用户名: 密码: 验证码:
黄土高原冬小麦水氮高效利用及优化耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究水肥耦合互馈作用,探求水肥合理投入水平,提高水肥利用率,对于提高农业生产的经济效益和生态效益,保证半干旱区农业的可持续发展具有重要意义。本论文通过两年不同水氮耦合处理的冬小麦田间试验,对不同水氮处理下冬小麦生长、产量以及土壤剖面水分、硝态氮运移进行了分析,并以作物产量和水分利用效率为目标,推求水肥合理投入区间,以期确定水肥优化耦合区域、实现水氮高效利用。研究主要结论如下:
     1.水氮耦合显著影响作物生长动态、产量及其组成。灌水和施氮之间存在着显著的正交互效应,适当增加灌水量和施氮量有助于提高冬小麦产量。N0~N3时,随灌水量的增加冬小麦籽粒产量显著增加,当施氮量为N4和N5水平时,随灌水量增加籽粒产量先增加而后略有降低。灌水处理亦有相似的规律,当灌水超过W3处理时,籽粒产量略有降低。2008-2009年度W5N3处理产量最高,为9.97t·ha~(-1);2009-2010年W3N4处理产量最高,为8.62t·ha~(-1)。水氮耦合显著提高冬小麦株高。灌水和氮肥对冬小麦生物量和叶面积的影响和籽粒产量相似。在整个生育期内,灌水处理叶面积指数明显高于旱作处理,特别是到冬小麦生育后期,灌水不仅显著增加冬小麦叶面积指数,同时也延长了冬小麦生理功能的时间。
     2.水氮耦合对收获期土壤剖面水分含量有显著影响。旱作处理下,土壤水分随施氮量的增加而降低,收获期土壤剖面含水率较低;随着灌水量的增加,土壤剖面含水率逐渐增大。受施氮量的影响,较低的土壤含水率条件下,夏闲期降水入渗深度变浅,W3和W5水分水平下,N0处理土壤入渗补充深度达300cm以下;W0N0处理土壤水分入渗深度为200cm。低(W0)、中(W3)、高水(W5)水分水平下,随施氮量的增加,土壤水分补充深度分别从220cm至140cm不等。2008-2009年度,水分利用效率W2N2处理最高,为18.43kg·(ha mm)~(-1);W5N0最小,为4.29kg·(ha mm)~(-1);最大水分利用效率高出最低4.3倍。2009-2010年度,水分利用效率W2N5最高,为16.71kg·(ha mm)~(-1)。
     3.氮素对土壤硝态氮累积量的影响明显高于水分,土壤硝态氮含量基本均随施氮量增加而增大。在冬小麦两年度试验中,当施氮量低于225kg·ha~(-1)时,作物生长需消耗部分土壤氮,而当施氮量高于225kg·ha~(-1)时将开始造成硝态氮的残留。不施氮处理由于土壤中硝态氮含量已很少,0-300cm土层其变化不大;施氮处理下硝态氮在0-300cm土层呈波形变化趋势。冬小麦整个生长过程,在土壤60cm左右深度硝态氮存在最小值。本试验中,当施氮量为300和375kg·ha~(-1)时造成了硝态氮大量残留,将会造成淋溶,不利于环境保护。同时,通过0-300cm硝态氮累积量、产量与施氮量关系可知,当一味追求最高产量时,将引起硝态氮的大量积累,造成大量浪费与环境污染。
     4.水、氮对冬小麦具有明显的增产效果,且二者存在互相促进作用,但过多的水氮投入会造成作物减产,符合报酬递减率;2008-2009年度,当灌水量为331mm,施氮量为290kg·ha~(-1)时有最大产量10.34t·ha~(-1);当灌水量为138mm,施氮量为243.6kg·ha~(-1)时有最大水分利用效率18.96kg·(ha·mm)~(-1);2009-2010年度,当灌水量为309mm,施氮量为283kg·ha~(-1)时有最大产量9.168t·ha~(-1);当灌水量为85.9mm,施氮量为242.8kg·ha~(-1)时有最大水分利用效率16.73kg·(ha·mm)~(-1)。水肥的产量、耗水量效应分别为二次抛物面和平面。通过弹性指数及水氮区间的两种表达方式(最大产量和产量增加最大),分别得出了水肥合理投入范围,均为以最高产量和最大水分利用效率为长轴的椭圆;联合实际生产中追求的利益最大化原则,确定了水肥耦合优化区域,即为以椭圆长轴和以产量增加最大为方向得到的椭圆下半区所围成的范围。并指出该地区最大灌水量不应超过331mm。水肥耦合优化区域直观的反映了水氮投入范围,为该地区实际生产提供了参考。
Reasonable application, increasi ng the utilization efficiency, and to explicit the role oftwo-way drive function between water and fertilizer is one important issue for continuingto improve the economic and ecological benefits of the agriculture development insemi-arid regions. In this paper, the2-years field experiment on winter wheat wasconducted with different water and fertilizer treatments, which aimed to evaluate the yieldeffect of water and fertilizer coupling on plant growth, yield, soil moisture profile andnitrate-N transport. Targeting high yield and water use efficiency (WUE), we estimated theoptimal coupled interval of water and nutrients supplies for high yield and water useefficiency. The mainly results as follow:
     1. Water and N-fertilizer coupling could significantly impact crop growth, yield, andthe yield components. There was a sharp positive interaction between irrigation (W) andnitrogen application (N), which contributed to the higher plant height and grain yield. Thegrain yields were increased significantly with the increase in irrigation under applicationthe N fertilizer from N0to N3treatments, while it were showed a downward trend slightlyafter the first rise under N4and N5treatment. Meanwhile, grain yield was improved byirrigation amount increased from W0to W3, and then decrease slightly. The highest yieldwas9.97t·ha~(-1)occurred in W5N3treatment during2008-2009, and was8.62t·ha~(-1)inW3N4treatment during2009-2010. The similarly results occurred in biomass and leafareas response to different water and N-fertilizer coupling. Notably, the irrigation wasconsistently produced higher LAI and the longer physiologically functional period ofwinter wheat.
