用户名: 密码: 验证码:
镁合金的腐蚀行为与防护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了压铸镁合金AZ91D和镁基复合材料AZ91D/TiC_p的腐蚀行为以及镁合金的防护。AZ91D的腐蚀为局部腐蚀,从点蚀开始,随浸没时间的增加向深度和广度扩展。腐蚀机理为:当表面膜完全覆盖合金表面或阴极极化时,阴极和阳极的反应速率(电流密度)为I_a~I_(ap)exp[(E-E_(ae))/b_(ap)], I_c~I_(cp)exp[-(E-E_(ce))/b_(cp)];当表面膜开始破坏时或阳极极化超过临界值时,阴极和阳极的反应速率(电流密度)为I_a =θ(E,pH,Y)I_(a0)exp[(E-E_(ae))/b_(a0)];I_c=θ(E,pH,Y)I_(c0)exp[-(E-E_(ce))/b_(c0)]。AZ91D/TiC_p腐蚀也从点蚀开始,随浸没时间的增加,腐蚀速率增大。TiC_p的加入造成镁合金耐蚀性能的下降。在相同条件下,其耐蚀性能远远低于压铸AZ91D。采用乙酸盐-高锰酸盐、磷酸盐、乙酸镍在压铸镁合金AZ91D上分别得到乙酸盐高锰酸盐转化膜、磷化膜和化学镀镍层。腐蚀实验结果表明磷花膜耐蚀性较差,乙酸盐-高锰酸盐转化膜和化学镀镍层的耐蚀性较好。化学镀镍层电极电位比镁合金基体提高约1000mV,因此它镁合金防护中较好的一种方法。在室温大气条件下用电化学方法在化学镀镍涂层上合成了聚吡咯膜,该聚吡咯膜有望在镁合金的防护领域取得应用。
With increasing requirements of vehicles lightweight and environmentprotection, magnesium alloys have been used widely in automobile industry.However, the corrosion issue of magnesium alloys has not yet been understoodcorrectly. In consequence, it is essential for promoting magnesium alloysapplication, enhancing development of our country magnesium industry andaccelerating the proceeding of vehicles lightweight by research on the corrosionbehaviour of magnesium alloys, discussion for corrosion mechanisms ofmagnesium alloys and searching protective methods of magnesium alloys fromattack. The paper is investigated on the corrosion behaviours and corrosionmechanisms of die cast magnesium alloy AZ91D and as-cast AZ91D/TiC_p incorrosive media, and evaluated improving corrosion resistance for die cast AZ91Dmagnesium alloy with protections on die cast AZ91D by chromate-free conversionfilm treatments, electroless nickel plating and polymer coating. It will providepreparatory theoretical preparedness for further application of magnesium alloys inpractice.
    It is different for corrosion behaviour of die cast AZ91D in distilled water and3.5% NaCl solution. Die cast AZ91D was corroded very slowly in distilled water.The open circuit potential decreased with temperature increase either in distilledwater or in 3.5% NaCl solution. Corrosion resistance of magnesium alloysdecreased at higher temperature in the same medium. At the same temperature, the
    corrosion potential of die cast AZ91D moved negatively and corrosion resistancebecame poor when it was exposed in the solution containing aggressive chlorideCl-ions. Pitting is major corrosion type. Pits occurred on the surface of magnesiumalloys at random and propagated on the surface and deeply penetrated withimmersion time increase. The corrosion rate decreases with immersion timeextending. Corrosion mechanism is accorded with surface film mechanism onmagnesium alloys. When the surface film of magnesium alloy is nearlycomplete or cathodic polarisation is applying, the anodic and cathodic reactionrates can be given as Ia~Iapexp[(E-Eae)/bap],Ic~Icpexp[-(E-Ece)/bcp];when thesurface film begins to break down as the applied potential is increased above acritical value, the anodic and cathodic reaction rates can be given as Ia =θ(E,pH,Y)Ia0exp[(E-Eae)/ba0];Ic=θ(E,pH,Y)Ic0exp[-(E-Ece)/bc0].The microstructure of as-cast AZ91D/TiCp consists of primary α phase withAl dissolved , Mg-Al intermetallic compound Mg17Al12 (The amount of β phasewas less and coarse) and TiC particles TiCp. TiC particles were distributednon-uniformly and presented spherical shape with average diameter 1-2μm.Corrosion rate of AZ91D/TiCp in 3.5%NaCl solution increased remarkably. It wasabout three times faster than die cast AZ91D. Attack began from pits. No passivefilm formed on AZ91D/TiCp , which led to corrosion resistance of AZ91D/TiCpwas not been improved, in contrast, reduced. At the same conditions, corrosionresistance of AZ91D/TiCp was far poor than die cast AZ91D.The corrosion resistance of coatings, which were gotten by dacromet,dacromet+organic lacquer, micro-arc anodizing and organic lacquer to protect diecast magnesium alloy from attack, was investigated through salt spray. The resultshowed that the corrosion resistance of coatings for magnesium alloy by organiclacquer and micro-arc oxidization were better than that by dacromet anddacromet + organic lacquer. Corrosion resistance of dacromet + organic lacquercoating was the worst in these four methods and poorer than naked die castmagnesium alloys.A Chrome-free chemical conversion film on die cast magnesium alloy
    AZ91D was formed by acetic salt-permanganate solution. The film was yellowand squama-like and composed of Mg and Mn oxide and Mg, Mn hydroxid.Corrosion potential shifted about 30mV than die cast magnesium alloy AZ91D in3.5% NaCl solution. The conversion film was almost non-corroded in 3.5% NaClsolution for 24h. The corrosion mechanism is the same as die cast magnesiumalloys and also described by surface film mechanism. When the electrode potentialis lower than its corrosion potential, the conversion film is not corroded;when theelectrode potential is higher than its corrosion potential, the conversion film beginsto break down and magnesium alloy surface is corroded. This chrome-freeconversion film has better protective effect for magnesium alloy.The phosphation treatment included ultrasonic degreasing, alkaline cleaningand phosphatation, omitting pickling and activacation. Phospation films on diecast magnesium alloy AZ91D presented different morphologies in phosphationbaths. In the bath only containing the phosphoric acid, the phosphate ions and theaccelerator agents NaNO3/NaNO2, no crystalline structure coatings were formedon magnesium alloy suface and visible cracks in the chemical conversion filmwere observed, which was conmosed of amorphous Mg3(PO4)2 and Mg17Al12;Thefilm formed in the bath containing Zn2+ ions was lamelated and consists of Znand hopeite;the crystallized film was flower-like and the nuclei and growth werefaster than the others when the bath containing Zn2+ and F-ions and the film wasmade up of hopeite. Phosphatation treatment is a kind of electrochemical process.On the microanodic sites, magnesium is dissolved;and on the microcathodic sites,hydrogen evolution and insoluble phosphate precipitation occurred. Magnesiumreacts with hydrogen ions in the solution. Hydrogen ions are consumed, whichaccelerates free phosphoric acid ions PO43-formation, the phosphoric acid ionscombining with zinc ions to form an insoluble zinc phosphate(hopeite). Zincphosphate precipitates on the microcathodic sites when it is exceeded its solubilityin the solution. It was showed that these phospatation films enabled to improvecorrosion resistance of mangensium alloys to some extent by polarisation curves in3.5% NaCl solution. The film with zinc and hopeite had better corrosion resistance
