用户名: 密码: 验证码:
门脉高压时Ang-Ⅱ对内脏血管病变的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】 了解血管紧张素Ⅱ(Ang-Ⅱ)在门脉高压大鼠模型中对转移生长因子(TGF-β)、ERK_(1/2)蛋白的表达及分布,以及Ang-Ⅱ对Ⅰ、Ⅲ型前胶原mRNA表达的影响,阐明Ang-Ⅱ在门脉高压血管病变发病中的作用机制,最终明确Ang-Ⅱ是如何通过TGF-β、ERK_(1/2)等因子来影响Ⅰ、Ⅲ型前胶原mRNA表达,从而说明Ang-Ⅱ在门脉高压血管病变发病中的作用机制。
     【方法】 制备门静脉部分结扎门脉高压大鼠模型,动物随机分组:假手术组(sham operate简称SO组)10只,对照组(portal hypertension简称PH组)8只,实验组(portal hypertension+Losartan简称Losartan组)8只。应用Ang-Ⅱ受体拮抗剂Losartan,采用放射免疫法测定循环血液中Ang-Ⅱ浓度;应用免疫组织化学法检测内脏血管组织中TGF-β、ERK_(1/2)蛋白表达及分布情况;并对上述结果进行图像分析;应用逆转录—聚合酶链式反应技术(RT-PCR)检测内脏血管平滑肌细胞中Ⅰ、Ⅲ型前胶原mRNA表达情况;对组织标本进行HE染色观察病理变化。
     【结果】
     1.SO组循环血中Ang-Ⅱ浓度为:14.79±0.87pg/ml,图像分析积分吸光度值TGF-β为:765.12±15.61,ERK_(1/2)为:562.47±23.29,Ⅰ、Ⅲ型前胶原mRNA表达半定量分析结果为:Ⅰ型前胶原:77.89±2.74,Ⅲ型前胶原:72.07±2.41。
     2.PH组循环血中Ang-Ⅱ浓度为:327.27±9.03pg/ml,图像分析积分吸光度值TGF-β为:1718.51±27.93,ERK_(1/2)为:862.73±43.76,Ⅰ、Ⅲ型前胶原mRNA表达半定量分析结果为:Ⅰ型前胶原:172.97±2.74,Ⅲ型前胶原:129.73±3.71,与SO组相比差异有显著性(p<0.05)。
    
    山西医科大学硕士学位论文
    3.应用Ang一11受体拮抗剂Losartan后,循环血中Ang一11浓度为:3 12.35士
     5.95p创ml,与对照组相比结果无显著性差异(p<0 .05),图像分析积分吸光
     度值TGF一p为:1 039.35士15.47,ERKI/2为:705,32士46.38,I、111型
     前胶原mRNA表达半定量分析结果为:I型前胶原:1 23 .39士2.91,111型
     前胶原:88.26士1.37,上述结果与PH组及50组相比有显著性差异
     (P<0 .05)。
    【结论】在门脉高压大鼠动物模型中,Ang一11浓度升高,Ang一11通过TGF-
    日、ERKI/2等因子来使I、m型前胶原mRNA表达增高,从而促进了门脉
    高压血管病变的发生,应用Ang一11受体拮抗剂Losartan可部分抑制门脉高压
    血管病变的发生。
Objective
    In portal hypertensive rat's models, to investigate the changes of angiotensin- II (Ang- II )concentration, transforming growth factor (TGF- β ), extracellular signal-regulated kinase1/2 (ERK1/2) protein expression and distribution, procollagen I and III mRNA expression. By evaluating influence of Ang- II on TGF- β and ERK1/2 protein expression and distribution, to investigate the role of Ang- II in portal hypertensive vasculopathy. Methods
    Rats were divided in three group radomly : Portal hypertensive group, Portal hypertensive + Losartan group and Sham operate group. Detect the concentration of Ang- II with radio-immunity method. Analysis TGF- β and ERK1/2 protein expression and distribution with immunohistochemistry method. Analysis with image -analysis system,semi quantification of expression with RT-polymerase chain reaction method. Splanchno-vascular was studied with HE stain method and observed with microscope. All values are mean ?SE Comparisons between means of multiple groups were analyzed by one-way ANOVA and Scheff e's multiple comparison tests. Result: 1. SO(Sham Operate) group: The concentration of Ang-2 was : 14.79 +
    
    
    