     2. The variations soil moisture profile response to the different water and N-fertilizer coupling in the harvest period. The soil moisture content was decreased with the increasein N-fertilizer under rain-fed condition, but increased with the increase in irrigation. Baseon the interaction between irrigation and N-fertilizer application, the depth of the soilinfiltration supplement was achieved200cm in the W0N0treatment and more than300cmin W3N0or W3N0treatments. In the lower (W0), middle (W3), and higher (W5) irrigationtreatments, the depth of the soil infiltration supplement decreased from200cm to140cmwith the increase in N-fertilizer application. During2008-2009, the highest WUE was18.43kg·(ha mm)~(-1)occurred in W2N2treatment, and the least WUE was4.29kg·(ha mm)~(-1). Similarly, the highest WUE was16.71kg·(ha mm)~(-1)occurred in W2N5during2009-2010.
     3. The soil nitrate-N accumulation was clearly improved by N-fertilizer than byirrigation. During both growing season, crop growth needs to be consumed part of soil Nwhen the n application rate is less than225kg·ha~(-1), conversely, cause of nitrate-N residualin soil when the N application rate is greater than225kg·ha~(-1). In application of noN-fertilizer treatment, the soil nitrate-N have not changed much in0-300cm soil layer dueto the lower soil N content. In the other N-fertilizer treatments, the nitrate-N results inwaveform with the rising of soil depth from0to300cm, and the least nitrate-N occurred at60cm. We also found that the large number of nitrate-N residues in soil profile led tonitrate-N leaching when the N application of300and375kg·ha~(-1). Hence, blindly pursuinghigh crop grain yield with higher water and N-fertilizer input will cause greater nitrate-Nresidues lead to fertilizer waste and environmental pollution.
     4. irrigation and/or nitrogen input can increase the finalyield significantly and therewasa positive interactive term between water and nitrogen fertilizer on final yield.However, the overuse of water and/or nitrogen led to the low yield, and met the law ofdiminishing return. During2008-2009, when the irrigation amount is331mm and thenitrogen fertilizer is290kg·ha~(-1), there is the maximum yield (10.34t·ha~(-1)), and the input ofnitrogen fertilizer is243.6kg·ha~(-1)plus the irrigation138mm, which can get the maximumvalue on WUE [18.96kg·(ha·mm)~(-1)], While in2009-2010, application of283kg·ha~(-1)nitrogen and309mm irrigation can get the highest wheat yield (9.168t·ha~(-1)); and85.9mmirrigation amount and242.8kg·ha~(-1)nitrogen input can reach the maximum WUE [16.73kg·(ha·mm)~(-1)]. Yield and ET responses to water and nitrogen inputs followed a quadratic and a line function, respectively. The optimal-coupling domains are determined byelasticity index (EI) and its expression in the water-nitrogen dimensions, which are theellipse forms with the global maximum WUE and Y corresponding to the left and right endpoints on its long axis. Considering of local maximum yields, the optimal-coupling domainwas the lower half-ellipse form with the two end points of the global maximum yield andWUE on its long axis. Total irrigation amount to winter wheat should not exceed331mm.The optimal-coupling domain reflects visually range of water and nitrogen inputs. It canprovide reference for the water and nitrogen inputs in agricultural applications.
引文
[1]张艳萍.随机降雨/天气变化条件下的农田水氮运移及作物生长过程模拟[D].北京:中国农业大学.2007.
    [2]中国农业统计年鉴.中国农业年鉴编辑委员会[M].北京:农业出版社.2001.
    [3]中国农业统计年鉴.中国农业年鉴编辑委员会[M]北京:农业出版社.1981.
    [4]中国农业统计年鉴.中国农业年鉴编辑委员会[M].北京:农业出版社.2005.
    [5]李玉山,张孝中,郭明航.黄土高原南部作物水肥产量效应的田间研究[J].土壤学报,1990,27(1):1-7.
    [6]梁运江,依艳丽,徐广波,等.水肥耦合效应的研究进展与展望[J].湖北农业科学,2006,45(3):385-388.
    [7]邱建军,李虎,王立刚.中国农业施氮水平与土壤氮平衡的模拟研究[J].农业工程学报,2008,24(8):40-44.
    [8]李生秀,高亚军,李世清,等.澄城低肥力田块小麦的水肥耦合效应[J].汪德水.旱地农田肥水关系原理与调控技术,1995,221-234.
    [9]程宪国,汪德水,张美荣,等.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学,1996,29(4):71-74.
    [10]党廷辉.施肥对旱地冬小麦水分利用效率的影响[J].生态农业研究,1999,7(2):29-31.
    [11]张仁陟,李小刚,胡恒觉.施肥对提高旱地农田水分利用效率的机理[J].1999,5(3):221-226.
    [12]张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002,2(4):2-5.
    [13]朱兆良.稻田节氮的水肥综合管理技术的研究[J].土壤,1991,23(5):241-245.
    [14] Arnon I. Physiological principles of dryland crop production[M]. Oxford publ.Oxford,1975.
    [15]吕殿青,刘军,李瑛,等.旱地水肥交互效应与耦合模型研究[J].西北农业学报,1995,4(3):72-76.
    [16]李法云,宋丽,官春云,等.辽西半干旱区农田水肥耦合作用对春小麦产量的影响[J].2000,11(4):535-539.
    [17] J. A. Morgan. Interaction of Water Supply and N in Wheat1[J]. Plant Physiology,1984,76(1):112-117.
    [18]张立新,吕殿青.渭北旱原不同水肥配比冬小麦根系效应的研究[J].干旱地区农业研究,1996,14(004):22-28.
    [19]徐萌,山仑.不同水分条件下无机营养对春小麦水分状况和渗透调节的影响[J].植物学报,1992,34(8):596~602.
    [20] F. H. Gutierrez-Boem, G. W. Thomas. Phosphorus nutrition affects wheat responseto water deficit [J]. Agronomy Journal,1998,90(2):166-171.
    [21] F. G. Viets. Water deficits and nutrient availability [J]. Water deficits and plantgrowth,1972,3:217-239.
    [22]于亚军,李军,贾志宽, et al.旱作农田水肥耦合研究进展[J].干旱地区农业研究,2005,23(003):220-224.
    [23]戴庆林,杨文耀.阴山丘陵旱农区水肥效应与耦合模式的研究[J].干旱地区农业研究,1995,13(001):20-24.
    [24] D. Shimshi. The effect of nitrogen supply on some indices of plant-water relationsof beans (Phaseolus vulgaris L.)[J]. New Phytologist,1970,413-424.