    than others due to its corrosion potential was highest among them. Immersion testshowed that protection of phospatation films for magnesium alloys was not good.Electroless nickel-plating on die cast AZ91D magnesium alloy wasinvestigated by nickel acetate as main salt. The process concluded ultrasonicdegreasing, alkaline cleaning, acid pickling, fluoride activating andelectroless-nickel plate. The alkaline cleaning did not etch the surface. Afterchrome-nitric pickling and fluoride activation, the sample surface was etched andcrevices were observed. The autocatalytic reaction for nickel deposition is initiatedby catalytic dehydrogenation of the reducing agent with release of hydride ions,which then supplies electrons for the reduction of nickel ions. Hypophosphite ionsacting with H2O form hydrogen ions H+, hydrogen atoms H and phosphite ions;Nickle ions reduced by hydrogen atoms H become nickel;at the same time,hypophosphite ions acting with hydrogen atoms form H2O, OH-and P;hypophosphite ions and hydrogen atoms react by catalytic action to form H+,HPO32-and H2. These actions circulating time by time lead to the deposition ofnickel and phosphorus on the magnesium alloy. Nickle has been preferentiallynucleated on the crevices and it is formed on primary α-phase after the crevicesare covered. The coating was consist of nickle dissolved phosphorus which wasabout 4% in the deposition. The microstructure of the coating was compact andaverage diameter of most Ni particles was 2-4 μm. The adhesion was evaluatedby a heat-quench test and scratch test. The result suggested the excellent adhesionof the plating coating to the die cast AZ91D alloy substrate. The open circuitpotential of the Ni–P coating with time immersed in 3.5% NaCl solutionapproached to -0.36V(SCE). The corrosion potential shifted 1000mV bypolarization in 3.5% NaCl solution. This indicated the significantly improvedcorrosion resistance of the plating coatings compared with the bare magnesiumalloy. The coating was not corroded immersed in 3.5% NaCl solution for 24h. Alsothe coating covered with an organic coating was not attacked immersed in 3.5%NaCl solution for 240h. The results showed that Ni-P coating had good corrosionresistance for magnsiusm alloys. Eletroless nickel coating and the conversion film
    by acetic salt-permanganate solution provided good protection for magnesiumalloys among the conversion film by acetic salt-permanganate solution,phospatation films, eletroless nickel plating coating. It was believed that eletrolessnickel plating was a better measure for protection of magnesium alloys because ofthe higher corrosion potential of Ni-P coating.Since late 1970's a high polymer was reported first, conductive high polymershave been new materials merged into metals and polymers. One of the mostimportant applications is used as a coating to protect metals from corrosion. Undercertain electrochemical conditions, conductive polymers act with metals to achieveprotection. A polypyrrole(Ppy) film was synthesized by electropolymerization onthe electroless nickel planting coating, which was deposited on die cast magnesiumalloy AZ91D, in an aqueous solution with pyrrole monomer and tartrate. Thepolypyrrole film was like cauliflowers, unconpact and weak adhesion to thesubstrate. The composition of the polypyrrole film was simple compared withpyrrole monomer. IR spectrum of Ppy film showed that there were N-H strongbroad band flexible vibration absorbed peak near 3431cm-1, C=C flexible vibrationabsorbed peak near 1618cm-1, CH3 bend vibration absorbed peak near 1396 cm-1and 1384 cm-1,and C-N flexible vibration absorbed peak on the ring near 1089cm-1. The mechanism of Ppy film is that pyrrole monomer is oxidated to positiveradicel by loosing a hydrogen ion;positive radicels react with each other, 2polymerization, 3 polymerization … until the chain molecule is formed with npolymer degree. Counter anions are doped in constant proportion between positiveradicels. Synthesis process of polypyrrole at room temperature and charateristics ofpolypyrrole film are required to be investigated further and it will be a promisingmethod for corrosion protection of magnesium alloys.
引文
[1] 陈振华等. 镁合金[M]. 化学工业出版社,材料科学与工程出版中心,北京,2004年 7 月: 2-5.
    [2] 曾荣昌,柯伟,徐永波,韩恩厚,朱自勇. Mg 合金的最新发展及应用前景[J]. 金属学报. 2001, Vol.37, No.7: 673-685.
    [3] E.F.Emley. Principles of Magnesium Technology[M]. Pergamon Press, New York ,1966: 1-5.
    [4] I. J. Polmear. Light Alloys, Metallurgy of the Light Metals[M]. Edward Arnold, Sevenoaks, UK 1989, 2nd ed.: 5-10.
    [5] 吴振宁, 李培杰, 刘树勋, 曾大本. 镁合金腐蚀问题研究现状[J].铸造.2001, Vol.50, No.10: 583-586.
    [6] R.Udhayan, Devendra Prakash Bhatt. On the corrosion behavoiur of magnesium and its alloys using electrochemical techniques[J]. Journal of Power Sources.1996, Vol.63: 103-107.
    [7] N.S. Mcintyre, C. Chen. Role of impurities on Mg surfaces under ambient exposure conditions[J]. Corrosion Science.1998, Vol 40, No.10 : 1697-1709.
    [8] 许越,陈湘,吕祖舜,周德瑞,赵连城.镁合金表面的腐蚀特性及其防护技术[J]. 哈尔滨工业大学学报.2001,Vol.33,No.6: 753-757.
    [9] A.Gebert, U.Wolff, A.John, J.Eckert. Corrosion behaviour of Mg65Y10Cu25 metallic glass[J]. Scripta mater. 2000, Vol.43: 279-283.
    [10] H.Inoue, K.Sugahara, A.Yananoto, H.Tsubakino. Corrosion rate of magnesium and its alloys in buffered chloride solutions[J].Corrosion Science. 2002,Vol.44: 603-610.
    [11] R.Tunold, H.Holtan, M.-B.Hagg Berfe, A.Lasson, R.Steen-Hansen.The corrosion of magnesium in aqueous solution containing chloride ions[J]. Corrosion Science. 1977, Vol.17: 353-365.
    [12] G.L.Makar, J.Kruger, A.Joshi. The effect of alloying elements on the corrosion resistance of rapidly solidified magnesium alloys[C]. Advances in Magnesium Alloys and Composites, International Magnesium Association and the Non-Ferrous Metals Committee.TMS, Phoenix, Arizona, January 26,1998: 105-121.
    [13] Guangling Song and Andrej Atrens.Corrosion mechanisms of magnesium alloys[J]. Advanced Engineering Materials.1999,1, No.1: 11-33.
    [14] Wenyue Zheng, C. Derushie, R.Zhang, J.Lo. Protection of Mg alloys for structural applications in automobiles[C]. 2004 SAE World Congress, Detroit, Michigan, USA, 2004: 1-20.
    [15] S.K.S.Parasher, D.K.Basu, M.K.Banerjee. Localised/galvanic corrosion of Mg-Zn-Al alloy[J]. Journal of Metakkurgy and Materials Science. 2003,Vol.45,No.3: 137-141.
    [16] Harald Schreckenberger, Matthias Papke, Stephan Eisenberg.The magnesium hatchback of the 3-liter car: Processing and corrosion protection[C]. SAE 2000 World Congress, Detroit, Michigan, USA, Mar.06-09, 2000: 1-9.
    [17] Otto Lunder, Marianne Videm, Kemal Nisancioglu. Corrosion resistant magnesium alloys[C]. SAE International Congress and Exposition, Detroit, Michigan,USA, 1995: 1-8.
    [18] J. I.Skar. Corrosion and corrosion prevention of magnesium alloys[J]. Materials and Corrosion.1999, Vol.50: 2-6.
    [19] Guangling Song, Birgir Johannesson, Sarath Hapugoda, David StJohn. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J] . Corrosion Science.2004, Vol.46: 955–977.
    [20] A.Tahara, T. Kodama. Potential distribution measurement in galvanic corrosion of Zn/Fe couple by means of Kelvin probe[J]. Corrosion Science. 2000,Vol.42: 655-673.
    [21] M.Starostin, A.Smorodin, Y.Cohen, L. Gal-Or, S. Tamir.Galvanic corrosion of magnesium alloys[C]. In: E. Aghion, D. Eliezer (Eds.), Magnesium 2000, Proceedings of the Second Israeli International Conference on Magnesium Science and Technology, Dead Sea, Israel, 2000: 363-370.
    [22] G.Gao, G.Cole, M.Richetts, J.Balzer, P.Frantzeskakis. Effects of fastener surface on galvanic corrosion of automotive magnesium components[C]. Magnesium 2000, Proceedings of the Second Israeli International Conference on Magnesium Science and Technology,Dead Sea, Israel, 2000: 321-338.
