用户名: 密码: 验证码:
城市取水风险理论及优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
取水可靠性是城市供水安全的重要保障,基于风险分析的取水优化方法不仅能提高供水系统的安全,而且可节省大量的工程投资和日常运行费用,因此具有安全性和经济性双重意义。城市取水工程涉及了市政工程、水利和环境等多学科交叉,包括的内容多、范围广,目前尚没有系统的风险分析理论和优化方法指导工程设计及运行管理,因此有必要对取水的水质、泵站的风险理论及优化方法进行深入系统地研究。在广泛查阅国内外文献的基础上,本文进行了如下几个方面的研究工作:
     (1)针对河流水质模型参数最小二乘(LS)估计方法关于有色噪声和较高水平白噪声干扰不具鲁棒性,噪声干扰使估计参数“漂离”系统真值,本文提出了一种水质模型参数的鲁棒估计方法——基于M-估计的估计方法,采用信赖域算法对估值模型进行求解。仿真试验表明,M-估计对于有色噪声和白噪声干扰具有鲁棒性,且估值精度、收敛性、抗噪性均优于LS估计。当河流水质监测数据序列较长时,采用小波消噪对监测数据进行预处理,仿真结果表明,小波消噪可消除随机噪声对水质模型参数估计的干扰,并能从监测数据分离出随机噪声,估计其噪声水平,为确定M-估计的阀值提供依据。
     (2)分析了影响水环境水质风险的不完善性和模糊性因素,提出了河流水质超标的模糊随机风险率计算模型。计算结果表明,将河流水质系统的不确定性归结为随机性,是不合理的,模糊风险率模型的计算结果与实际情况基本吻合。采用二种水质模糊安全状态定义对水质超标模糊风险率进行了计算,结果表明定义形式没有本质区别。引入了模糊事件信息熵评价隶属函数特征值取值的可靠程度,定量描述了隶属函数特征值与风险率的关系,提高了特征值的计算精度。
     (3)现行取水泵站的设计和调度方法使取水泵站存在很高的电机超载和泵站过流风险率。本文分析了取水泵站的工况特点及其影响因素,根据江河水位的变幅及其概率分布,建立了取水泵站运行过程中机组电机过载和泵站过流模糊随机风险率计算模型,计算结果与实际吻合,可为取水泵站的优化设计、科学调度提供科学的决策依据。
     (4)本文引入水污染控制总成本概念提出了多目标水质规划优化模型,以河流排放口的污水处理费用最小和水污染经济损失最小为优化目标。采用连续函数模拟退火算法对优化模型求解,提高了运算效率和稳定性。基于水质超标模糊风险率的水污染经济损失计量模型可将水质风险转化为经济损失,既考虑水质系统中的不确定性因素和水质风险性,又兼顾了河流水质规划经济性,使规划方案更
Safety of municipal water supply depends on reliability of water intake resources and works. Carrying out optimization of water intake resources and works based on risk analysis is very significant, not only improving reliability of water supply systems, but also saving construction investment and operation cost. Municipal water intake engineering, involving in mult1-sciences and engineering such as water resource management, environmental science and water engineering, has very extensive contents. However, nowadays there is not systemic risk analysis and optimization method being used in design and operation management of the municipal water intake engineering. It is necessary to further strengthen systemic theoretical research on risk analysis and optimization of municipal water intake engineering. After reviewing references, the following aspects are thus studied in this dissertation:
     1. Least squares (LS) estimation of water quality model parameters is not robust in case of occurring colored noises and high-level white noises, since the random noises drift the estimated parameters away from their true values. Based on M-estimation, a robust identification method for water quality model parameters was proposed, using trust region algorithm to solve parameter estimation model. The calculation results indicated that M-estimation has strong robustness to overcome the disturbance of noises, and comparison between the LS estimation and M-estimation further demonstrated that trust region algorithm based on M-estimation possessed high accuracy, excellent performance against noises and strong robustness as well as uniform convergent, which is obviously superior to LS estimation. In case of long serial data of water quality, the data was pre-treated using wavelet de-noise. Simulation results showed that wavelet de-noise did minimize the noises disturbance and estimated noise level in which aided to determine range of M- estimation.