    0.87pg/ml. Image-analysis Integra luminance worth was: TGF- :765.12 15.61, ERKi/2.' 562.47 + 23.29. Semi quantification procollagen I and mRNA was: procollagen I 77.89+2.47, procollagen III 72.07+2.41.
    2. PH(portal hypertension) group : The concentration of Ang- was :327.27 + 9.03pg/ml. Image-analysis Integra luminance worth was:TGF-P : 1718.51 ?7.93, ERKi/2: 862.7343.76. Semi quantification procollagen I and III mRNA was: procollagen I 172.97 ?2.74, procollagen III 129.73 ?3.71.Compare with SO group all above-mentioned data there were significant difference (P<0.05).
    3. Losartan group:The concentration of Ang-II was: 312.35 ?5.95pg/ml. Image-analysis Integra luminance worth was:TGF- 3 :1039.35 ?15.47, ERKi/2:705.32 + 46.38. Semi quantification procollagen I and III mRNA was: procollagen I 123.39 + 2.91, procollagenlll 88.26.37.Compare with SO and PH group all above-mentioned data there were significant difference (P<0.05).
    Conclusion:
    In portal hypertensive rats vasoactive substances such as Ang- II induce an increase in the procollagen I and III mRNA expression. Furthermore,we have shown that effects of Ang- II on portal hypertensive vasculopathy are very complex. Probably implicating the release of one hormone by the other and the systhesis of growth factor such as TGF- ERKj/2 and result in portal hypertensive vasculopathy happen.The striking inhibitory effect of Losartan in Ang- II induced increasing of TGF- ERKj/2. Procollagen I and III expression indications of Ang- II rceptor antagonist Losartan has therapeutic role in those situations.
引文
1.杨镇,等,肝硬变患者胃冠状静脉内膜.细胞外基质和平滑肌的变化.中华外科杂志,1996,34:138
    2. Yang Zhen, et al. Portal hypertensive vasculopthy. Journal of Tongji Medical University, 1996,16:32
    3. Malmquist U,et al. Effact of long-term portal hypertension on structure active force and content of contracrile and structural proteins in smooth muscle of the rat portal vein. Acta Physiol Scand, 1994, 150:171
    4. Schneider AW, Kalk JF. Effect of losartan. An angiotensin Ⅱ receptor antagonist on portal pressure in cirrhosis. Hepatology, 1999,29(2):334-339
    5. Sharifi AM. Li JS, et al. Mechanics and composition of human subcutaneous resistance arteries in essential hypertension. Hypertension, 1999,33:569-574
    6. Whirebread S, Mele M, et al. Preliminary biochemical characterization of two angiotensin Ⅱ receptor subtypes. Biochem Biophys Res Commun, 1989,163:284-291
    7.刘正湘,主编.实用心血管受体学.第一版.北京:科学出版社,2001.163
    8. Griendling KK, Ushio-Fukaim, et al. Angiotensin singnaling in vascular smooth muscle. Hypertension, 1997,29(part 2):366-373
    9. Rupprecht HD, Dann P, et al. Effect of vasoative agents on induction of Egr-1 in rat mesangial cells correlation with mitogenicity. Am J physiol, 1992,263:F623-F636
    10. Brilla CG, Zhou G, Matsubara L, et al. Collagen metabolism in cultuted adult rat cardiac fibroblast:response to angiotensin Ⅱ and aldosterone. J Mol
    
    Cell Cardiol, 1994;26:809-820
    11. Schieffer B, Wirger A, Meybrunn M, et al. Comparative effects of angiotensin-coverting enzyme inhibition and angiotensin Ⅱ type Ⅰ receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation, 1994,89:2273-2282
    12. Sharifi AM, Li JS, Endemann D, et al. Comparison of effects of the angiotensin coverting enzyme inhibitor enalapril artery structure and composition and endothelial dysfunction in SHR. J Hypertens, 1998,16:457-466
    13. Boffa JJ, Tharaux PL, Placier S, et al. Angiotensin Ⅱ activates collagen type Ⅰ gene in the renal vasculature of transgenic mice during inhibition of nitric oxide synthesi: evidence for an endothelin-mediated mechanism. Circulation, 1999,100:1091-1098
    14. Rhian M, Touyz, Gang He, et al. p38MAP kinase regulates vascular smooth muscle cell collagen synthesia by angiotensin Ⅱ in SHR but not in WKY. Hypertension,2001,37(part2)574-580
    15. Gibbons GH, Pratt RE, Dzau VJ. Vascular smooth muscle cell hypertrophy vs hyperplasia,Autocrine transforming growth factor-β expression determines growth response to angiotensin Ⅱ. J Clin Invest,1992,90:456-461
    16. Kagami S, Border WA, et al. Angiotensin Ⅱ stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cell. J Clin Invest,1994;93:2431-2437
    17. Naftilan AJ, Pratt RE,Dzau JV. Induction of platelet-derived growth factor A chain and c-myc gene expression by angiotensin Ⅱ in cultered rat vascular smooth muscle cells. J Clin Invest, 1989,83:1419-1424
    18. Curran T, Franza BR. Fos and jun: the AP-1 connection. Cell, 1988,55:395-397
    