    [23] D.L.Hawke. Galvanic corrosion of magnesium[C]. SDCE 14th International Die Casting Congress and Exposition, Toronto, Canada, May 1987, Paper No. G-T87-004.
    [24] J.Senf, E.Broszeit, M. Gugau, C. Berger, Corrosion and galvanic corrosion of die casted magnesium alloys[C]. In: H.I. Kaplan, J. Hryn, B. Clow (Eds.), Magnesium Technology 2000, TMS, Nashville, 2000: 137-142.
    [25] E. Boese, J.Gollner, A.Heyn, J.Strunz. Galvanic corrosion behaviour of magnesium alloy in contact with coated components[J].Materials and Corrosion. 2001,Vol.52: 247-256.
    [26] Dong Chaofang, Xiao Kui, Li Jiuqing, Li Xiaogang, Wei Dan. Atmospheric corrosion evaluation of AM50 magnesium Alloy coupled with different metales.16th International Corrosion Congress[CD], September 19-24, 2005, Beijing, China,P-03-Mg-27.
    [27] A.-M.Lafront, W.Zhang, S.Jin, R.Tremblay, D.Dub′e, E.Ghali. Pitting corrosion of AZ91D and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques[J].Electrochimica Acta (in press) : 1-13.
    [28] O. Lunder, J. E.Lein, S.M. Hesjevik, T.Kr. Aune, K. Ni ancio lu. Corrosion morphologies on magnesium alloy AZ91[J]. Materials and Corrosion.1994, Vol.45: 331-340.
    [29] R.G. Song, C. Blawert, W. Dietzel, A.Atrens. A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy[J].Materials Science and Engineering A ( in press).
    [30] Nicholas Winzer, Andrej Atrens, Guangling Song, Edward Ghali,Wolfgang Dietzel,Karl Ulrich Kainer, Norbert Hort and Carsten Blawert. A critical review f the stress corrosion cracking (SCC) of magnesium alloys[J].Advanced Engineering Materials. 2005,7,No. 8: 659-693.
    [31] F.Renner, H.Zenner. Fatigue strength of die-cast magnesium components[J]. Fatigue Fract Engng Mater Struct. 2002,Vol.25: 1157-1168.
    [32] M.F. Horstemeyer, N. Yang, K.Gall, D.Mcdowell, J. Fan and P. Gullett. High cycle fatigue mechanisms in a cast AM60B magnesium alloy[J]. Fract Engng Mater Struct.2002,Vol.25: 1045-1056.
    [33] M.O. Speidel, M. J. Blackburn, T. R. Beck, J. A. Feeney. Corrosion fatigue and stress corrosion crack growth in high strength aluminum alloys, magnesium alloys, and titanium alloys exposed to aqueous solutions[C].In Corrosion Fatigue: Chemisty, Mechanics, and Microstructure, NACE, Houston, TX 1986: 324-331.
    [34] R. I. Stephens, C. D. Schrader, K. B. Lease. Corrosion fatigue of AZ91E-T6 cast magnesium alloy in a 3.5 percent NaCl aqueous environment[J].Journal of Engineering Materials and Technology.1995, Vol.117, No.3: 293-298.
    [35] H.R.Mayer, Hj.Lipowsky, M.Papakyriacou et al. Application of ultrasound for fatigue testing of lightweight alloys[J]. Fract Engng Mater Struct. 1999,Vol.22: 591-599.
    [36] Zainuddin Bin Sajuri, Takashi Umehara, Yukio Miyashita, and Yoshiharu Mutoh. Fatigue-Life Prediction of Magnesium Alloys for Structural Applications[J]. Advanced Engineering Materials.2003,5, No.12: 910-916.
    [37] Guangling Song, DavidStJohn. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ[J].Journal of Light Metals,2002,Vol.2: 1-16.
    [38] A.Luo and M. O. Pekguleryuz. Cast magnesium alloys for elevated temperature applications[J]. Journal of Materials Science.1994,Vol.29,No.10: 5259 – 5271.
    [39] O. Lunder, T.Kr. Aune, K. Nisancioglu. Effect of Manganese Additions on the Corrosion Behavior of Mould-Cast Magnesium ASTM AZ91[J].Corrosion. 1987, Vol.43, No.5: 291-295.
    [40] D.Daloz, P.Steinmetz, G.Michot. Corrosion behavior of rapidly solidified magnesium-aluminum-zinc alloys[J]. Corrosion.1997, Vol.53: 944-954.
    [41] O.Lunder, J.E. Lein, T.Kr. Aune, K. Nisancioglu. The roll of Mg17Al12 phase in the corrosion of mg alloy AZ91[J]. Corrosion. 1989,Vol.45, No.9: 741-748.
    [42] T.Beldjoudi, C. Fiaud, L.Robbiola. Influence of homogenization and artificial aging heat treatments on corrosion behavior of Mg-Al alloys[J].Corrosion.1993,Vol.49: 738-745.
    [43] G.L.Makar, J.Kruger. Corrosion of magnesium[J]. Int.Mater.Rev.1993 , Vol.38: 138-153.
    [44] G.G.Perrault. The potential-pH diagram of the magnesium-water system[J]. J. Electroanalytical Chemistry. 1974, Vol.51: 107-119.
    [45] G.Song, A.Atrens, D.St.John, X. Wu, J. Nairn. The anodic dissolution of magnesium in chloride and sulphate solutions[J].Corrosion Science.Vol.39, No.10-11: 1981-2004.
    [46] J. D. Hanawalt, C. E. Nelson, J. A. Peloubet.The effects of alloying elements and impurities on corrosion rate of magnesium alloys[J]. Trans Metall Soc AIME, 1942, Vol.47: 273-299.
    [47] H.Jones, S. Joshi, R.G.Rowe, F.H.Froes. The current status of rapid solidification of Magnesium-base and Titanium-base alloys[J]. Int.J.Powder Metal.1987, Vol.23, No.1: 13-24.
    [48] K.Huber. Anodic formation of coatings on magnesium, zinc and cadmium[J]. J.Electrochem. Soc. 1953,Vol.100: 376-382.
    [49] O.Frhwirth, G.W.Herzog, I.Hollerer, A.Rachetti. Dissolution and hydration kinetics of MgO[J]. Surface Technology.1985,Vol.24: 301-317.
    [50] Marie-Hélène Grosjean, Moussa Zidoune, Lionel Roué, Jacques Huot, Robert Schulz.Effect of ball milling on the corrosion resistance of magnesium in aqueous media [J].Electrochimica Acta.2004,Vol.49: 2461–2470.
    [51] Guangling Song, Andrej Atrens, Xianliang Wu, Bo Zhang.Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride[J]. Corrosion science.1998,Vol. 40, No.10: 1769-1791.
    [52] G.Song, A.Atrens, D. St. John, J,Nairn, Y. li. The electrochemical corrosion of pure magnesium in 1 N NaCl[J].Corrosion Science.1997,Vol.39: 855-875.
    [53] G. L. Markar, J.Kruger. Corrosion studies of rapidly solidified magnesium alloys[J]. J Electrochem Soc.1990, Vol.137, No.2: 414-421.
    [54] G. Song, A. Atrens, M.Dargush. Influence of microstructure on the corrosion of die cast AZ91D[J]. Corrosion Science.1998, Vol.41, No.2: 249 – 273.
    [55] Harald Schreckenberger, Gunther Laudien. Processing and corrosion control of a magnesium body structure element[C].Materials for Transportation Technology (EUROMAT-Volume 1).2000: 30-34.
    [56] Zheng Xi-yan, Jiang Feng, Zhou Shhjie.Study on microstructure and properties of Mg-9Al-xZn Alloys[J]. Materials Science Forum.Vol.475-479 (Part 1) : 477-480.
    [57] A.Luo, T.Shinoda. A new magnesium alloy for automotive powertrain applications[J]. SAE Transactions.1998, Vol.107, No.5: 86-94.
    [58] 郭洪飞,安茂忠,刘荣娟.镁及其合金表面化学转化处理技术[J].轻合金加工技术.2003,Vol.31, No. 8: 35-38.
