells[J]. Naturwissenschaften.1969,56:634.
    [101] Hüsken D, Steudle E, Zimmermann U. Pressure probe technique for measuring waterrelations of cells in higher plants[J]. Plant Physiology.1978,61(2):158-163.
    [102] Steudle E. Water flow in plants and its coupling to other processes: An overview [J].Methods in Enzymology.1989,174:183-225.
    [103] Frensch J, Steudle E. Axial and radial hydraulic resistance to roots of maize (Zeamays L.)[J]. Plant Physiology.1989,91(2):719-726.
    [104] Melchior W, Steudle E. Water transport in onion (Allium cepa L.) roots. Changes ofaxial and radial hydraulic conductivities during root development [J]. PlantPhysiology.1993,101(4):1305-1315.
    [105] Miller M C, Komar P D. A field investigation of the relationship between oscillationripple spacing and the near-bottom water orbital motions [J]. Journal of SedimentaryResearch.1980,50(1):183-191.
    [106]朱广廉,邓兴旺,左卫能.植物体内游离脯氨酸的测定[J].植物生理学通讯.1983,1(1):35-37.
    [107]赵世杰,许长成.植物组织中丙二醛测定方法的改进[J].植物生理学通讯.1994,30(003):207-210.
    [108]高俊凤.植物生理实验技术[Z].西安:世界图书出版公司,2000.
    [109]王鹏文,戴俊英,魏云鹏.干旱胁迫对玉米产量和品质的影响研究[J].玉米科学.1999(S1):102-106.
    [110]李生秀.中国旱地土壤植物氮素[M].科学出版社,2008.
    [111]季青,郭新宇,王纪华,等.玉米形态建成研究进展[J].玉米科学.2004,12(z2):31-34,37.
    [112]李秧秧,刘文兆.土壤水分与氮肥对玉米根系生长的影响[J].中国生态农业学报.2001,9(1):13-15.
    [113]宋海星,李生秀.根系的吸收作用及土壤水分对硝态氮、铵态氮分布的影响[J].中国农业科学.2005,38(1):96-101.
    [114]宋海星,李生秀.限根条件下供氮对玉米光合作用有关生理特性的影响[J].干旱地区农业研究.2004,22(4):28-32.
    [115]宋海星,李生秀.水、氮供应和土壤空间所引起的根系生理特性变化[J].植物营养与肥料学报.2004,10(1):6-11.
    [116]郑盛华,严昌荣.水分胁迫对玉米苗期生理和形态特性的影响[J].生态学报.2006,26(4):1138-1143.
    [117]李文娆,张岁岐,山仑.苜蓿叶片及根系对水分亏缺的生理生化响应[J].草地学报.2007,15(4):299-305.
    [118]李文娆,张岁岐,丁圣彦,等.干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J].生态学报.2010,30(19):5140-5150.
    [119]张仁和,薛吉全,浦军,等.干旱胁迫对玉米苗期生长和光合特性的影响[J].作物学报.2011,37(3):521-528.
    [120]张岁岐,李金虎,山仑.干旱下植物气孔运动的调控[J].西北植物学报.2001,21(6):1263-1270.
    [121]戚廷香,梁文科,阎素红,等.玉米不同品种根系分布和干物质积累的动态变化研究[J].玉米科学.2003,11(3):76-79.
    [122]李英,陈培元,陈建军.水分胁迫下不同抗旱类型品种对氮素营养反应的比较研究[J].西北植物学报.1991,11(4):309-315.
    [123]杨晓青.不同类型冬小麦品种根系特性及其与WUE的关系研究[D].西北农林科技大学,2004.
    [124]管建慧,刘克礼,郭新宇.玉米根系构型的研究进展[J].玉米科学.2006,14(6):162-166.
    [125]刘小芳,张岁岐,周小平,等.玉米根系剖面分布对水分亏缺的响应[J].水土保持研究.2009,16(2):181-185.
    [126]彭云峰,张吴平,李春俭.不同氮吸收效率玉米品种的根系构型差异比较:模拟与应用[J].中国农业科学.2009,42(3):843-853.
    [127] Lynch J. Root architecture and plant productivity [J]. Plant Physiology.1995,109(1):7-13.