     2. Both the imperfection and fuzziness which affecting water environmental quality were analyzed according to the fuzzy and random uncertainties in the systems of water environment. A method of fuzzy-stochastic risk for water quality risk analysis in water environment was proposed based on the fuzzy probability theory. The results of calculation are consistent with the facts and uncertainties of river water quality can not be considered stochastic. The risk rate of concentrations exceeding the threshold was calculated using two kinds of definition of fuzzy safety conditions and results showed that the two definitions are the same in essence. The theory of entropy was introduced to assess the credibility of selecting the characteristic value of the membership function, and the numeric calculation on fuzzy degree of risk was carried
引文
[1] 傅国伟. 河流水质数学模型及其模拟计算. 北京:中国环境科学出版社,1987:4-7
    [2] 徐祖良,廖振良. 水质数学模型研究的发展阶段与空间层. 上海环境科学, 2003,22(2):79-86
    [3] 郭劲松,李胜海,龙腾锐. 水质模型及其应用研究进展. 重庆建筑大学学报,2002,24(2):109-115
    [4] Seok S P,Yong S L. A water quality modeling study of the Nakdon. River Ecological Modeling,2002,152(3):65-75
    [5] Tim A W. Water Quality Analysis Simulation Program (WASP) Version610,Draft User’s Manual Region4. Atlanta:GA USEPAMS Tetra Tech Inc, 2001:20-25
    [6] U S Army Engineer Waterways Experiment Station. CE QUA R1 A Numerical One Dimension Model of Reservoir Water Quality User’s Manual.In Instruction Report E28721 Vicksburg. Mississippi:Environmental Laboratory,1986:102-105
    [7] US Army Corps of Engineers. Water ways Experiment Station1 CE QUAL W2 A Numerical Two Dimensional Laterally Averaged Model of HyDro dynamics and Water Quality User’s Manual Vicksburg. Mississippi : Environmental and Hydraulics Laboratories,1986:35-38
    [8] Vassilion A. Modeling and management of urban strom water runoff quality. Water Resources management,1997,36(11):137-139
    [9] 罗定贵,王学军,孙莉宁. 水质模型研究进展与流域管理模型 WARMF 评述. 水科学进展,2005,16(2):289-294
    [10] Melching,Charles S,Bauwens. Uncertainty in coupled nonpoint source and stream water quality models. Water Resources Planning & Management,2001, 127 (6):403-414
    [11] Michael D Sohn,Mitchel J,Small. Reducing uncertainty in site characterization using Bayes Monte Carlo methods. Journal of environmental engineering,2000, 126(10): 893-902
    [12] Sasikumar.K,Mujumdar P P. Fuzzy optimization model for water quality management of a river system. Journal of water esources planning andmanagement,1998,124(2):779-881
    [13] Hsu K,Yang R. Artifical neural network modeling of the rainfall runoff process. Water resources research,1995,31(10):2517-25301
    [14] 史忠科. 多河段非稳态河流水质模型研究. 自然科学进展,2002,12(10): 1075-1079
    [15] Babita T. Mathematical modeling of stream DO BOD accounting for settleable BOD and periodically varying BOD source. Environmental Modeling Software,1999,14(5):63-65