    [25]关军锋,李广敏.干旱条件下施肥效应及其作用机理[J].中国生态农业学报,2002,10(001):59-61.
    [26]翟丙年,李生秀.冬小麦产量的水肥耗合模型[J].中国工程科学,2002,4(009):69-74.
    [27]严小龙,戈振扬.植物根构型特性与磷吸收效率[J].植物学通报,2000,17(006):511-519.
    [28]李友军.旱地小麦根系生育与调控效应的研究[J].干旱地区农业研究,1997,15(003):6-11.
    [29]孙广玉,何庸.大豆根系生长和活性特点的研究[J].大豆科学,1996,15(004):317-321.
    [30]张和平,刘晓楠.华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系[J].华北农学报,1993,8(004):76-82.
    [31]陈培元,詹谷宇,谢伯泰.冬小麦根系的研究[J].陕西农业科学,1980,6(1):980.
    [32]王余龙,姚友礼.不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响[J].作物学报,1997,23(006):699-706.
    [33]茹天祥,曹瑞宗.红土旱地冬小麦根系生长动态观测[J].干旱地区农业研究,1996,14(003):47-52.
    [34]王绍中,茹天祥.丘陵红粘土旱地冬小麦根系生长规律的研究[J].植物生态学报,1997,21(002):175-190.
    [35]王玉贞,李维岳.玉米根系与产量关系的研究进展[J].吉林农业科学,1999,24(004):6-8.
    [36]朱德峰,林贤青.水稻深层根第对生长和产量的影响[J].中国农业科学,2001,34(004):429-432.
    [37]杨秀红,吴宗璞.大豆品种根系性状与地上部性状的相关性研究[J].作物学报,2002,28(001):72-75.
    [38]史瑞和.植物营养原理[M].南京:江苏科学技术出版社,1989:61~62.
    [39] R. E. Sharp, W. J. Davies. Root growth and water uptake by maize plants in dryingsoil[J]. Journal of Experimental Botany,1985,36(9):1441-1456.
    [40]张喜英,袁小良.冬小麦根系生长规律及土壤环境条件对其影响的研究[J].生态农业研究,1994,2(003):62-68
    [41]张喜英.作物根系与土壤水利用[M].气象出版社,1999:122~147.
    [42] Clemensson-Lindell A, Persson H. The effects of nitrogen addition and removal onNorway spruce fine-root vitality and distribution in three catchment areas atG rdsj n[J]. Forest Ecology and Management,1995,71(1):123-131.
    [43]张和平,刘晓楠.华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系[J].华北农学报,1993,8(004):76-82.
    [44]梁银丽,陈培元.土壤水分和氮磷营养对冬小麦根苗生长的效应[J].作物学报,1996,22(004):476-482.
    [45]刘来华,李韵珠.冬小麦水氮有效利用的研究[J].中国农业大学学报,1996,1(005):67-73.
    [46]赵立新,荆家海.不同施肥水平对旱地冬小麦水分利用效率的影响[J].植物生态学与地植物学学报,1991,15(004):330-343
    [47]王余龙,姚友礼.不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响[J].作物学报,1997,23(006):699-706.
    [48] L. Shengxiu. Management of Soil Nutrients on Drylands in China for SustainableAgriculture [J]. Soil and Environment,1999,2(4):293-315.
    [49]刘来华,李韵珠.冬小麦水氮有效利用的研究[J].中国农业大学学报,1996,1(005):67-73.
    [50] S. D. Comfort, G. L. Malzer, R. H. Busch. Nitrogen fertilization of spring wheatgenotypes: influence on root growth and soil water depletion [J]. Agronomy Journal,1988,80(1):114~120.
    [51]信乃诠,侯向阳,张燕卿.我国北方旱地农业研究开发进展及对策[J].中国生态农业学报,2001,9(4):58-60.
    [52]汪德水.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995,111-115.
    [53]赵立新,荆家海.水分胁迫条件下施肥对盆栽冬小麦的产量反应及对养分的吸收特征[J].土壤学报,1995,26(1):6-8.
    [54]李立科.以磷促根利用深层水量是解决渭北旱原小麦高产的有效措施[R]《.山西农学会北方旱地农业学术讨论会论文集》.山西:山西农学会,1983,235-239.
    [55]王同朝,李凤民.分层供水施磷对春小麦光合性能及水分利用效率的影响[J].西北植物学报,1998,18:165-171.
    [56]梁银丽,康绍忠.坡地施肥水平对谷子根系生长和生产力的作用[J].干旱地区农业研究,1998,16(2):53-57.
    [57]刘来华,李韵珠.冬小麦水氮有效利用的研究[J].中国农业大学学报,1996,1(005):67-73.
    [58]李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应[J].植物营养与肥料学报,2000,6(004):383-388.
    [59] R. Habib, F. Lafolie. Water and nitrate redistribution in soil as affected by rootdistribution and absorption [J]. Plant Root Growth: An Ecological Perspective. Ed.D Atkinson,1991,131–146.
    [60]钦绳武,刘芷宇.土壤—根系微区养分状况的研究Ⅲ.水稻根际氮素的变化[J].土壤学报,1984,21(3):238-245.
    [61]钦绳武,刘芷宇.土壤一根系微区养分状况的研究: VI.不同形态肥料氮素在根际的迁移规律[J].土壤学报,1989,26(002):117-123.
    [62] N. Claassen, K. M. Syring, A. Jungk. Verification of a mathematical model bysimulating potassium uptake from soil [J]. Plant and Soil,1986,95(2):209-220.
    [63]徐学选,穆兴民.小麦水肥产量效应研究进展[J].干旱地区农业研究,1999,17(3):6-12.
    [64]高雪玲,张建平,吕明杰,等.长安灌区小麦氮磷钾肥效试验研究[J].陕西农业科学,2007(1):22-49.
    [65]刘一.施肥对黄土高原旱地冬小麦产量及土壤肥力的影响[J].水土保持研究,2003,10(1):40-42.
    [66]古巧珍,杨学云,孙本华,等.长期定位施肥对小麦籽粒产量及品质的影响[J].麦类作物学报,2004,24(3):76-79.
    [67]皇甫湘荣,杨先明,黄绍敏,等.长期定位施肥对强筋小麦郑麦9023产量和品质的影响[J].河南农业科学,2006,4(1):3-6.