    [128] Liang B M, Sharp R E, Baskin T I. Regulation of growth anisotropy in well-wateredand water-stressed maize roots (I. Spatial distribution of longitudinal, radial, andtangential expansion rates)[J]. Plant Physiology.1997,115(1):101-111.
    [129] Coners H, Leuschner C. In situ measurement of fine root water absorption in threetemperate tree species—temporal variability and control by soil and atmosphericfactors [J]. Basic and Applied Ecology.2005,6(4):395-405.
    [130] Bruce W B, Edmeades G O, Barker T C. Molecular and physiological approaches tomaize improvement for drought tolerance [J]. Journal of Experimental Botany.2002,53(366):13-25.
    [131]杜红霞,冯浩,吴普特,等.水、氮调控对夏玉米根系特性的影响[J].干旱地区农业研究.2013,31(1):89-94,100.
    [132]金明现,王天铎.玉米根系生长及向水性的模拟[J].植物学报.1996,38(5):384-390.
    [133] Hochholdinger F, Tuberosa R. Genetic and genomic dissection of maize rootdevelopment and architecture [J]. Current Opinion in Plant Biology.2009,12(2):172-177.
    [134]慕自新,张岁岐,郝文芳,等.玉米根系形态性状和空间分布对水分利用效率的调控[J].生态学报.2005,25(11):2895-2900.
    [135]宋凤斌,戴俊英.玉米茎叶和根系的生长对干旱胁迫的反应和适应性[J].干旱区研究.2005,22(2):256-258.
    [136]李德顺,刘芳,马永光.玉米根系与抗旱性关系研究[J].杂粮作物.2010,30(3):195-197.
    [137] Hoecker N, Keller B, Piepho H, et al. Manifestation of heterosis during early maize(Zea mays L.) root development [J]. Theoretical and Applied Genetics.2006,112(3):421-429.
    [138] Zobel R W. Sensitivity analysis of computer-based diameter measurement fromdigital images [J]. Crop science.2003,43(2):583-591.
    [139] Benjamin J G, Nielsen D C. Water deficit effects on root distribution of soybean,field pea and chickpea [J]. Field crops research.2006,97(2):248-253.
    [140] Pemán J, Voltas J, Gil-Pelegrin E. Morphological and functional variability in theroot system of Quercus ilex L. subject to confinement: consequences forafforestation[J]. Annals of Forest Science.2006,63(4):425-430.
    [141]任其云,杜成贵,刘正蒙.玉米苗期根系生态生理研究[J].作物学报.1982,8(3):169-177.
    [142] Azaizeh H, Gunse B, Steudle E. Effects of NaCl and CaCl2on water transport acrossroot cells of maize (Zea mays L.) seedlings [J]. Plant Physiology.1992,99(3):886-894.
    [143] Azaizeh H, Steudle E. Effects of salinity on water transport of excised maize (Zeamays L.) roots [J]. Plant Physiology.1991,97(3):1136-1145.
    [144] Birner T P, Steudle E. Effects of anaerobic conditions on water and solute relations,and on active transport in roots of maize (Zea mays L.)[J]. Planta.1993,190(4):474-483.
    [145] Zhang W, Tyerman S D. Inhibition of water channels by HgCl2in intact wheat rootcells [J]. Plant Physiology.1999,120(3):849-858.
    [146] Henzler T, Ye Q, Steudle E. Oxidative gating of water channels (aquaporins) inChara by hydroxyl radicals [J]. Plant, Cell&Environment.2004,27(9):1184-1195.
    [147] Maggio A, Joly R J. Effects of mercuric chloride on the hydraulic conductivity oftomato root systems (evidence for a channel-mediated water pathway)[J]. PlantPhysiology.1995,109(1):331-335.
    [148] Lee S H, Chung G C, Steudle E. Gating of aquaporins by low temperature in roots ofchilling-sensitive cucumber and chilling-tolerant figleaf gourd [J]. Journal ofExperimental Botany.2005,56(413):985-995.
    [149] Lee S H, Chung G C, Steudle E. Low temperature and mechanical stressesdifferently gate aquaporins of root cortical cells of chilling‐sensitive cucumber and‐resistant figleaf gourd [J]. Plant, Cell&Environment.2005,28(9):1191-1202.