    [16] 傅国伟. 河流水质模型参数的“计算机扫描计算-图解-梯度搜索法”最优估值研究. 环境科学学报,1985,5(7):373-385
    [17] 何秉宇. 复合形法在水质模型参数优化估算中的应用研究. 新疆大学学报,1996,13(4):75-79
    [18] Jorgensen S E. An improved parameter estimation procedure in lake modeling. Lake & Reservoirs:Research and management,1998,3:139-142
    [19] Ann E Mulligan,Linfield C Brown. Genetic algorithms for calibrating water quality models. Journal of Environmental Engineering,1998,124(3):202-211
    [20] Jos A Vasquez,Holger R Maier,Barbara J Lence,et al. Achieving water quality system reliability using Genetic algorithm. Journal of Environmental Engineering,2000,126(10):954-962
    [21] T R Neelakantan, N V Pundarikanthan. Neural network-based simulation- optimization mode for reservoir operation. Journal of Water Resources Planning and Management,2000,126(2):57-64
    [22] 王薇,曾光明,何理. 用模拟退火法估计水质模型参数. 水利学报,2004, 23(6):61-67
    [23] 李海英,秦肖生. 综合性遗传算法用于水质模型参数估值. 中国给水排水,2002,18(5):28-30
    [24] 王建平,程声通. 遗传单纯形混合算法在复杂环境模型参数识别中的应用. 水利学报,2005,36(6):674-679
    [25] Zhou Yinkang,Ma Zhiyuan,Wang La chun. Chaotic dynamics of the flood series in the Huaihe River Baisn for the last 500 years. Journal of Hydrology, 2002,258(124):100-110
    [26] 郭建青,李 彦,王洪胜等. 利用混沌优化算法确定河流水质模型参数. 水力发电学报,2004,23(4):92-96
    [27] Neil McIntyre,Howard Wheater,MatthewLees. Estimation and propagation of parametric uncertain in environmental models. Journal of Hydroinformatics,2002, 4(3):177-198
    [28] 曾思育,陈吉宁,王志石. 基于不确定性分析技术的两种水质模型率定方法比较. 系统工程理论与实践,2004,33(2):138-141
    [29] Bard Y. Nonlinear parameter estimation. NewYork:Academic Press,1974: 13-17
    [30] 曾光明,杨春平,曾北危. 随机因素对江河水质模型参数最优估值影响. 中国环境科学,1994,15(5):319-337
    [31] Sage A P,White E B. Methodologies for risk and hazard assessment:A survey and status report. IEEE Transaction on Systems Man and Cybernetics,1980, 10(8):425-466
    [32] Aaron A , Jenning P , Suresh B. Risk penalty function hazardous waste management . Journal of Environmental Engineering,1986,112(1):105-122
    [33] Hengel W V,Kruitwagen P G. Environmental risks of inland water treatment transport. Water Science and Technology,1996,29(3):173-179
    [34] Suter G W. Treatment of risk in environmental impact assessment. Environmental Management,1987,11(3):295-303
    [35] Beck M B. Transient pollution events:Acute risks to the aquatic environment. Water Science and Technology,1996,33(2):1-15
    [36] 汪立忠,陈正夫,陆雍森. 突发性环境污染事故风险管理进展. 环境科学进展,1998,6(3):23-28
    [37] 贺锡泉. 非突发性风险研究. 中国环境科学,1990,10(3): 218-223
    [38] Jon C,Helton D. Treatment of uncertainty in performance assessments for complex systems. Risk Analysis,1994,14 (4):483-511
    [39] U S Water Resources Council. Procedures for evaluation of national economic development benefits and costs in water resources planning level C. Fed Regist,1979,44(102):30194-30258.