    [68]张淑香,金柯,蔡典雄,等.水分胁迫条件下不同氮磷组合对小麦产量的影响[J].植物营养与肥料学报,2003,9(3):276-279.
    [69]梁银丽.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J].生态学报,1996,16(3):258-264.
    [70]刘文兆,李生秀.作物水肥优化耦合区域的图形表达及其特征[J].农业工程学报,2002,18(006):1-3.
    [71] Liu W Z, Zhang X C. Optimizing water and fertilizer input using an elasticity index: Acase study with maize in the Loess Plateau of China [J]. Field Crops Research,2007,100(2-3):302-310.
    [72]刘文兆,李玉山.渭北旱塬西部作物水肥产量耦合效应研究[J].水土保持研究,2003,10(1):12-15.
    [73]李开元,李玉山.黄土高原南部农田水量供需平衡与作物水肥产量效应[J].土壤通报,1995,26(3):105-107.
    [74]李向民,许春霞,李开元.黄土高原沟壑区水肥因子对冬小麦经济性状的影响[J].应用生态学报,1999,10(3):309-311.
    [75]钟良平,邵明安,李玉山.农田生态系统生产力演变及驱动力[J].中国农业科学,2004,37(4):510-515.
    [76]刘秀珍,张阅军,杜慧玲.水肥交互作用对间作玉米、大豆产量的影响研究[J].中国生态农业学报,2004,12(3):75-77.
    [77]王渭玲,徐福利,张冀涛.渭北旱地夏播谷子水肥耦合模型研究[J].陕西农业科学,1996,(4):23-24.
    [78]陈国良,穆兴民,贾恒义.水肥对沙打旺产草量协同效应的初步研究[J].水土保持学报,1992,6(3):73-78.
    [79]李玉山.旱作高产田产量波动性和土壤干燥化[J].土壤学报,2001,38(3):353-356.
    [80]樊军,郝明德,邵明安.黄土旱塬农业生态系统土壤深层水分消耗与水分生态环境效应[J].农业工程学报,2004,20(1):61-64.
    [81]詹卫华,黄冠华,冯绍元,等.喷灌条件下花生玉米间作的水肥耦合效应[J].中国农业大学学报,1999,4(4):35-39.
    [82]王凤新,冯绍元,黄冠华.喷灌条件下冬小麦水肥祸合效应的田间试验研究[J].灌溉排水学报,1999,18(1):10-13.
    [83]李法云,郑良,宋丽.辽西半干旱区水肥耦合作用对土壤水分动态变化的影响[J].辽宁大学学报(自然科学版),2003,30(1):7-12.
    [84]盛钰,赵成义,贾宏涛.水肥耦合对玉米田间土壤水分运移的影响[J].干旱区地理,2005,28(6):811-817.
    [85]邢维芹,王林权,李立平,等.半干旱区玉米水肥空间耦合效应[J].土壤,2003,35(3):242-247.
    [86]谢忠奎,王亚军,兰念军,等.黑河地区土壤及小麦体内水分动态观测分析[J].高原气象,2000,19(3):385-390.
    [87]张保军,穆婉红,杨冬梅,等.不同基因型小麦籽粒蛋白质组分的施氮量调节[J].西北农业大学学报,2000,28(6):61-63.
    [88]李国振.不同灌溉对阜康地区冬小麦产量及土壤水分动态变化的影响[J].干旱区地理,2001,24:1-4.
    [89]康绍忠.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994.
    [90]孟维伟.小麦高产优质需水需氮特性的研究[D].山东农业大学,2007.
    [91]汪德水.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995:195203.
    [92]张玉铭,张佳宝,胡春胜,等.华北太行山前平原农田土壤水分动态与氮素的淋溶损失[J].土壤学报,2006,43(1):1725.
    [93]刘兆辉,李晓林,祝洪林,等.保护地土壤养分特点[J].土壤通报,2001,32(5):206-208.
    [94]梁运江,依艳丽,许广波,等.水肥耦合效应对保护地土壤硝态氮运移的影响[J].农村生态环境,2004,20(3):32-36.
    [95]袁巧霞,武雅娟,艾平,等.温室土壤硝态氮积累的温度、水分、施氮量耦合效应[J].农业工程学报,2007,23(10):192-198.
    [96]杨治平,陈明昌,张强,等.不同施氮措施对保护地黄瓜养分利用效率及土壤氮素淋失影响[J].水土保持学报,2007,21(2):57-60.
    [97]谭军利,王林权,王西娜,等.不同灌水模式对土壤水分和硝态氮分布的影响[L].灌溉排水学报,2008,27(5):29-33.
    [98]袁静超,张玉龙,虞娜,等.水肥耦合条件下保护地土壤硝态氮动态变化[J].土壤通报,2011,42(6):1335-1340.
    [99]张佳宝,胡春胜,赵炳梓,等.水肥耦合对华北高产农区小麦-玉米产量和土壤硝态氮淋失风险的影响[J].
    [100]周荣,杨荣泉.水,氮耦合效应对冬小麦生长,产量及土壤NO3--N分布的影响[J].北京水利,1994,(3):75-78.
    [101]山仑.植物水分利用效率和半干旱地区农业用水[J].植物生理学通讯,1994,30(001):61-66
    [102]张岁岐,李秧秧.施肥促进作物水分利用机理及对产量的影响研究[J].水土保持研究,1996,3(1):185-191.
    [103]王同朝,魏国庆.水资源亏缺下水肥耦合对作物的影响[J].河南农业科学,1999,10:10-11.
    [104]李生秀,李世清,高亚军,等.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果[J].干旱地区农业研究,1994,12(1):38-46.
    [105]李裕元,郭永杰,邵明安.施肥对丘陵旱地冬小麦生长发育和水分利用的影响[J].干旱地区农业研究,2000,18(1):15-21.
    [106]黄明丽,邓西平,白登忠. N、P营养对旱地小麦生理过程和产量形成的补偿效应研究进展[J].麦类作物学报,2002,22(4):74-78.
    [107]戴武刚,霍进忱,邹桂霞.辽西低山丘陵区集流聚肥梯田土壤水分动态变化规律研究[J].水利发展研究,2002,2(8):31-32.
    [108]中国农业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社,1999.