    [150] Lee S H, Singh A P, Chung G C, et al. Exposure of roots of cucumber (Cucumissativus) to low temperature severely reduces root pressure, hydraulic conductivityand active transport of nutrients [J]. Physiologia Plantarum.2004,120(3):413-420.
    [151] Ye Q, Steudle E. Oxidative gating of water channels (aquaporins) in corn roots [J].Plant, cell&environment.2005,29(4):459-470.
    [152] Rieger M, Litvin P. Root system hydraulic conductivity in species with contrastingroot anatomy [J]. Journal of Experimental Botany.1999,50(331):201-209.
    [153]慕自新,张岁岐,梁爱华,等.玉米整株根系水导与其表型抗旱性的关系[J].作物学报.2005,31(2):203-208.
    [154]李连朝,王学臣.水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系[J].植物生理学通讯.1996,32(5):321-327.
    [155]李连朝,王学臣.水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系[J].植物生理学通讯.1998,34(3):161-167.
    [156]张妙彬,王小菁.植物细胞的形态建成[J].西北植物学报.2004,24(1):154-160.
    [157]吴安慧,张岁岐,邓西平,等.水分亏缺下玉米根系ZmPIP1亚族基因的表达[J].植物生理与分子生物学学报.2006,32(5):557-562.
    [158]吴安慧,张岁岐,邓西平,等.水分亏缺条件下玉米根系PIP2-5基因的表达[J].植物生理学通讯.2006,42(3):457-460.
    [159] Zhang W, Tyerman S D. Inhibition of water channels by HgCl2in intact wheat rootcells [J]. Plant Physiology.1999,120(3):849-858.
    [160] Wan X, Zwiazek J J. Mercuric chloride effects on root water transport in aspenseedlings [J]. Plant Physiology.1999,121(3):939-946.
    [161] Hukin D, Doering-Saad C, Thomas C, et al. Sensitivity of cell hydraulic conductivityto mercury is coincident with symplasmic isolation and expression of plasmalemmaaquaporin genes in growing maize roots [J]. Planta.2002,215(6):1047-1056.
    [162] Passioura J B. Roots and drought resistance [J]. Agricultural Water Management.1983,7(1):265-280.
    [163]米海莉,许兴,李树华,等.干旱胁迫下牛心朴子幼苗相对含水量、质膜透性及保护酶活性变化[J].西北植物学报.2003,23(11):1871-1876.
    [164] Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance [J].Annual Review of Plant Biology.1992,43(1):83-116.
    [165]赵丽英,邓西平,山仑.持续干旱及复水对玉米幼苗生理生化指标的影响研究[J].中国生态农业学报.2004,12(3):59-61.
    [166]张殿忠,汪沛洪.水分胁迫与植物氮代谢的关系水分胁迫时氮素对小麦叶片氮代谢的影响[J].西北农林科技大学学报(自然科学版).1988,16(4):15-21.
    [167]薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响[J].植物生理学报.1990,16(1):49-56.
    [168]赵立新,荆家海,王绍唐,等.水分胁迫条件下施肥对盆栽冬小麦根系和苗期生长的影响[J].见:徐明岗.现代土壤科学研究.北京:中国农业科技出版社.1994:504-508.
    [169]张岁岐,山仑.氮素营养对春小麦抗旱适应性及水分利用的影响[J].水土保持研究.1995,2(1):31-35.
    [170]张立新,李生秀.水分胁迫下氮、钾对不同基因型夏玉米氮代谢的影响[J].植物营养与肥料学报.2007,13(4):554-560.
    [171]谭国波,赵立群,张丽华,等.玉米拔节期水分胁迫对植株性状、光合生理及产量的影响[J].玉米科学.2010,18(1):96-98.
    [172]白莉萍,隋方功,孙朝晖,等.土壤水分胁迫对玉米形态发育及产量的影响[J].生态学报.2004,24(7):1556-1560.
    [173]肖俊夫,刘战东,南纪琴,等.不同水分处理对春玉米生态指标、耗水量及产量的影响[J].玉米科学.2010,18(6):94-97,101.
    [174]李亮,孙宝成,刘成,等.水分胁迫后玉米茎节变化与产量和抗旱性的关系研究[J].新疆农业科学.2012,49(1):16-21.