    [40] 付 湘,刘 宁,王丽萍等. 贝叶斯方法在洪水保险费调整中的应用. 水科学进展,2004,15(5):675-678
    [41] 陈小红,涂新军. 水质超标风险率的 CSPPC 模型. 水利学报,1999,22(12):1-5
    [42] 陈小红,涂新军. 一个水质风险率计算的随机模型. 环境科学学报,2000,20(3):290-293
    [43] Deng J. Control problems of grey systems. Systems&Con-trolLetters,1982,1(5):288-294
    [44] 胡国华,夏 军. 风险分析的灰色-随机风险率方法研究. 水利学报,2001,26(4):1-6
    [45] Moens D,Vandepitte D. Fuzzy finite element method for frequency response function analysis of uncertain structures. AIAA Journal,2002,40(1):126-136
    [46] Rao S S,Sawyer J P. Fuzzy finite element approach for the analysis of imprecisely definite systems. AIAA Journal,1995,33(12):2364-2370
    [47] 王光远,王文泉,段明珠. 具有多种失效模式的抗震结构的模糊可靠性分析. 力学学报,1988,20(3):278-282
    [48] Huang G H. Environmental risk assessment for underground storage tanks through an interval parameter fuzzy relation analysis approach. Energy Sources,1999,21(6):75-76
    [49] 何 理,曾光明. 用模糊模拟技术研究水环境中的可能性风险. 环境科学学报,2001,21(5):634-636
    [50] Moller B,Graf W,Beer M. Safety assessment of structures in view of fuzzy randomness. Computer & Structure,2003,81(5):1567-1582
    [51] Rao S S,Berke L. Analysis of uncertain structure systems using interval analysis. AIAA Journal,1997,35(4):725-735
    [52] Sarveswaran V,Smith J W,Blockley D I. Reliability of corrosion-damaged steel structures using interval probability theory. Structural Safety,1997,20(3): 237-2551
    [53] 苏静波,邵国建. 基于区间分析的工程结构不确定性研究现状与展望. 力学进展,2005,35(3):338-344
    [54] 刘国东,丁晶. 水环境中不确定性方法的研究现状与展望. 环境科学进展,1996,4(4):46-53
    [55] 李如忠,汪家权,钱家忠. 地下水允许开采量的未确知风险分析. 水利学报,2004,32(4):54-60
    [56] 叶常明. 环境科学的非线性理论及其意义. 环境科学,1994,16(3):79-83
    [57] Brown C B. The merging of fuzzy and crisp information. Journal of the Engineering Mechanics Division,ASCE,1980,106(4):623-640
    [58] Cai K Y. Fuzzy reliability theories. Fuzzy Sets and Systems,1991,40(3): 510-511
    [59] 黄平. 河流水质规划的随机方法研究. 中山大学学报,1989,28(1):68-75
    [60] 黄国如,胡和平,田富强等. 基于遗传算法的水污染控制系统规划. 清华大学学报,2002,42(4):551-554
    [61] 王 薇,曾光明. 模拟退火算法在水污染控制系统规划中的应用. 水电能源科学,2003,21(1):21-24
    [62] 申 玮,郭宗楼,刘国华. 直接搜索-模拟退火法在水污染控制系统规划中的应用. 水科学进展,2004,15(4):445-447
    [63] 秦肖生,曾光明. 利用灰区间解决费用函数线性化区间划分问题. 湖南大学学报,2001,28(1):83-87
    [64] 张祥伟,夏军. 河流水质大系统非线性规划的分解协调方法. 环境科学,1994,15(1):25-30
    [65] 曾光明,张国强,曾北危. 河流水质系统的灰色规划方法和应用. 中国环境科学,1994,14(4):289-294
    [66] 郭怀成,徐云麟,邹 锐. 不完备信息条件下流域环境系统规划方法研究. 环境科学学报,1999,19(4):4421-4426
    [67] L. D 詹姆斯. 水资源规划经济学. 北京:水利电力出版社,1984:79-83
    [68] China and Mongolia Department. China’s environment in the new century clear water blue skies. Washington D C: World Bank Report No16481 CHA,1997,12(4):213-218
    [69] 夏 光. 中国环境污染损失的经济计量与研究. 北京:中国环境科学出版,1998:67-71
    [70] Pearce D W,Warford J J. World without end:economics,environment,and sustainable development. New York:Oxford University Press,Inc,1993:143-149