    [109] Zhu Z L, Chen D L. Nitrogen fertilizer use in China Contributions to foodproduction, impacts on the environment andbest management strategies[J]. NutrCycl Agroecos,2002,63:117-127.
    [110] Emteryd O, Lu D Q, Nykvist N. Nitrate in soil profiles and nitrate pollution ofdrinkingwater in the loess region of China [J]. Ambio,1998,27(6):441-443.
    [111]张云贵,刘宏斌,李志宏,等.长期施肥条件下华北平原农田硝态氮淋失风险的研究[J].植物营养与肥料学报,2005,11(6):711-716.
    [112]张睿.半湿润农田生态系统不同施肥处理对小麦子粒中氮、磷、钾含量和累积量的效应[J].西北植物学报,2005,25(1):150–154.
    [113] Carolyne D, Mary B. Effects of nutrients apply on preemergence growth and nutrientabsorption in wheat (Triticum aestivum L.) and sugarbeet (Beta vulgaris L.)[J].Ann. Bot.,1998,81:665-672.
    [114]杜金哲,李文雄,胡尚连,等.春小麦不同品质类型氮的吸收、转化利用及与子粒产量和蛋白质含量的关系[J].作物学报,2001,27(2):253-260.
    [115] Wang Z J, Wang JH, HuangW J et al. Study on nitrogen distribution in leaf, stem andsheath at different layers in winter wheat canopy and their i nfluence on grainquality[J]. Agric. Sci. China,2003,2(8):859–866.
    [116] Li F S, Kang S Z. Effec ts of atmospheric CO2enrichment, applied nitrogen and soilmoisture on dry matter accumulation and nitrogen uptake in spring wheat [J].Pedosphere,2002,12(3):207-218.
    [117]潘庆民,于振文.追氮时期对冬小麦子粒品质和产量的影响[J].麦类作物学报,2002,22(2):65-69.
    [118]石书兵,马林,石庆华,等.不同施氮时期对冬小麦子粒蛋白质组分及其动态变化的影响[J].植物营养与肥料学报,2005,11(4):456-460.
    [119]霍中洋,葛鑫,张洪程,等.施氮方式对不同专用小麦吸收及氮肥利用率的影响[J].作物学报,2004,30(5):449-454.
    [120]李久生,李蓓,宿梅双,饶敏杰.冬小麦氮素吸收及产量对喷灌施肥均匀性的响应[J].中国农业科学,2005,38(8):1600-1607.
    [121]周顺利,张福锁,王兴仁,等.高产条件下不同品种冬小麦氮素吸收与利用特性的比较研究[J].土壤肥料,2000(6):20-24.
    [122]朱新开,郭文善,封超年,等.不同类型专用小麦氮素吸收累积差异研[J].植物营养与肥料学报,2005,11(2):148-154.
    [123] Aude B, Christophe L, Christine B, et al. Nitrogen remobilization during grain fillingin wheat: Genotypic and environmental effects[J]. Crop Sci.,2005,45(3):1141–1150.
    [124]张洪程,许轲,戴其根,等.超高产小麦吸氮特性与氮肥运筹的初步研究[J].作物学报,1998,24(06):935-940.
    [125] Ortiz M R, Sayre K D, Rajaram S, et al. Genetic progress in wheat yield and nitrogenuse efficiency under four nitrogen rates [J]. Crop Sci.,1997,37(3):898-904
    [126] Wang H, McCaig T N, DePauw R M, et.al. Physiological characteristics of recentCanada Western Red Spring wheat cultivars: components of grain nitrogen yield [J].Can. J. Plant Sci,2003,83(4):699-707.
    [127]侯有良.小麦不同器官氮素累积分布动态规律的研究[J].作物学报,2001,27(4):493-499.
    [128]赵广才,何中虎,田奇卓,等.应用15N研究施氮比例对小麦氮素利用的效应[J].作物学报,2004,30(02):159-162.
    [129] Karlen D L, Hunt P G, MathenyT A. Fertilizer15N recovery by corn, wheat, andcotton grown with and without pre-plant tillage on Norfolk loamy sand [J]. CropSci,1996,36(4):975-981.
    [130] Liaqat A, Qamar M D, Mushtaq A. Effect of different doses of nitrogen fertilizer onthe yield of wheat [J]. J. Agric.&Biol.,2003,5(4):438-439.
    [131] Mullen R W, Freeman K W, Raun W R, et al. Identifying an in-season responseindex and the potential to increase wheat yield with nitrogen [J]. Agron J.,2003,95(2):347-351
    [132] Walley F, Yates T, Groenigen J W, et al. Relationships between soil nitrogenavailability indices, yield, and nitrogen accumulation of wheat [J]. SSSAJ,2002,66(5):1549-1561.
    [133] Cassman K G, Bryant D C, Fulton A E, Jackson L F. Nitrogen supply effects onpartitioning of dry matter and nitrogen to grain of irrigated wheat [J]. Crop Sci.,1992,32(5):1251-1258.
    [134]赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报,2006,32(4):484-490
    [135]孟建,李雁鸣,党红凯.施氮量对冬小麦氮素吸收利用、土壤中硝态氮积累和籽粒产量的影响[J].河北农业大学学报,2007,30(2):1-5.
    [136]张月霞,杨君林,刘炜,等.秸秆覆盖条件下不同施氮水平冬小麦氮素吸收及土壤硝态氮残留[J].干旱地区农业研究,2009,27(2):189-193.
    [137]同延安,赵营,赵护兵,等.施氮量对冬小麦氮素吸收、转运及产量的影响[J].植物营养与肥料学报,2007,13(1):64-69.
    [138]王月福,于振文,李尚霞,等.土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响[J].应用生态学报,2003,14(11):1868-1872.
    [139]易时来,何绍兰,邓烈,等.中性紫色土施氮对小麦氮素吸收利用及产量和品质的影响[J].麦类作物学报,2006,26(5):167-169.
    [140]王声斌,张起刚,彭根元.灌溉水平对冬小麦氮素吸收及氮素平衡的影响[J].核农学报,2002,16(5):310-314.
    [141]许振柱,于振文,王东,等.灌溉量对小麦氮素吸收和运转的影响[J].作物学报,2004,30(10):1002-1007.
    [142]王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响[J].应用生态学报,2004,15(8):1339-1343.