    [59] 周婉秋,单大勇,曾荣昌,韩恩厚,柯伟.镁合金的腐蚀行为与表面防护方法[J].材料保护.2002,Vol. 35,No.7: 1-3.
    [60] P. L. Hagans, C.M.Hass. Chromate conversion coating[J]. Surface Engineering.1994, No. 5: 10-13.
    [61] J. E. Gray, Luan B.Protective coatings on magneisum and its alloy – a critical review[J]. Journal of Alloys and Compounds.2002,Vol.336: 88-113.
    [62] 钱建刚,李荻,郭宝兰. 镁合金的化学转化膜[J].材料保护.2002, Vol.35, No.3: 5-6.
    [63] 曾爱平,薛颖,钱宇峰等. 镁合金的化学表面处理[J]. 腐蚀与防护. 2002, Vol.21, No.2: 55-56.
    [64] 蔡启舟, 王立世, 魏伯康. 镁合金防蚀处理的研究现状及动向[J]. 特种铸造及有色合金.2 0 0 3, No.3: 33-35.
    [65] J. M. Leuzinger. Conversion coating of magnesium alloy surfaces [P].CA72661,1996.
    [66] D. Makoto, Mitsuo S.Susumu T. Coating pretreatment and coating method for magnesium alloy product [P]. JP6116739, 1994.
    [67] P. L.Hagans. Method of forming a chromate conversion coating for magnesium containing materials[P].US4569699,1986.
    [68] 吴纯素.化学转化膜[M].化学工业出版社,北京,1987: 124-144.
    [69] D.B 弗虽曼 著(侯钧达,吴哲译).磷化与金属预处理[M]. 国防工业出版社,1989,北京:10-45,131,132.
    [70] L.Kouisni, M.Azzi, M.Zertoubi, F.Dalard, S.Maximovitch. Phosphate coatings on magnesium alloy AM60 part 1: study of the formation and the growth of zinc phosphate films[J].Surface & Coatings Technology.2004,Vol.185: 58– 67.
    [71] L.Kouisni, M.Azzi, F.Dalard and S.Maximovitch. Phosphate coatings on magnesium alloy AM60 Part 2: Electrochemical behaviour in borate buffer solution[J].Surface and Coatings Technology.2005,Vol.192: 239-246.
    [72] L.Y. Niu, Z.H.Jiang, G.Y. Li, C.D. Gu, J.S. Lian. A study and application of zinc phosphate coating on AZ91D magnesium alloy[J].Surface & Coatings Technology .2006,Vol.200: 3021– 3026.
    [73] David Hawke and D.L.Albright. A Phosphate-permanganate Conversion Coating for Magnesium[J].Metal Fishing.1995, Vol.98, No.10: 34-38.
    [74] U.Hiroyuki. An investigation of the structure and corrosion resistance of a permanganate conversion coating on AZ91D magnesium alloys[J]. 2000, Vol.42: 275-288.
    [75] Ming Zhao, Shusen Wu, Jirong Luo, Y.Fukuda, H. Nakae. A chromium-free conversion coating of magnesium alloy by a phosphate–permanganate solution[J]. Surface & Coatings Technology ( in press).
    [76] Kwo Zong Chong, Teng Shin Shin. Conversion-coating treatment for magnesium alloys by a permanganate –phosphate solution[J]. Materials Chemistry and Physics. 2003, Vol.80: 191-200.
    [77] Naohiro U, Yoshiak K. Surface treated magneisum of magnesium alloy product, method of surface treatment and coating method[P]. JP1002929874A2,1999.
    [78] Naohiro U, Yoshiak K. Surface Treated magneisum of magnesium alloy product, primary treatment for coating and coating method[P]. JP11323571A, 1999.
    [79] M.A.Gonzalez-nunez, C.A. Nunez-lopez, P.Skeldon, G. E. Thompson, H.Karimzaseh, P. Lyon, T.E.Wilks. A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites[J]. Corrosion. 1995, Vol.37, No.11: 1763-1772.
    [80] C.S. Lin, H.C.Lin, K.M. Lin, W.C. Lai. Formation and properties of stannate conversion coatings on AZ61 magnesium alloys[J].Corrosion Science.2006,Vol.48: 93-109.
    [81] H.Umehara, M.Takaya, S.Terauchi. Chrome-free surface treatments for magnesium alloy[J]. Surface and Coatings Technology.2003, Vol.169-170: 666–669.
    [82] J.I.Skar, M.Walter, D.Albrigh. Non-chromate conversion coatings for magnesium die castings[C]. SAE International Congress and Exposition. 1997: 1-7.
    [83] H.Gehmecker. Chrome free pre-treatment of magnesium parts[C]. Proceedings of the 51st World Conference of. Magnesium, in: International Magnesium Association, May 17-19, Berlin, Germany 1994: 32-34.
    [84] Manuele Dabalà, Katya Brunelli, Enrico Napolitani, Maurizio Magrini.Cerium-based chemical conversion coating on AZ63 magnesium alloy[J]. Surface and Coatings Technology.2003,Vol.172: 227–232.
    [85] Amy L.Rudd, Carmel B. Breslin, Florian Mansfeld.The corrosion protection afforded by rare earth conversion coatings applied to magnesium[J].Corrosion Science .2000,Vol.42: 275-288.
    [86] M.P.Schriever. Non-chromated cobalt conversion coating[P].EP00488430A2, 1992.
    [87] 曲敬信,汪泓宏.表面工程手册[M].化学工业出版社,北京,1998: 210-225.
    [88] 蒲以明,张志强,杜荣. 镁及镁合金表面处理初探[J]. 铝加工.2003,25-26. :
    [89] 赵明,吴树森,罗吉荣,毛有武.镁合金无铬转化膜处理现状和前景[J].铸造.2003,Vol.52, No.7: 462-465.
    [90] T.F.Barton. Anodization of magnesium and magnesium based alloys[P]. US5792335, 1998.
    [91] P. Kurze, D. Banerjee, H.-J. Kletze. Method of producing oxide ceramic layers on barrier layer-forming metals and articles produced by the method[P]. US5385662, 1995.
    [92] Houng-Yu Hsiao, Hua-Chih Tsung, Wen-Ta Tsai. Anodization of AZ91D magnesium alloy in silicate-containing electrolytes[J].Surface & Coatings Technology.2005, Vol.199: 127– 134.
    [93] Houng-Yu Hsiao, Wen-Ta Tsai. Characterization of anodic films formed on AZ91D magnesium alloy [J]. Surface& Coatings Technology .2005,Vol.190: 299-308.
    [94] Zhiming Shi, Guangling Song, Andrej Atrens. Corrosion resistance of anodised single-phase Mg alloys[J]. Surface & Coatings Technology (in press).
    [95] Jun Liang, Baogang Guo, Jun Tian, Huiwen Liu, Jinfang Zhou, Weimin Liu, Tao Xu. Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate–KOH electrolyte[J]. Surface & Coatings Technology. 2005, Vol.199: 121 – 126.
    [96] Y.Q.Wang, K.Wu, M.Y. Zheng. Effects of reinforcement phases in magnesium matrix composites on microarc discharge behavior and characteristics of microarc oxidation coatings[J]. Surface & Coatings Technology (in press).
    [97] Hongping Duan, Keqin Du, Chuanwei Yan, Fuhui Wang. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D[J]. Electrochimica Acta (in press).
    [98] Li Weiping, Zhu Liqun, Li Yihong. Electrochemical oxidation characteristic of AZ91D magnesium alloy under the action of silica sol[J]. Surface & Coatings Technology (in press).
    [99] Qizhou Cai, Lishi Wang, Bokang Wei, Quanxin Liu. Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes[J]. Surface & Coatings Technology(in press).
    [100] Haruto Fukuda, Yasumichi Matsumoto.Formation of Ti–Si composite oxide films on Mg–Al–Zn alloyby electrophoretic deposition and anodization[J]. Electrochimica Acta .2005,Vol.50: 5329–5333.
    [101] H.F. Guo, M.Z. An. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosion resistance[J]. Applied Surface Science .2005,Vol.246: 229–238.