    [71] David James , Huib Jansen , Hans Opschoor. Economic approaches to environmental problems-techniques and results of empirical analysis. Amsterdam:Elsevier Scientific Publishing Company,1978:332-338
    [72] Smil V. Environmental problems in China:estimates of economic costs. New York:East-West Center Specials,1996,5:56-61
    [73] 胡廷兰,杨志峰,程红光. 一种水污染损失经济计量模型及其应用研究. 北京师范大学学报,2000,36(5):706-710
    [74] 李锦秀,徐嵩龄. 流域水污染经济损失计量模型. 水利学报,2003,30(10):68-74
    [75] 朱发庆. 东湖水污染经济损失研究. 环境科学学报,1993,13(2):145-150
    [76] 程红光,杨志峰. 城市水污染损失的经济计量模型. 环境科学学报,2001, 21(3):318-32
    [77] 张江山,孔健健. 环境污染经济损失估算模型的构建及其应用. 环境科学研究,2006,19(1):15-17
    [78] 曹先常,史进渊,蒋安众. 基于模糊数学的电站设备故障风险定量研究. 中国电机工程学报,2005,25(23):119-123
    [79] 郭章林,刘俊娥. 输油管道泵站加压系统安全风险分析. 河北建筑科技学报学报,1999,16(4):64-67
    [80] 姜乃昌. 水泵及水泵站. 北京:中国建筑工业出版社,1998:47-59
    [81] 建设部. 泵站设计规范(GB/T50265297). 北京:中国建筑工业出版社,2002: 8-9
    [82] 张子贤,刘家春. 水泵机组运行的可靠度研究. 水利学报,2000,26(2):54-59
    [83] 张子贤,刘家春. 应用概率论方法确定给水泵站备用泵台数. 水泵技术,1996,12(3):47-48
    [84] 仇宝云,黄季艳,袁寿其等. 南水北调东线工程泵站电机过载问题研究. 水利学报,2005,36(2):243 -250
    [85] 郑大琼,王念慎,杨军. 多源大型供水管网的优化调度. 水利学报,2003,26(3):1-7
    [86] Kessler A, Shamir U. Decomposition technique for optimal design of water supply networks. Engineering Optimization,1991,17(1):1-9
    [87] Jeanine Jones,J Scott Matyca,Mortaza,Orang. Uses of A Long-term water Production Database. Journal AWWA,2001,46(5):84-94
    [88] 易丹辉. 统计预测:方法与应用. 北京:中国人民大学出版社,1990:67-72
    [89] 张雅君,刘全胜. 需水量预测方法的评析与择优. 中国给水排水,2001,17(7):27-29
    [90] Jowitt P W,Xu C. Demand Forecasting for Water Distribution Systems. Civil Engineering Systems,1992,45(9):101-105
    [91] Asbu Jain. Short-term Water Demand Forest Modeling Techniques—Convention Methods Versus AI. Journal AWWA,2002,94(7):64-72
    [92] 陆志波,陆雍森,王娟. ARIMA 模型在人均生活用水量预测中的应用. 给水排水,2005,31(10):97-101
    [93] 刘俊良,刘兴坡,张树军等. BP 神经网络在城市需水量预测中的应用. 河北建筑工程学院学报,2001,19(2):1-3
    [94] 单金林.利用 BP 网络建立预测城市用水量模型.中国给水排水,2001,17(8): 61-64
    [95] 卜义惠,赵洪宾,周建华. RBF 网络预测城市用水量模型. 中国给水排水, 2003,19(8):59-60
    [96] Crommelynck V, Daily H. Water Consumption Forecasting Tools Using Neural Networks. AWWA Computer Specialty Conf,1992:74-78
    [97] 谢衷洁. 时间序列分析. 北京:北京大学出版社,1990:46-50
    [98] 张雅君,刘全胜. 城市需水量灰色预测的探讨. 中国给水排水,2002,18(3): 79-81
    [99] 岳建平. 灰色动态神经网络模型及其应用. 水利学报,2003,26(7):120-123
    [100] 刘洪波,张宏伟,闫晓强. 城市供水管网水量预测的小波神经网络方法. 天津大学学报,2005,38(7):636-639
    [101] 刘勇健,沈 军. 城市需水量预测的混沌神经网络模型. 水电能源科学,2005, 23(1):15-27
    [102] 柳景青. 用水量时间观测序列中的分形和混沌特性. 浙江大学学报(工学版),2001,31(2):236-240
    [103] 柳景青,张士乔. 调度时用水量预测的分时段混沌建模方法. 浙江大学学报(工学版),2005,39(1):11-15
    [104] 李兵,蒋蔚孙. 混沌优化方法及其应用. 控制理论应用,1997,14(4):613-615
    [105] 吕谋,赵洪宾,李卫红. 城市日用水量预测的组合态建模方法. 给水排水,1997,23(11):25-27
    [106] 李 斌, 许仕荣, 柏光明等. 灰色-神经网络组合模型预测城市用水量. 中国给水排水,2002,18(2):66-68.