    [143]王小彬,高绪科,蔡典雄.旱地农田水肥相互作用的研究[J].干旱地区农业研究.1993,1l(3):6-12.
    [144] Kang S, Zhang L, Liang Y, et a1. Effects of limited irrigation on yield and wateruseefficiency of winter wheat in the Loess Plateau of China [J]. Agric Water Man,2002,55(3):203-216.
    [145]张永丽,于振文.灌水量对小麦氮素吸收、分配、利用及产量与品质的影响[J].作物学报,2008,34(5):870-878.
    [146]唐拴虎,杨改河.旱地冬小麦产量与水分及施肥量关系的模拟研究[J].干旱地区农业研究,1994,12(3):69-73.
    [147]李世娟,周殿玺,诸叶平,等.水分和氮肥运筹对小麦氮素吸收分配的影响[J].华北农学报,2002,17(1):69-75.
    [148]陈尚谟.旱区施肥量与农田水分利用率关系的研究[J].中国农业气象,1994,15(004):12-15
    [149]戴鸣钧,彭琳.土壤水分养分协调与制约的试验研究[J].1991,183-188.
    [150]孔宏敏,何圆球,吴大付,等.长期施肥对红壤旱地作物产量和土壤肥力的影响[J].应用生态学报,2004,15(005):782-786.
    [151]山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(001):70-76.
    [152]党建友,裴雪霞,王姣爱,等.灌水时间对冬小麦生长发育及水肥利用效率的影响[J].应用生态学报,2012,23(010):2745-2750.
    [153] Power J E. Nitrate contamination of ground-water in north America [J]. Agriculture,Ecosystem and Environment,1989,26:165-1871
    [154] Overgaard K. Trends in nitrate pollution of groundwater in Denmark [J]. NordicHydrology,1989,15(4,5):177-184.
    [155] Thorburn P J, Biggs J S, Weier KLet al.Nitrate in groundwaters of intensiveagricultural areas in coastal Northeastern Australia [J]. Agr-icultue, Ecosystems andEnviornment,2003,94:49-581.
    [156]张维理,田哲旭,张宁.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-871.
    [157] Jabro J D, Lotse E G, Simmons K E, et al. A field study of macropore flow undersaturated conditions using a bromide tracer [J]. Journal of soil and waterconservation,1991,46(5):376-380.
    [158]黄元仿,李韵珠.不同灌水条件下土壤氮素淋洗渗漏的研究[J].第五届全国青年土壤学工作者学术讨论会论文集——现代土壤科学研究,1994:243-247.
    [159] Scokart P, Guns M, Meeus-Verdinne K. Leaching. Lysimetric study of nitrateleaching for a tree year rotation: winter wheat-spring wheat-maize[J]. Revue del'Agriculture-Landbouwtijdschrift,1992,45.
    [160] ZHU Z L, CHEN D L. Nitrogen fertilizer use in China–Contributions to foodproduction, impacts on the environment and best management strategies[J] NutrientCycling in Agroecosystems2002,63:117-127.
    [161]巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192-197.
    [162]李军,黄敬峰.程家安.我国化肥施用量及其可能污染的时空分布特征[J].生态环境,2003,12(2):145-149.
    [163]范仲学,王璞,梁振兴.谷类作物的氮肥利用效率及其提高途径研究进展[J].山东农业科学,2001,4:47-50.
    [164]樊军,郝明德.旱地农田土壤剖面硝态氮累积的原因初探[J].农业环境科学学报,2003,22(3):263-266.
    [165]李世清,王瑞军,李紫燕,等.半干旱半湿润农田生态系统不可忽视的土壤氮库——土壤剖面中累积的硝态氮[J].干旱地区农业研究,2004,22(4):1-13.
    [166]赵琳,李世清,李生秀,等.半干旱区生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用[J].干旱地区农业研究,2004,22(4):14-18.
    [167]樊军,郝明德,党廷辉.旱地长期定位施肥土壤剖面硝态氮分布与累积的影响[J].土壤与环境,2002,9(1):23-26.
    [168]刘晓宏,田梅霞,郝明德.黄土旱塬长期轮作施肥土壤剖面硝态氮的颁布与累积[J].土壤肥料,2000,1(1):9-12.
    [169]吴金水,郭胜利,党廷辉.半干旱区农田土壤无机氮积累与迁移机理[J].生态学报,2003,23(10):2041-2049.
    [170]张树兰,同延安,梁东丽,等.氮肥用量及施用时间对土体中硝态氮移动的影响[J].土壤学报2004,41(2):271-177.
    [171]苏涛,王朝辉,李生秀.黄土高原地区农田土壤的硝态氮残留及其生态效应[J].农业环境科学学报2004,23(2):411-414.
    [172]张云贵,刘宏斌,李志宏,等.长期施肥条件下华北平原农田硝态氮淋失风险的研究[J].植物营养与肥料学报,2005,11(6):711-716.
    [173]杨玉惠,张仁陟.氮肥施用对黄土高原中部雨养农业区土壤硝态氮分布与累积的影响[J].土壤通报,2007,38(4):672-676.
    [174]郝明德,来璐,王改玲,等.黄土高原塬区旱地长期施肥对小麦产量的影响[J].应用生态学报,2003,14(011):1893-1896.
    [175]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [176]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    [177] Ankeny M D, Ahmed M, Kasper T C, Horton R. Simple field method fordetermining unsaturated hydraulic conductivity[J]. Soil Sci. Soc. Am. J.,1991,55:467-470.
    [178] Clothier B E, White I. measurement of sorptivity and soil water diffusivity in thefield [J]. Soil Sci. Soc. Am. J.1981,45:241-245.
    [179] Reynolds W D, Elrick D E. Determination of hydraulic conductivity using a matricsuction infiltrometer [J]. Soil Sci. Soc. Am. J.1991,55:633-639.
    [180] Smettem K R J, Clothier B E. Measuring unsaturated sorptivity and hydraulicconductivity using multiple disc permeameters [J]. J. Soil Sci.1989,40:563-568.
    [181] White I, Sully M J. Macroscopic and microscopic capillary length and time scalesfromfield infiltration[J]. Water Resour. Res.,1987,23:1514-1522.
    [182] Angulo-Jaramillo R., Vandervaere J.P., Roulier S., et al. Field measurement of soilsurface hydraulic properties by disc and ring infiltrometers-A review and recentdevelopments. Soil Tillage Res.2000,55(1-2):1-29.