    [175]王君,籍秀梅,于海秋,等.玉米植株抗旱性状的杂种优势分析[J].玉米科学.2006,14(5):9-14.
    [176]刘永辉.夏玉米不同生育期对水分胁迫的生理反应与适应[J].干旱区资源与环境.2013(2):171-175.
    [177]李文娟,何萍,高强,等.不同氮效率玉米干物质形成及氮素营养特性差异研究[J].植物营养与肥料学报.2010,16(1):51-57.
    [178]王丽梅,李世清,邵明安.水、氮供应对玉米冠层营养器官干物质和氮素累积、分配的影响[J].中国农业科学.2010,43(13):2697-2705.
    [179]徐祥玉,张敏敏,翟丙年,等.施氮对不同基因型夏玉米干物质累积转移的影响[J].植物营养与肥料学报.2009,15(4):786-792.
    [180]姜琳琳,韩立思,韩晓日,等.氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响[J].植物营养与肥料学报.2011,17(1):247-253.
    [181]李博,田晓莉,王刚卫,等.苗期水分胁迫对玉米根系生长杂种优势的影响[J].作物学报.2008,34(4):662-668.
    [182]任书杰,张雷明,张岁岐,等.氮素营养对小麦根冠协调生长的调控[J].西北植物学报.2003,23(3):395-400.
    [183]邵国庆,李增嘉,宁堂原,等.不同水分条件下常规尿素和控释尿素对玉米根冠生长及产量的影响[J].作物学报.2009,35(1):118-123.
    [184]邵瑞鑫,杨青华,毛建昌,等.氮素水平对旱作不同玉米品种光合性能的影响[J].玉米科学.2012,20(5):131-134,138.
    [185]谭昌伟,王纪华,黄文江,等.不同氮素水平下夏玉米冠层光辐射特征的研究[J].南京农业大学学报.2005,28(2):12-16.
    [186]王帘里,孙波,隋跃宇,等.不同气候和土壤条件下玉米叶片叶绿素相对含量对土壤氮素供应和玉米产量的预测[J].植物营养与肥料学报.2009,15(2):327-335.
    [187]于雷,邱菊,赵丽影,等.氮素对玉米生长及生理特性的影响[J].吉林农业科学.2011,36(2):36-39.
    [188]张立新,李生秀.长期水分胁迫下氮、钾对夏玉米叶片光合特性的影响[J].植物营养与肥料学报.2009,15(1):82-90.
    [189]张兆沛,王文静,崔琳霞,等.不同氮素水平下玉米水分利用率与光合特性的关系[J].贵州农业科学.2009,37(3):27-29.
    [190]高亚军,李生秀,田霄鸿,等.不同供肥条件下水分分配对旱地玉米产量的影响[J].作物学报.2006,32(3):415-422.
    [191]梁银丽,陈培元.土壤水分和氮磷营养对冬小麦根苗生长的效应[J].作物学报.1996,22(4):476-482.
    [192]梁银丽,陈培元.水分胁迫和氮素营养对小麦根苗生长及水分利用效率的效应[J].西北植物学报.1995,15(1):21-25.
    [193]王艳,米国华,张福锁.氮对不同基因型玉米根系形态变化的影响研究[J].中国生态农业学报.2003,11(3):69-71.
    [194]易镇邪,王璞,屠乃美.夏播玉米根系分布与含氮量对氮肥类型与施氮量的响应[J].植物营养与肥料学报.2009,15(1):91-98.
    [195]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学.2003,36(1):71-76.
    [196] Yambao E B, O'Toole J C. Effects of nitrogen nutrition and root medium waterpotential on growth, nitrogen uptake and osmotic adjustment of rice [J]. PhysiologiaPlantarum.1984,60(4):507-515.
    [197]孙群,李学俊,达娃,等.氮素对水分胁迫下玉米苗期生长和某些生理特性的影响[J].邹琦,李德全.作物栽培.1998,26.
    [198] Khalifa K H, Zidan A. Effect of nitrate addition on efficient use of ammoniumsulfate fertilizer on corn under saline conditions. II. Field experiment [J].Communications in Soil Science and Plant Analysis.2001,32(15-16):2373-2393.