    [102] C.Blawert, V.Heitmann, W.Dietzel, H.M.Nykyforchyn, M.D. Klapkiv. Influence of process parameters on the corrosion properties of electrolytic conversion plasma coated magnesium alloys[J]. Surface & Coatings Technology. 2005, Vol.200: 68– 72.
    [103] Hongfei Guo, Maozhong An, Shen Xu, Huibin Huo. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy[J]. Materials Letters (in press).
    [104] M. Abulsain, A. Berkani, F.A. Bonilla, Y. Liu, et al. Anodic oxidation of Mg–Cu and Mg–Zn alloys[J]. Electrochimica Acta.2004,Vol.49: 899–904.
    [105] Y. Mizutani , S.J. Kim, R. Ichino , M. Okido. Anodizing of Mg alloys in alkaline solutions[J]. Surface and Coatings Technology.2003,Vol.169-170: 143-146.
    [106] S. Mato, G. Alcala, P. Skeldon, G.E.Thompson, D.Masheder, H. Habazaki d, K.Shimizu. High resistivity magnesium-rich layers and current instability in anodizing a Mg/Ta alloy [J]. Corrosion Science.2003,Vol.45: 1779–1792.
    [107] Yongjun Zhang, Chuanwei Yan, Fuhui Wang, Hanyi Lou, Chunan Cao. Study on the environmentally friendly anodizing of AZ91D magnesiumAlloy[J]. Surface and Coatings Technology.2002,Vol.161: 36-43.
    [108] Y.Q. Wang T, M.Y. Zheng, K. Wu. Microarc oxidation coating formed on SiCw/AZ91 magnesium matrix composite and its corrosion resistance[J].Materials Letters (in press).
    [109] 尹延红,佟国栋,刘海峰.压铸镁合金表面处理工艺研究[J]. 特种铸造及有色合金.2004, No.1: 53-55.
    [110] 周谟银,方肖露.金属磷化技术[M]. 中国标准出版社,北京,1999: 5-14.
    [111] 胡文彬,向阳辉,刘新宽,刘磊,丁文江. 镁合金化学镀镍预处理过程表面状况的研究[J]. 中国腐蚀与防护学报. 2001,Vol.21, No.6: 340-344.
    [112] 向阳辉.直接化学镀镍的初始沉积机制[J].上海交通大学学报.2000,Vol.34, No.12: 11638-1640.
    [113] 刘新宽, 向阳辉, 胡文彬, 丁文江. 镁合金化学镀镍层的结合机理[J].中国腐蚀与防护学报.2002,Vol. 22, No.4: 233-236.
    [114] 向阳辉, 刘新宽, 胡文彬, 赵昌正, 丁文江. 镁合金化学镀镍的磷含量控制[J]. 电镀与环保.2001,Vol.21, No.2: 25-27.
    [115] 刘新宽, 向阳辉, 胡文彬, 丁文江.镁合金上高耐蚀性组合镀层[J].电镀与环保.2004,Vol.24, No.6: 3-5.
    [116] 王赫莹, 李德高.镁及镁合金表面电镀镍工艺的研究[J]. 表面技术.2004, Vol.33,No.5: 48-49.
    [117] 李瑛,陈珏玲, 余刚, 刘正, 叶立元. 镁合金化学镀镍工艺的研究[J].电镀与环保. 2004,Vol. 24, No. 6: 22-26.
    [118] 赵海鹏, 张学敏.镁合金化学镀及其添加剂研究[J].表面技术. 2004,Vol.33, No.5: 35-39.
    [119] Hongwei Huo,Ying Li, Fuhui Wang.Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer[J].Corrosion Science. 2004, Vol.46: 1467–1477.
    [120] A.K.Sharma, M.R.Suresh, H.Bhojraj, H. Narayanamurthy, R.P. Sahu. Electroless nickel plating on magnesium alloy[J]. Metal Finish. March 1998: 10-18.
    [121] Rajan Ambat, W. Zhou.Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters[J]. Surface and Coatings Technology. 2004, Vol.179: 124–134.
    [122] Zhenmin Liu, Wei Gao. The effect of substrate on the electroless nickel plating of Mg and Mg alloys[J]. Surface & Coatings Technology (in press).
    [123] Jianzhong Li, Zhongcai Shao, Xin Zhang, Yanwen Tian. The electroless nickel-plating on magnesium alloy using NiSO4·6H2O as the main salt[J]. Surface & Coatings Technology. 2006, Vol.200: 3010– 3015.
    [124] Jianzhong Li, Yanwen Tian, Zhenqi Huang, Xin Zhang. Studies of the porosity in electroless nickel deposits on magnesium alloy[J]. Applied Surface Science. 2006,Vol.252: 2839–2846.
    [125] 马幼平,徐可为,潘希德,温维新,刘鹏飞. 表面扩渗 Al,Zn 处理对 ZM5 镁合金性能的影响[J]. 稀有金属材料与工程. 2005,Vol.34,No.3: 433-435.
    [126] 张津 , 孙智富 . AZ91D 镁合金表面热喷铝涂层研究 [J]. 中国机械工程 . Vol.13,No.23: 2057-2058.
    [127] 梁永政,郝远,杨贵荣,李元东. 镁合金 AZ91D 表面电弧喷涂铝工艺的研究[J]. 机械工程学报. 2005,Vol.29, No.3: 29-31.
    [128] Liqun Zhu, Guangling Song.Improved corrosion resistance of AZ91D magnesium alloy by an aluminium-alloyed coating[J]. Surface & Coatings Technology. 2006,Vol.200: 2834– 2840.
    [129] 许越,滕玉洁, 张勇, 李英杰. AZ91 镁合金稀土表面改性的研究[J]. 稀土. 2004,Vol.25, No.15: 13-14,29.
    [130] 谭昌瑶,王钧石. 实用表面工程技术[M].新时代出版社, 北京,1998: 167-180.
    [131] 文斯雄. 镁合金零件局部的抗蚀保护[J]. 电镀与精饰. 1999 ,Vol.21 No.5: 31-32.
    [132] 梁永正,郝远,张汉茹,贺清. 镁合金表面技术研究的近况[J]. 铸造设备研究. 2003, No.5: 48-51.
    [133] 钱元人,李永舫. 导电聚吡咯的研究[J]. 中国科学基金. 1996,No.3: 212-214.
    [134] 沙兆林,戴青云. 化学氧化法合成聚吡咯薄膜[J]. 化学研究与应用. 1998, Vol.10, No.4: 361-365.
    [135] 任丽,王立新,赵金玲,张福强,李佐邦. 导电聚合物及导电聚吡咯的研究进展[J]. 材料导报. 2002,Vol.16, No.2: 60-62.
    [136] S. Rapi, V. Bocchi, G. P. Gardini. Conducting polypyrrole by chemical synthesis in water[J]. Synthetic Metals.1988, Vol.24: 217-221.
    [137] S. Machida, S. Miyata, A. Techagumpuch. Chemical synthesis of highly electrically conductive polypyrrole[J]. Synthetic Metals. 1989,Vol.31: 311-318.
    [138] Fethi Bedioui, Muriel Voisin, Jacques Devynck. Electrochemistry of conducting polypyrrole films containing cobalt porphyrin Part 2. New developments and inclusions of metallic aggregates in the coordination polymer[J]. J Electroanal Chem. 1991, Vol.297: 257-269.
    [139] Fran?ois Girard, Siyu Ye, Guylaine Laperrière et al. Polypyrrole film electrodes electrochemically doped with tetrathiomolybdate anions: preparation and characterization[J]. J. Electroanal Chem.1992, Vol.334: 35-55.
    [140] Alain Deronzier, Maria-Jose Marques. Thion polymeric films of metal-dibenzotetraaza[14]annulene by electropolymerization of some γ,γ′-disubstituted complexes Part 2. Copper complexes[J]. J. Electroanal Chem. 1992, Vol.334: 247-261.