    [107] Tzafestas S G. Optimization and control of dynamic operational research models. North Holland:Prenti Heall,Inc,1992:246-262
    [108] Ormsbee L E, Lansey K E. Optimal control of water supply pumping systems. Journal of Water Resources Planning and Management, ASCE, 1994, 120(2): 237-252.
    [109] 张承慧,李洪斌,廖莉等. 变频调速给水泵站效率最优控制策略. 控制理论与应用,2004,34(3):470-474
    [110] 赵新华,李 霞. 多水源输配水系统的二级优化调度模型研究. 中国给水排水, 2004,20(8):17-20
    [111] 廖莉,林家恒,张承慧. 用遗传算法求解供水泵站的效率优化问题. 中国工程科学,2002,18(9):54-58
    [112] 吴凤燕,张雷,刘冬梅. 混合遗传算法在泵站优化运行中的应用. 水泵技术,2004,27(6):32-36
    [113] 廖 莉,张承慧,林家恒等. 基于胞腔排除双种群遗传算法的泵站优化调度. 控制理论与应用,2004,21(1):63-69
    [114] 鄢碧鹏,刘超. 混沌优化算法在泵站经济运行中的应用. 灌溉排水学报,2004,23(3):38-40
    [115] 侯岱云,李思海,车 强. 供水泵站变压变流量运行优化调度. 山东大学学报,2003,33(1):72-76
    [116] 何政斌,金海城,周炳强. 变频调速变压变流量供水设备的研制及运行效果分析. 给水排水,1998,24 (10):59-63
    [117] 程 芳,陈守伦. 泵站优化调度的分解协调模型. 河海大学学报, 2003,31(20):136-139
    [118] 龙新平,朱劲木,刘海清. 基于性能曲面拟合的泵站优化调度分析. 水利学报,2004,29(11):27-32
    [119] 李怀印. 考虑变速调节后的选泵设计. 给水排水,1994,22(2):44-46
    [120] 黄秉政. 调速泵供水设计几个问题的探讨. 给水排水,1994,22(4):40-43
    [121] 谷晋龙. 水泵调定混合给水系统运行工况分析研究. 给水排水,1997,23(12): 5-9
    [122] 吴建华,张平燕,李建龙等. 扬程变幅较大的供水泵站的优化设计. 农业工程学报,1997,21(2):100-104
    [123] 孟 浩,刘永林,赵海鹏. 调速水源泵站设计. 中国给水排水,1999,15(1): 41-45
    [124] 孙敏,杨晓东. 整数规划在水泵选型中的应用. 给水排水,1995,23(4):32-36
    [125] Little K,M Crodden B. Minimization of raw water pumping cost using MILP. Journal of Water Resources Planning and Management,ASCE,1989,115(4): 511-522
    [126] 许仕荣. 取水泵站的工况特点及运行控制.湖南大学学报,1996,23(1): 125-128
    [127] 钱 健,吴志成等. 自来水厂取水设计流量合理性的探讨.中国给水排水,2001,17(8):43-47
    [128] 樊建军,胡晓东,张朝升. 取水泵站的优化设计与节能改造. 中国给水排水,2003,19(8):72-74
    [129] 刘德辅,亢清珍,韦 勇等. 海洋环境因素极值组合及设计标准. 水科学进展,1998,9(2):146-150
    [130] Liu D. Uncertainty and Joint Probability of Sea Ice loads. Acta Oceanologica snica,1995,14(3):439-445
    [131] Morton I D,Bowers J. Extreme value analysis in a multivariate offshore environment. Applied Ocean Research,1996,18(5):303-317
    [132] 欧进萍,肖仪清,段忠东等. 基于风浪联合概率模型的海洋平台结构系统可靠度分析. 海洋工程,2003,21(4):1-7
    [133] Coles S G,Tawn J A . Modelling extreme multivariate events. Journal of Royal Statistical Society,Series B,1991,53(2):377-392
    [134] Shenglian,Guo. Nonparametric variable kernel estimation with historical floodsand pale flood information. Water Resources research,1991,27(1):432-438
    [135] Huber P J. Robust statistics. New York:Wiley,1981:56-60
    [136] Gallant A R. Nonlinear Statistical Models. New York:Wiley,1987:12-14
    [137] Dutter R,Huber P J. Numerical methods of the nonlinear robust regression Problems. J Stat Comp Sim,1981,13(2):79-113