    [199]戴廷波,曹卫星,荆奇.氮形态对不同小麦基因型氮素吸收和光合作用的影响[J].应用生态学报.2001,12(6):849-852.
    [200]曹翠玲,李生秀.氮素形态对玉米幼苗碳水化合物及养分累积的影响[J].华中农业大学学报.2003,22(5):457-461.
    [201]李彩凤.增铵营养对玉米品质影响初探[J].玉米科学.2003,11(3):82-84.
    [202]朱永波,张仁和,卜令铎,等.玉米苗期抗旱性鉴定指标的研究[J].西北农业学报.2008,17(3):143-146.
    [203]于海秋,武志海,沈秀瑛,等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大学学报.2003,25(3):239-242.
    [204] Shangguan Z, Shao M, Dyckmans J. Effects of nitrogen nutrition and water deficiton net photosynthetic rate and chlorophyll fluorescence in winter wheat[J]. Journalof Plant Physiology.2000,156(1):46-51.
    [205] Lal A, Edwards G E. Analysis of inhibition of photosynthesis under water stress inthe C4species Amaranthus cruentus and Zea mays: electron transport, CO2fixationand carboxylation capacity [J]. Functional Plant Biology.1996,23(4):403-412.
    [206] Raab T K, Terry N. Nitrogen source regulation of growth and photosynthesis in Betavulgaris L.[J]. Plant Physiology.1994,105(4):1159-1166.
    [207] Guo S, Brück H, Sattelmacher B. Effects of supplied nitrogen form on growth andwater uptake of French bean (Phaseolus vulgaris L.) plants [J]. Plant and Soil.2002,239(2):267-275.
    [208] Raab T K, Terry N. Carbon, nitrogen, and nutrient interactions in Beta vulgaris L. asinfluenced by nitrogen source, NO3-versus NH4+[J]. Plant Physiology.1995,107(2):575-585.
    [209]王晓巍,马欣,周连仁,等.施氮对玉米产量和氮素积累及相关生理指标的影响[J].玉米科学.2012,20(5):121-125.
    [210]易镇邪,王璞,刘明,等.不同类型氮肥与施氮量下夏玉米水、氮利用及土壤氮素表观盈亏[J].水土保持学报.2006,20(1):63-67.
    [211]尹彩侠,李桂花,张淑香,等.氮磷用量与施肥方式对玉米生长发育的影响[J].玉米科学.2011,19(4):112-115.
    [212]张家铜,彭正萍,李婷,等.不同供氮水平对玉米体内干物质和氮动态积累与分配的影响[J].河北农业大学学报.2009,32(2):1-5.
    [213]张瑞珍,孙长占.施氮对不同玉米品种根系生长的影响[J].四川草原.2004(7):5-6,13.
    [214] Carvajal M, Cooke D T, Clarkson D T. Responses of wheat plants to nutrientdeprivation may involve the regulation of water-channel function [J]. Planta.1996,199(3):372-381.
    [215] Gloser V, Zwieniecki M A, Orians C M, et al. Dynamic changes in root hydraulicproperties in response to nitrate availability [J]. Journal of Experimental Botany.2007,58(10):2409-2415.
    [216] Gorska A, Ye Q, Holbrook N M, et al. Nitrate control of root hydraulic properties inplants: translating local information to whole plant response [J]. Plant Physiology.2008,148(2):1159-1167.
    [217] Gorska A, Zwieniecka A, Holbrook N M, et al. Nitrate induction of root hydraulicconductivity in maize is not correlated with aquaporin expression [J]. Planta.2008,228(6):989-998.
    [218] Rieger M. Offsetting effects of reduced root hydraulic conductivity and osmoticadjustment following drought [J]. Tree Physiology.1995,15(6):379-385.
    [219] Hose E, Clarkson D T, Steudle E, et al. The exodermis: a variable apoplasticbarrier[J]. Journal of Experimental Botany.2001,52(365):2245-2264.
    [220] Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to waterdeficits: prospects for water-saving agriculture [J]. Journal of Experimental Botany.2004,55(407):2365-2384.
    [221] Chaves M M, Pereira J S, Maroco J, et al. How plants cope with water stress in thefield? Photosynthesis and growth [J]. Annals of Botany.2002,89(7):907-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700