    [141] Alain Deronzier, Régine Devaux, Danièle Limosin, Jean-Marc Latour. Poly(pyrrole-metallotetraphenylporphyrin)-modified electrodes (Part 2)[J]. Journal of Electroanalytical Chemistry. 1992,Vol.324: 325-337.
    [142] 尹五生. 聚吡咯导电材料合成方法的进展[J].功能材料.1996,Vol.27,No.2: 97-102.
    [143] C.B. Breslin, A.M. Fenelon, K.G. Conroy. Surface engineering: corrosion protection using conducting polymers. Materials and Design. 2005, Vol.26: 233-237.
    [144] P. Ocón, A.B. Cristobal, P. Herrasti, E. Fatas.Corrosion performance of conducting polymer coatings applied on mild steel[J]. Corrosion Science. 2005,Vol.47: 649–662.
    [145] Y.F. Jiang, X.W. Guo, Y.H. Wei, C.Q. Zhai, W.J. Ding. Corrosion protection of polypyrrole electrodeposited on AZ91 magnesium alloys in alkaline solutions[J]. Synthetic Metals. 2003, Vol.139: 335–339.
    [146] V.-T. Truong, P.K. Lai, B.T. Moore, R.F. Muscat, M.S. Russo. Corrosion protection of magnesium by electroactive polypyrrolerpaint Coatings[J]. Synthetic Metals. 2000, Vol.110: 7–15.
    [147] 陈长军, 王东生, 郭文渊, 王茂才. 镁合金激光表面改性研究进展[J]. 材料保护. 2003,Vol.36, No.1: 25-26.
    [148] 赵文轸, 王汉功. 国外铝合金激光表面改性研究进展[J]. 表面工程.1996,No.1: 43-47.
    [149] A.Kousomichalis, L.Saettas, H.Badekas. Laser treatment of magnesium[J]. Journal of Materials Science. 1994,Vol.29: 6 43-6547.
    [150] 曾爱平, 薛颖, 钱宇峰等. 镁合金表面改性新技术[J]. 材料导报. 2000,Vol.14, No.3: 19-20.
    [151] G. Abbas, Z. Liu, P. Skeldon. Corrosion behaviour of laser-melted magnesium alloys[J]. Applied Surface Science.2005, Vol.247: 347–353.
    [152] J. Dutta Majumdar, R. Galun, B.L. Mordike, I. Manna. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy[J]. Materials Science and Engineering A. 2003,Vol.361: 119–129.
    [153] S.Y. Liu, J.D. Hu, Y. Yang, Z.X. Guo, H.Y. Wang. Microstructure analysis of magnesium alloy melted by laser irradiation[J]. Applied Surface Science. 2005, Vol.252 : 1723–1731.
    [154] D. Dubé, M. Fiset, A. Couture, I. Nakatsugawa. Characterization and performance of laser melted AZ91D and AM60B[J]. Materials Science and Engineering A. 2001,Vol.299: 38–45.
    [155] 赵文轸. 铝合金激光表面合金化的组织及性能[J]. 红外与激光工程.1996,Vol.25 , No.5: 24-29.
    [156] R. Galun, A.Weisheit, B.L.Mordike. Laser surface alloying of magnesium base alloy [J]. Journal of Laser Applications. 1996, Vol.6, No.12: 229-305.
    [157] 李强, 陈彦斌, 欧阳家虎. 激光熔敷耐磨涂层的研究现状与展望[J]. 宇航材料工艺.1 997, No.1: 13-18.
    [158] 郭伟, 徐庆鸿, 田锡唐. 激光熔敷的研究发展现状[J]. 宇航材料工艺. 1998,No.1: 1-8.
    [159] 胡木林, 谢长生, 王爱华. 激光熔敷材料相容性的研究进展[J]. 金属热处理. 2001,No.1: 1-8.
    [160] Z. Mei, L.F. Guo, T.M. Yue. The effect of laser cladding on the corrosion resistance of magnesium ZK60/SiC composite[J]. J ournal of Materials Processing Technology (in press).
    [161] J. Dutta Majumdar, B. Ramesh Chandra, B.L. Mordike, R. Galun, I. Manna. Laser surface engineering of a magnesium alloy with Al+Al2O3[J]. Surface and Coatings Technology. 2004, Vol.179: 297-305.
    [162] Yao Jun, G. P. Sun, Hong-ying Wang, S.Q. Jia, S.S. Jia. Lasr(Nd: YAG) cladding of AZ91D magnesium alloys with Al+Si+Al2O3[J]. Journal of alloys and compounds. 2006,Vol.401: 201-207.
    [163] R. Subramanian , S.Sircar, J. Mazumda. Laser cladding of Zirconium on magnesium for improved corrosion properties [J]. 1991,Vol.26: 951-956.
    [164] A. A. Wang, S.Sircar, J.Mazumda. Laser cladding of Mg alloys[J]. Journal of Materials Science. 1993, Vol.2 8: 5113-5122.
    [165] 王安安. 在纯镁上激光熔敷镁铝合金层提高表面的耐蚀性[J]. 应用激光. 1992,Vol.46, No.6: 2 44-2 48.
    [166] T. M. Yue, A. H. Wang and H. C. Man. Improvement in the corrosion resistance of magnesium ZK60/SiC composite by excimer laser surface treatment[J]. Scripta Mater. 1998, Vol.3 8, No.2: 191-198.
    [167] T.M.Yue, A.H. Wang and H.C. Man. Corrosion resistant enhancement of magnesium ZK60/SiC composite by Nd: YAG laser cladding[J]. Scripta Mater, 1999, Vol.40, No.3: 303-311.
    [168] 胡乾午, 杨泰平, 李志远等. 镁基金属复合材料表面激光熔敷铜合金研究[J]. 应用激光. 2001,No.8: 247-250.
    [169] 胡乾午, 刘顺洪, 李志远等. 镁基金属复合材料与不锈钢激光熔敷层的结合界面特征[J]. 材料热处理学报.2001,Vol.22,No.4: 31-35.
    [170] 陈长军, 王东生, 郭文渊等. 镁合金成品件的激光多层涂敷[J]. 应用激光.2002, No.2 : 76-79.
    [171] 陈宝清主编. 离子镀及溅射技术[M].国防工业出版社出版,北京,1990.11: 259-263.
    [172] M. Vilarigues, L.C. Alves, I.D. Nogueira et al. Characterisation of corrosion products in Cr implanted Mg surfaces[J]. Surface and Coatings Technology. 2002,Vol.158-59: 328–333.
    [173] X.B. Tian, C.B. Wei, S.Q. Yang, Ricky K.Y. Fu, Paul K. Chu. Corrosion resistance improvement of magnesium alloy using nitrogen plasma ion implantation[J]. Surface & Coatings Technology. 2005, Vol.198: 454– 458.
    [174] 陈学定, 韩文政主编. 表面涂层技术[M]. 机械工业出版社出版,北京,1994 年 5月: 147-150.
    [175] G. Reiners, M.Griepentrog. Hard coatings on magnesium alloys by sputter deposition using a pulsed d. c. bias voltage [J]. Surface & Coatings Technology. 1995,Vol.76-77: 809-814.
    [176] H.Hoche, H.J.Schroeder, H.Scheerer H. Tribological studies of CrN coated magnesium AZ91 at temperatures up to 250℃[J]. Surface & Coatings Technology, 1995,Vol.76-77: 809~814.
    [177] A.Yamamoto, A.Watanabe, K.Sugahara. Deposition coating of magnesium alloys with pure magnesium[ J ]. Mate Tran. 2001, Vol.42, No.7: 1237-1242.
    [178] A.Yamamoto.AFM Observations of Microstructures of Doposited Magneisum on Magneisum Alloy[J]. Materials Science Forum. 2000, Vol.350-351: 241-246.
    [179] Taubakno H. Formation of Magnesium Films of Magnesium Alloy by Vapor Deposition [J]. 2000, Vol.350-351: 235-240.
    [180] Guosong Wu, Xiaoqin Zeng, Wenbin Ding, Xingwu Guo, Shoushan Yao. Characterization of ceramic PVD thin films on AZ31 magnesium alloys [J]. Applied Surface Science (in press).