    [138] Wu Y H, Tam K W. M-estimation in exponential signal models,IEEE Trans on Signal processing,2001,49(2):373-380
    [139] Kim Eung Tao,Kim Hyung-Myung. Fast and rubust parameter estimation method for global motion compensation in video coder. IEEE Transaction on Consumer Electronics,1999,45(1):76-83
    [140] H Dai,N K Sinha. Robust coefficient estimation of walshfunctions. IEEE Proc-D,1990,137(6):357-363
    [141] Powell M J. On the global convergence of trust region algorithm for unconst rained minimization. Math Programming,1984,29(7):297-303
    [142] Jiang H,Fukushina M,Qi L et al. A trust region method for solving generalized complementary problem. SLAM J Optim,1998,56(8):140-157
    [143] 马江洪,张文修. 非线性回归 M-估计的信赖算法. 高等学校计算数学学报,2000,14(4):319-324
    [144] 李进华,戴君. 正态随机噪声的产生算法及产生卡设计. 电子机械工程,2002,18(2):14-16
    [145] Donobo,D H De. Noising by soft-thresholding. IEEE Transactions on inform theory,1995,41(3):613-617
    [146] Mallat S G. A theory for multi-resolution signal decomposition:the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11 (7):674-693
    [147] Bui T D, Chen G. Translation invariant de-noising using multiwavelets. IEEE Transactions on Signal Processing,1998,46(12):3414-3420
    [148] 祝海龙, 郭天佑, 屈梁生. 基于二进小波变换和软阀值改进的信号消噪. 自动化学报,2004,30(2):199-206
    [149] Wen-XianYang,Peter W. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition. NDT and E International,2003 ,36(6):419-432
    [150] Kaufmann A. Introduction to the fuzzy subsets. New York:Academic Press, 1975:202-209
    [151] Tanaka H, Fan L T, Lai F S et al. Fault-tree analysis by fuzzy probability. IEEETransactions on Reliability,1983,32(5):453-457
    [152] Bowles J B,Pelaez E C.Fuzzy logic prioritization of failures in a system failure mode effects and criticality analysis.Reliability Engineering and System Safety,1995,50(6): 203-213
    [153] 李阳星,李光煜. 基于熵理论的齿轮强度的模糊可靠性设计. 机械设计, 2004,21(2):38-40
    [154] 董玉革. 随机变量和模糊变量组合时的模糊可靠性设计. 机械工程学报,2000,36(6):25-29
    [155] Haimes Y Y,Das S. Multi objective land use planning for momee river basin prepared for Joint. Ohio,USA :Greet Lakes management committee Cleve, 1981:49-58
    [156] Slowinski R,Teghem J. Stochastic vs fuzzy approaches to multi objective mathematical programming under uncertainty. Dordrecht:Kluwer Academic Publishers,1990:77-80
    [157] Zimmermann H J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems,1978,44(1):45-55
    [158] Huang G H,Baetz B W,Patry G G. A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems,1992,56(9):319-335
    [159] Huang G H,Baetz B W,Patry G G. A fuzzy grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems,1993,35(10):123-146