    [183] Perroux,K.M.White,I.Designs for disc permeameters[J].Soil Sci.Soc.Am.J.,1988,52:1205-1215.
    [184]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:30-131.
    [185] Cook,F.J.,Broeren,A.Six methods for determining sorptivity and hydraulicconductivity with disc permeameters[J].Soil Sci.,1994,157:2-11.
    [186] Jacques,D.,Mohanty,B.P.,Feyen,J.Comparison of alternative methods forderiving hydraulic properties and scaling factors from single-disc tensioninfiltrometer measurements[J].Water Resour.Res.,2002,38(7):1120-1129.
    [187] Philip, J. R. Some recent advances in hydrologic physics. J. Inst. Eng. Aust.,1954,26:255-259.
    [188] Philip, J. R. Theory of infiltration. Adv. Hudrosci.1969,5,215-305
    [189] Minasny B.,Alex B.McBratney.Estimation of sorptivity from disc-permeametermeasurements[J].Geoderma,2000,95:305-324.
    [190] White I.,Sully M I. Macroscopic and microscopic capillary length and time scalesfrom field infiltration [J].Water Resour. Res.,1987,23:1514-1522.
    [191] Logsdon S D,Jaynes D B.Methodology for determining hydraulic conductivitywith tension infiltrometer[J]. Soil Sci.Soc.Am.J.,1993,57:1426-1431.
    [192] Philip, J.R.,1957. The theory of infiltration:4. Sorptivity and algebraic infiltrationequations. Soil Sci.84,257–264.
    [193] Philip, J.R.,1986. Linearized unsteady multidimensional infiltration. Water Resour.Res.22:1717-1727.
    [194] Haverkamp, R., P. J. Ross, P. J. Smettem, and J. Y. Parlange, Three-dimensionalanalysis of infiltration from the disc infiltrometer,2, Physically based infiltrationequation, Water Resour. Res.,30,2931–2935,1994.
    [195] Smettem, K.R.J., Parlange, J.-Y. Ross, P.J. and Haverkamp, R.1994.Three-dimensional analysis of infiltration from the disc infiltrometer: Ⅰ. Acapillary-based theory. Water Resour. Res.,30:2925–2929.
    [196] Smiles,D.E.,Knight,J.H. A note on the use of the Philip infiltrationequation[J].Aust.J.Soil Res.,1976,14:103-108.
    [197] Vandervaere J.P.,Peugeot C.,Vauclin M.,et al.Estimating hydraulicconductivity of crusted soils using disc infiltrometers andminitensiometers[J].J.Hydrol.,1997,188–189:209-223.
    [198] Bristow,K.L.,Savage,M.J.Estimation of parameters for the Philip two-terminfiltration equation applied to field soil experiments[J].Aust.J.Soil Res.,1987,25:369-375.
    [199] Vandervaere J P,Vauclin M,Elrick D E.Transient flow from tension infiltrometers:Ⅱ.four methods to determine sorptivity and conductivity[J].Soil Sci.Soc.Am.J.,2000,64:1272-1284.
    [200]朱自玺,赵国强,邓天宏,等.秸秆覆盖麦田水分动态及水分利用率研究[J].生态农业研究,2000,8(1):34~37.
    [201]上官周平,刘文兆,徐宣斌,等.旱作农田冬小麦水肥耦合增产效应[J][J].水土保持研究,1999,6(1):103-106.
    [202]赵雪飞,王丽金,李瑞奇,等.不同灌水次数和施氮量对冬小麦群体动态和产量的影响[J].麦类作物学报,2009,29(006):1004-1009.
    [203]李永宾,郑丽敏,廖树华,等.北京郊区不同水氮管理模式对冬小麦产量及水分和养分利用效率的影响[J].麦类作物学报,2005,25(2):51-56.
    [204]张凤翔,周明耀,徐华平,等.水肥耦合对冬小麦生长和产量的影响[J].水利与建筑工程学报,2005,3(2):22-24.
    [205]任三学,赵花荣,郭安红,等.底墒对冬小麦植株生长及产量的影响[J].麦类作物学报,2005,25(4):79-85
    [206]王进鑫,黄宝龙,罗伟祥.黄土高原人工林地水分亏缺的补偿与恢复特征[J].生态学报,2004,24(11):2395-2401.
    [207]黄季焜.中国农业科技投资经济[M].北京:中国农业出版社,2000.
    [208].郭清保.当前中国玉米产业发展现状及趋势[J].农业展望.2008,6,29~33
    [209].黄明斌,党廷辉,李玉山.黄土区旱塬农田生产力提高对土壤水分循环的影响[J].农业工程学报,2002,18(6):50~54.
    [210].李军,邵明安,张兴昌.黄土高原旱塬地冬小麦水分生产潜力与土壤水分动态的模拟研究[J].自然资源学报,2004,19(6):52~55.
    [211]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [212]党廷辉,蔡贵信,郭胜利,等.用15N标记肥料研究旱地冬小麦氮肥利用率与去向[J].核农学报,2003,17(4):280-285.
    [213]薛晓辉,郝明德.小麦氮磷肥长期配施对土壤硝态氮淋溶的影响[J].中国农业科学,2009,42(3):918-925.
    [214] Jaynes D B, Dinnes D L, Meek D W, et al. Using the late spring nitrate test to reducenitrate loss within a watershed[J]. Journal of Environmental Quality,2004,33:669-677.
    [215] Spalding R F, Exner M E. Occurrence of nitrate in groundwater—A review [J].Journal of Environmental Quality,1993,22:392-402.
    [216] Benbi D K, Biswas C R, Kalkat J S. Nitrate distribution and accumulation in anUstochrept soil profile in a long term fertilizer experiment[J]. Fertilizer Research,1991,28:173-177.
    [217] Hooker M L, Gwin R E, Herron G M, et al. Effects of long-term, annual applicationsof N and P on corn grain yields and soil chemical properties[J]. Agronomy Journal,1983,75:94-99.
    [218] Jolley N D, Pierre W H. Profile accumulation of fertilizer-derived nitrate and totalnitrogen recovery in two long-term nitrogen-rate experiments with corn[J]. SoilScience Society of America Journal,1977,41:373-378.