    [181] Ying Li, Tao Zhang, Fuhui Wang. Effect of microcrystallization on corrosion resistance of AZ91D alloy[J]. Electrochimica Acta (in press).
    [182] Xiaoqin Zeng, Guosong Wu, Shoushan Yao. Formation by reactive magnetron sputtering of TiN coating on Ti-implantedmagnesium alloy[J]. Materials Letters (in press).
    [183] N. Yamauchi, K. Demizu, N. Ueda, N.K. Cuong, T. Sone, Y. Hirose. Friction and wear of DLC films on magnesium alloy[J]. Surface & Coatings Technology. 2005, Vol.193: 277– 282.
    [184] H. Hoche, C. Blawert, E. Broszei,C. Berger. Galvanic corrosion properties of differently PVD-treated magnesium die cast alloy AZ91[J]. Surface & Coatings Technology. 2005,Vol.193: 223– 229.
    [185] Frank Hollstein, Renate Wiedemann, Jana Scholz, Characteristics of PVD-coatings on AZ31hp magnesium alloys[J]. Surface and Coatings Technology. 2003, Vol.162: 261-268.
    [186] Joachim Senf,Erhard Broszeit. Wear and Corrosion Protection of Aluminum and Magnesium Alloys Using Chromium and Chromium Nitride PVD Coatings[J]. Advanced Engineering Materials. 1999, 1, No. 2: 133-137.
    [187] H. Hoche, C. Rosenkranz, A. Delp, M.M. Lohrengel, E. Broszeit, C. Berger. Investigation of the macroscopic and microscopic electrochemical corrosion behaviour of PVD-coated magnesium die cast alloy AZ91[J]. Surface & Coatings Technology. 2005, Vol.193 : 178-184.
    [188] Hikmet Altun, Sadri Sen. The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy [J]. Materials and Design (in press).
    [189] Guosong Wu, Xiaoqin Zeng, Wenbin Ding, Xingwu Guo, Shoushan Yao. Characterization of ceramic PVD thin films on AZ31 magnesium alloys[J]. Applied Surface Science (in press).
    [190] 于兴文, 曹楚南. 达克罗技术研究进展[J]. 腐蚀与防护.2001, Vol.22, No.1: 1-4.
    [191] 于升学. 达克罗处理技术的现状与发展[J]. 电镀与涂饰. 2001, Vol. 20, No.3: 54-57.
    [192] 俞素骅. 表面处理的新技术——达克罗. 电镀与涂饰. 2003,Vol. 23, No. 2: 33-34.
    [193] 张伟明. 达克罗——当今世界表面处理的高新技术. 材料保护.1995,Vol.28,No.8: 19-20.
    [194] 李宁,陈玲,周德瑞,袁创新,谷云龙. 达克罗技术专利综述[J].材料保护.2000,Vol.33,No.6: 19-21.
    [195] 许乐生,李卫东. 山东机械. 2004, No.6: 39-41,57.
    [196] 胡会利, 李宁, 韩家军, 程瑾宁. 达克罗的研究现状[J]. 电镀与涂饰. 2005,Vol.24,No.3: 31-33.
    [197] 贾素秋,贾树胜,孙广平. 压铸镁合金涂层的耐蚀性研究. 昆明理工大学学报(理工版. 2004, Vol.29,No.133A: 51-54.
    [198] 尹延红,佟国栋,刘海锋. 压铸镁合金表面处理工艺研究[J]. 特种铸造及有色合金. 2004,No.1: 53-54.
    [199] 肖合森. 达可罗(DACROMET)在我国轿车工业的应用[J]. 电镀与涂饰.1998,Vol.17,No. 4: 25-27.
    [200] 曲志敏,黄金玲. 达克罗处理技术的应用研究概况[J]. 上海涂料. 2005,Vol.43, No.9: 30-31.
    [201] 肖合森. 达克罗处理技术的应用和发展预测[J]. 电镀与涂饰. 2004,Vol.23, No.2: 43-44,46.
    [202] 尹建军,李元东,梁卫东,郝远. 镁合金表面电镀锌的预处理工艺研究[J]. 甘肃工业大学学报. 2003, Vol.29, No.3: 36-38.
    [203] 李玉兰,刘江,彭晓东. 镁合金压铸件在汽车上的应用[J]. 特种铸造及有色合金.1999,增刊第一期: 120-122.
    [204] 李宁,黎德育. 镁合金压铸件的性能及表面处理[J]. 电镀与涂饰. 2002,No.8: 39-45.
    [205] 李青. 镁的表面处理[J]. 电镀与涂饰. 1995,No.6: 43-47.
    [206] B.L.Mordike, T. Ebert. Magnesium properties—application—potential[J]. Materials Science and Engineering A. 2001, Vol.302: 37-45.
    [207] Yongjun Zhang, Chuanwei Yan, Fuhui Wang et al. Study on the environmentally friendly anodizing of AZ91D magnesium alloy[J]. Surface and Coatings technology. 2002, Vol.161: 36-43.
    [208] F. Stippich, E. Vera, G. K. Wolf et al. Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation [J]. Surface and Coatings technology. 1998, Vol.103-104: 29-35.
    [209] 姚美意,周邦新. 镁合金耐蚀表面处理的研究进展[J]. 材料保护. 2001,Vol.34, No.10: 19-22.
    [210] Edward Ghall, Wolfgang Dletzel, Karl-Ulrich Kainer. General and localized corrosion of magnesium alloys: a critical review[J]. Journal of Materials Engineering and Performance, 2004, Vol.13, No.1: 7-23.
    [211] Guangling Song, Andrej Atrend, Matthew Dargusch. Influence of microstructure on the corrosion of diecast AZ91D[J]. Corrosion Science. 1999, Vol.41: 249-273.
    [212] Rajan Ambat, Naing Aung, W.Zhou. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy [J]. Corrosion Science. 2000, Vol.42: 1433-1455.
    [213] Gaia Ballerini, Ugo Bardi, Roberto Bignucolo and Giuseppe Ceraolo. About some corrosion mechanisms of AZ91D magnesium alloy[J]. Corrosion Science. 2005, Vol.47: 2173-2184.
    [214] S. Mathieu, C. Rapin, J. Hazan, P. Steinmetz. Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys[J]. Corrosion Science. 2000, Vol.44: 2737-2756.
    [215] J. Y. Josefowicz, J. J. DeLuccia, V. S. Agarwala ,G. C. Farrington. Atomic force microscopy observations of pitting corrosion and inhibition on 7075-T651 aluminum alloy in hydrochloric acid solutions[J]. Materials Characterization.1995, Vol.34: 73-79.
    [216] H.Hoche, C. Blawert, E. Broszeit, C. Berger. Galvanic corrosion properties of differently PVD-treated magnesium die cast alloy AZ91[J]. Surface and Coatings Technology. 2005, Vol.193: 223-229.
    [217] S.L. Winkler, M.P. Ryan, H.M.Flower. Pitting corrosion in cast 7XXX aluminium alloys and fibre reinforced MMCs[J]. Corrosion Science.2004, Vol.46: 893-902.
    [218] Guangling Song and Andrej Atrens. Understanding Magnesium Corrosion[J]. Advanced Engineering Materials. 2003,5, No.12 : 837-858.
    [219] A.R. Chambers. The machinability of light alloy MMCs[J]. Composites Part A .1996, Vol.27, No.2: 143-147.
    [220] Sanjay Kumar Thakur, Brij Kumar Dhindaw. The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness[J]. Wear. 2001,Vol.247 : 191–201.
    [221] Feng Wu, Jing Zhu, Yu Chen, Guoding Zhang. The effects of processing on the microstructures and properties of Gr/Mg composites[J]. Materials Science and Engineering A. 2000, Vol.277: 143–147.
    [222] J.M. Durand, M.Vardavoulias, M.Jeandin. Role of reinforcing ceramic particals in the wear behaviour of polymer-based model composites[J]. Wear.1995, Vol.181-183: 833-839.