    [160] Huang G H,Xu Y L,Guo H C. Integrated environmental planning for sustainable development in Lake Erhai basin with a diagnostic study for local environmental concerns. Nairobi: United Nations Environment Programme,1996:321-329
    [161] Wu S M,Huang G H,Guo H C. An interactive inexact-fuzzy approach for multi objective planning of water resource systems. Water Science & Technology,1997,36(5):235-242
    [162] Kirkpatrick S,Gelatt C D,VechiJr M P. Optimization by simulated annealing. Science,1983,220(6):671-680
    [163] M M Ali,A Yorn,S Viitanen. A direct search variant of simulated algorithm for optimization involving continuous variables. Computers & Operation Research, 2002,29(4):87-102
    [164] R L Yang. Convergence of the simulated annealing algorithm for continuous global optimization. Journal of Optimization Theory and Application,2000,104(8): 691-716
    [165] 靳利霞,唐焕文,李斌等. 一类连续函数模拟退火算法及其收敛性分析. 计算数学,2005,27(1):19-30
    [166] Sobey R J. The distribution of zero-crossing wave heights and periods in a stationary sea. Ocean Engineering,1992,19(2):101-118
    [167] 费永法. 多元随机变量的条件概率计算方法及其在水文中的应用. 水利学报,1995,56(8):60-66
    [168] 史道济,阮明恕,王毓娥. 多元极值分布随机向量的抽样方法. 应用概率统计,1997,13(1):75-80
    [169] 仇学艳, 王 超, 秦崇仁. 多元概率分析方法在海洋工程中的应用现状. 海洋工程,2001,19(3):91-95
    [170] 宋迎东,张勇,温卫东等. 多参数载荷组合的概率分布研究. 航空动力学报,2001,28(4):331-339
    [171] 中山大学数学力学系. 概率论及数理统计. 北京:高等教育出版社,1980:118-123
    [172] Chow T W S,Leung C T. Neural network based short-term load forecasting using weather compensation. IEEE Trans,Power System,1996,11(4):1736-1742
    [173] Gallagher D R,Boland J J,Le Plastrier B J et al. Methods for Forecasting Urban Water Demands. Australian:Australian water resources council,1981:5-8
    [174] Upmanu Lall,Ashish Sharma. A nearest neighbor bootstrap for re sampling hydrologic time series. Water Resources Research,1996,32(3):679-693
    [175] Bates J M,Granger C W J. Combination of forecasts. Operations Research Quarterly,1969,20(4):451-468
    [176] Reeves G R,Lawrence K D,Combining forecasting given different types of objectives. European Journal of Operational Research,1991,51(1):24-27
    [177] Bunn D W. Combining forecasting. European Journal of Operational Research, 1998,33(3):223-229
    [178] 马永开,唐小我. 线性组合预测模型优化问题研究. 系统工程理论与实践, 1998,18(9):110-114
    [179] 董景荣. 一种新的基于模糊模型的非线性组合预测方法及其应用. 系统工程理论与实践,2000,20(5):109-144
    [180] 李元诚,李波,方廷健. 基于小波支持向量机的非线性组合预测方法研究. 信息与控制,2004,33(3):303-306
    [181] 苏怀智,温志萍,吴中如等. 大坝安全性态的非线性组合监控. 水利学报, 2005,36(2):197-202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700