    [219]石玉,于振文.施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响[J].生态学报,2006,26(11):3662-3669.
    [220]王春阳,周建斌,郑险峰等.不同栽培模式对小麦-玉米轮作体系土壤硝态氮残留的影响[J].植物营养与肥料学报,2007,13(6):991-997.
    [221]党廷辉,戚龙海,郭胜利,等.旱地土壤硝态氮与氮素平衡-氮肥利用的关系[J].植物营养与肥料学报,2009,15(3):573-577.
    [222]徐学前,吴敬民.小麦氮素的有效利用和对水体环境污染的影响[J].土壤通报,1999,30(6):268-270.
    [223]杨林,薛栋森, Henry C L,等.生物固体对土壤氮循环和硝态氮淋洗的影响[J].农业环境保护,1997,16(4):182-186.
    [224]袁锋明,陈子明,姚造华,等.北京地区潮土表层中NO3—N的转化积累及其淋洗损失[J].土壤学报,1995,32(4):388-398.
    [225] Hofman G EU concerted action: nutrient management legislation in Europeancountries NUMALEC Report, Fair6-CT98-4215.,1999.www.uni-hohenheimde/i3v/.
    [226]唐克丽.中国土壤侵蚀与水土保持学的特点及展望[J].水土保持研究,1999,6(2):2-7.
    [227]谢贤群.农田生态系统水分循环与作物水分关系研究[J].中国生态农业学报,2001,9(1).
    [228]高亚军,李生秀.黄土高原地区农田水氮效应[J].植物营养与肥料学报,2003,9(1):14-18.
    [229] B.D. Sharma, Jalota, S.K., Kar, S., Singh, C.B.. Effect of nitrogen and water uptakeon yield of wheat [J]. Fertilizer Research1992,31,5-8.
    [230]汪德水.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社.1995.
    [231]陈子明。氮素产量环境[M].北京:中国农业科技出版社.1996.
    [232]刘作新,郑昭佩,王建.辽西半干旱区小麦,玉米水肥耦合效应研究[J].应用生态学报,2000,11,540-544.
    [233]蔡大同,林长丰.不同生态条件下播期和氮肥对优质小麦产量和品质性状的影响[J].植物营养与肥料学报,1994,1,74-83.
    [234]黄正来,姚大年,马传喜.氮素供应对不同类型小麦品种籽粒产量和品质性状的影响[J].安徽农业大学学报,1999,26(4):414-418.
    [235]唐拴虎,杨改河.旱地冬小麦产量与水分及施肥量关系的模拟研究[J].干旱地区农业研究,1994,12(3):69-73.
    [236]郑仁塘,刘云发.水,肥综合作用对作物产量的影响及其定额的拟定[J].灌溉排水,1995,14(2):8-13.
    [237]苗果园,尹钧,高志强,等.旱地小麦降水年型与氮素供应对产量的互作效应与土壤水分动态的研究[J].作物学报,1997,23(03):263-270.
    [238]翟丙年,李生秀.水氮配合对冬小麦产量和品质的影响[J].植物营养与肥料学报,2003,9(1):26-32.
    [239] Gajri, P., Prihar, S., Arora, V.. Interdependence of nitrogen and irrigation effects ongrowth and input-use efficiencies in wheat [J]. Field Crops Research,1993,31,71-86.
    [240] Sandhu, K., Arora, V., Chand, R.. Magnitude and economics of fertilizer nitrogenresponse of wheat in relation to amount and timing of water inputs [J]. ExperimentalAgriculture,2002,38,65-78.
    [241] Balasubramanian, V., Chari, A.. Effect of irrigation scheduling on grain yield andnitrogen use efficiency of irrigated wheat at Kadawa and Bakura, northern Nigeria[J].Nutrient Cycling in Agroecosystems,1983,4,201-210.
    [242] Sharma, B., Kar, S., Cheema, S., Yield, water use and nitrogen uptake for differentwater and N levels in winter wheat[J]. Nutrient Cycling in Agroecosystems,1990,22,119-127.
    [243]沈荣开,王康,张瑜芳,等.水肥耦合条件下作物产量,水分利用和根系吸氮的试验研究[J].农业工程学报,2001,17(5):35-38.
    [244]翟丙年,李生秀.冬小麦水氮配合关键期和亏缺敏感期的确定[J].中国农业科学,2005,38(6):1188-1195.
    [245] Pellerin, S., Mollier, A., Plénet, D.. Phosphorus deficiency affects the rate ofemergence and number of maize adventitious nodal roots[J]. Agronomy journal,2000,92,690-697.
    [246] Howell, T. A., Enhancing water use efficiency in irrigated agriculture[J]. Agronomyjournal,2001,93,281-289.
    [247]贾大林.21世纪初期农业节水的目标和任务[J].节水灌溉,2002,1:003.
    [248]文宏达,刘玉柱,李晓丽,等.水肥耦合与旱地农业持续发展[J].土壤与环境,2002,11(3):315-318.
    [249]吴凯.黄河下游水情变化特征与引黄灌溉的可持续发展[J].灌溉排水学报,2003.
    [250]孟兆江,贾大林.黄滩豫东平原冬小麦节水高产水肥耦合数学模型研究[J].农业工程学报,1998,14(1):86-90.
    [251]沈荣开,王康,张瑜芳,等.水肥耦合条件下作物产量,水分利用和根系吸氮的试验研究[J].农业工程学报,2001,17(5):35-38.
    [252]巫东堂,李红梅,焦晓燕,等.旱地麦田水肥关系及对产量的影响试验研究[J].农业工程学报,2001,17(5):39-42.
    [253]孔东,晏云,段艳,陆文红,徐海洋.不同水氮处理对冬小麦生长及产量影响的田间试验[J].农业工程学报,2008,24(12):36-40.
    [254]徐学选,陈国良.春小麦水肥产出协同效应研究[J].水土保持学报,1994,8(4):72-78.
    [255]党廷辉,郝明德.黄土塬区不同水分条件下冬小麦氮肥效应与土壤氮素调节[J].中国农业科学,2000,33(4):62-67..
    [256]刘文兆.依边际分析法确定田间最优经济水量投入的唯一性准则[J].中国农业大学学报,1997,2:121-125.
    [257]刘文兆.作物生产,水分消耗与水分利用效率间的动态联系[J].自然资源学报,1998,13(1):23-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700