    [223] Anders Weiland, Thomas Johannesson. Residual stress in fibre-and whisker-reinforced aluminium alloys during thermal cycling measured by X-ray diffraction[J]. Materials Science and Engineering A. 1995, Vol.190: 131-142.
    [224] R. Mogilevsky, S.R. Bryan, W.S.Wolbach, T.W. Krucek et al. Reactions at the matrix/reinforcement interface in aluminum alloy matrix composites[J]. Materials Science and Engineering A. 1995, Vol.191: 209-222.
    [225] E.Carre?o-Morelli, T. Cutard, R. Schaller, C. Bonjour. Processing and characterization of aluminium-based MMCs produced by gas pressure infiltration[J]. Materials Science and Engineering A. 1998,Vol.251: 48–57.
    [226] Jinhai Gu, Xiaonong Zhang, Mingyuan Gu. Mechanical properties and damping capacity of (SiCp + Al2O3 SiO2)/Mg hybrid metal matrix composite[J]. Journal of Alloys and Compounds. 2004, Vol.385: 104–108.
    [227] Franti? ek Chmelík, Pavel Luká?, Milo? Jane?ek, Florian Moll et al. An evaluation of the creep characteristics of an AZ91 magnesium alloy composite using acoustic emission[J]. Materials Science and Engineering A. 2002, Vol.338: 1-7.
    [228] S. Jayalakshmi, S. Seshan, S. Vkailas, K.Kumar, S.Srivatsan. Influence of processing and reinforcement on microstructure and impact behaviour of magnesium alloy AM100[J]. Sādhanā. 2004,Vol.29, Part 5: 509–523.
    [229] Subodh Kumar, Ashok Kumar Mondal, Hajo Dieringa, Karl-Ulrich Kainer. Analysing hysteresis and residual strains in thermal cycling curves of short fibre reinforced Mg-MMCs[J]. Composites Science and Technology. 2004, Vol.64: 1179–1189.
    [230] Subodh Kumar, Sudeep Ingole, Hajo Dieringa, Karl-Ulrich Kainer. Analysis of thermal cycling curves of short fibre reinforced Mg-MMCs[J]. Composites Science and Technology. 2003, Vol.63: 1805-814.
    [231] Franti? ek Chmelík, Pavel Luká?, Jens Kiehn, Barry L. Mordike, Karl-Ulrich Kainer, Terence G. Langdon. Characteristics of thermal cycling in a magnesium alloy composite[J]. Materials Science and Engineering A. 2002, Vol.325: 320–323.
    [232] S. Ravi Kumar,M.K. Panigrahi, S.K. Thakur, K.U. Kainer, M. Chakraborty, B.K. Dhindaw. Characterization of stress in reinforcements in magnesium based squeeze infiltrated cast hybrid composites[J]. Materials Science and Engineering A. 2006, Vol. 415: 207–212.
    [233] Florian Moll, Franti? ek Chmelík, Pavel Luká?,Barry Leslie Mordike, Karl-Ulrich Kainer. Creep behaviour of a QE22–SiC particle reinforced composite investigated by acoustic emission and scanning electron microscopy[J]. Materials Science and Engineering A. 2000, Vol.291: 246–249.
    [234] Cheng-ji Deng, M.L. Wong, M.W. Ho, Peng Yu, Dickon H.L. Ng. Formation of MgO and Mg–Zn intermetallics in an Mg-based composite by in situ reactions[J]. Composites: Part A. 2005,Vol. 36: 551–557.
    [235] R. Schaller. Metal matrix composites, a smart choice for high damping materials[J]. Journal of Alloys and Compounds .2003, Vol.355: 131–135.
    [236] 王连登. 原位反应生成粒子增强镁基复合材料的组织与性能[MD]. 福州大学硕士论文.
    [237] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang. In situ synthesis of TiC/Mg composites in molten magnesium[J]. Scripta Materialia. 2003,Vol.48: 1349-1354.
    [238] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, Q.F. Guan, H.Q. Liang. In situ synthesis of TiC from nanopowders in a molten magnesium alloy[J]. Materials Research Bulletin. 2003,Vol.38: 1387–1392.
    [239] H.Y. Wang, Q.C. Jiang, X.L. Li, F. Zhao. Effect of Al content on the self-propagating high-temperature synthesis reaction of Al–Ti–C system in molten magnesium[J]. Journal of Alloys and Compounds. 2004, Vol.366: L9–L12.
    [240] H.Y. Wang, Q.C. Jiang, Y.Q. Zhao, F. Zhao, B.X. Ma, Y. Wang. Fabrication of TiB2 and TiB2–TiC particulates reinforced magnesium matrix composites[J]. Materials Science and Engineering A. 2004, Vol.372: 109–114.
    [241] Q.C. Jiang, H.Y. Wang, J.G. Wang, Q.F. Guan, C.L. Xu. Fabrication of TiCp/Mg composites by the thermal explosion synthesis reaction in molten magnesium[J]. Materials Letters. 2003, Vol.57: 2580–2583.
    [242] 王惠远. 原位颗粒增强镁基复合材料的制备[D]. 吉林大学博士论文, 2004 年.
    [243] Jie Lan, Yong Yang, Xiaochun Li. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method[J]. Materials Science and Engineering A. 2004, Vol.386: 284–290.
    [244] C. A. Nunez, P. Skeldon, G.E. Thompson et al. The corrosion behaviour of Mg alloy ZC71/SiCp metal matrix composite[J]. Corrosion Science. 1995,Vol.37, No.5: 689-708.
    [245] 倪小平. 镁合金及其压铸件的表面处理[J]. 材料保护. 2001,No.9: 42-43.
    [246] 张永君,严川伟,王福会, 曹楚南. 镁的应用及其腐蚀与防护[J]. 材材料保护. 2002,Vol.35,No.4: 4-6.
    [247] Zhao Ming, Wu Shu-sen, Luo Ji-Rong et al. A chromium-free conversion coating of magnesium alloy by a phosphate–permanganate solution[J]. Surface & Coatings Technology. 2006,Vol.200, No.18-19: 5407-5412.
    [248] Wu Shu-sen, Zhao Ming et al. Properties of conversion coating of magnesium alloys by a phoaphate-permangante solution[J]. Materials Science Forum. 2005, Vols. 488-489: 665-668.
    [249] 雷作鍼,胡梦珍,金属的磷化处理[M]. 机械工业出版社,北京,1992: 7-35.
    [250] 曾华梁,杨家昌. 电解和化学转化膜[M].轻工业出版社,北京,1987: 182-213.
    [251] 刘新宽. 镁合金的化学镀研究. 上海交通大学博士论文[D],2002 年.
    [252] Yingwei Song, Dayong Shan, Enhou Han. A study on the pretreatment of direct electroless nickel plating on magnesium alloys AZ91D[J]. Materials Science Forum. 2005,Vol. 488-489: 835-838.
    [253] 马建标.功能高分子材料[M]. 化学工业出版社,精细化工出版中心出版发行,北京,2000 年 7 月: 209.
    [254] 程发良, 宁满霞, 莫金垣, 戴晓云. 水介质中吡咯的电化学聚合反应[J]. 分析测试学报. 2001,Vol . 21 No. 4: 30-33.
    [255] 徐友龙, 季锐, 王飞. 影响掺杂聚吡咯(PPy) 导电性能的因素[J]. 电子元件与材料. 2000,Vol 19: 17-19.
    [256] J.M. Davey, S.F. Ralph, C.O. Too, G.G. Wallace,Synthesis. Characterisation and ion transport studies on polypyrrolerpolyvinylphosphate conducting polymer materials[J]. Synthetic Metals. 1999,Vol.99: 191-199.
    [257] 唐志翔. 导电聚吡咯涂复的纺织品[J]. 染整技术. 2004, Vol.26, No.1: 32-34.
    [258] T. Zalewska, A. Lisowska-Oleksiak, S. Biallozor, V. Jasulaitiene. Polypyrrole films polymerised on a nickel substrate[J]. Electrochimica Acta .2000, Vol.45: 4031–4040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700