    
    19. Nakatsukasa H, Nagy P, Erarts RP, et al. Cellular distribution of transforming growth factor-beta 1 and procollagen types Ⅰ,Ⅲ,andⅣ transcripts in carbon tetrachlorid-induced rat liver fibrosis. J Clin Invest, 1990,85:1833-1843
    20. Castilla A, Prieto J, Fausto N. Transforming growth factors beta-1 and alpha in chronic liver disease, Effects of interferon alfa therapy. N Engl J Med, 1991,324:933-940
    21. Dinesh kala, Natarajan Sivasubramanian. Angiotensin Ⅱ induces tumor necrosis factor biosynthesis in adult mammalian heart through a protein kinase-C dependent pathway. Circulation, 2002,105:2198-2205
    22. Tomita N, Morishita R, Kaneda Y, et al. Inhibition of TNF-alpha: Induced cytokine and adhesion molecule expression in glomerular cells in vitro and in vivo by transcription factor decoy for NF-kappab. Exp Nephrol, 2001,9:181-190
    23. Pertovauara L, Kaipainen A, Mustonen J, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J Bio Chem, 1994,269:6271-6274
    24. Itoh. H, Mukoyama M, Pratt. R, et al. Mutiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin Ⅱ. J Clin Invest, 1993,91:2268-2274
    25. Willams B, Baker A. Q, Gallacher. B, et al. Angiotensin Ⅱ increases vascular permeability factor gene expression by human vascular muscle cells. Hypertension, 1995,25:913-917
    26. Tischer E, Mitchell R, Hartman T. The human gene for vascular endothelial growth factor: mutiple protein forms are encoded through alternative exon splicing. J Bio Chem, 1991,266:11947-11954
    
    
    27. Keck. P. J, Hauseris D, Krivi,G. et al. Vascular permeability factor and endothelial cell mitogen related to PDGF. Science, 1989,246:1309-1312
    28. Gerber H, Condorelli F, Park J, et al. Differential transcriptional regulation of the two vascular endothelial growth factor genes. Flt-1,but not Flk-1/KDR. is up-regulated by hypoxia. J Bio Chem, 1997,272:23659-23667
    29. Christophe C, Veronique B, Dominique W, et al. Hypoxia-induced VEGF and collagen Ⅰ expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology, 2002,35:1010-1021
    30. Barleon B, et al. Migration of human monocytes in response to vascular endothelial growth factor(VEGF)is mediated via the receptor Fit-1. Blood, 1996,87:3336-3343
    31. Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin-Ⅱ mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alteration of vasomotor tone. J Clin Invest, 1996,97:1916-1923
    32. Touyz RM, Schiffrin EL. Ang-Ⅱ-induced superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension, 1999,34:976-982
    33. Ishida T, Ishida M, Suero J, Takahashi M, Berk BC. Agonist-stimulated cytoskeletal reorganization and signal transduction at focal adhesions in vascular smooth muscle cells require c-Src. J Clin Invest. 1999 Mar, 103(6):789-97.
    34. Touyz RM, He G, Wu XH, Park JB, Mabrouk ME, Schiffrin EL. Src is an important mediator of extracellular signal-regulated kinase 1/2-dependent growth signaling by angiotensin Ⅱ in smooth muscle cells from resistance arteries of hypertensive patients. Hypertension. 2001 Jul,38(1):56-64.
    
    
    35. Reddy MA, Thimmalapura PR, Lanting L, Nadler JL, Fatima S, Natarajan R. The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin Ⅱ effects. J Biol Chem. 2002 Mar 22,277(12):9920-8.
    36. Yang CM, Chien CS, Hsiao LD, Pan SL, Wang CC, Chiu CT, Lin CC. Mitogenic effect of oxidized low-density lipoprotein on vascular smooth muscle cells mediated by activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol. 2001 Apr,132(7):1531-41.
    37. Ahn JD, Morishita R, Kaneda Y, Lee S J, Kwon KY, Choi SY, Lee KU, Park JY, Moon IJ, Park JG, Yoshizumi M, Ouchi Y, Lee IK. Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo. Circ Res. 2002 Jun 28,90(12):1325-32.
    38. De Cesare D, Sassone-Corsi P. Transcriptional regulation by cyclic AMP-responsive factors. Prog Nucleic Acid Res Mol Biol. 2000,64:343-69. Review.
    39. Wung BS, Cheng JJ, Chao YJ, Hsieh HJ, Wang DL. Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circ Res. 1999 Apr 16,84(7):804-12.
    40. Li QJ, Vaingankar S, Sladek FM, Martins-Green M. Novel nuclear target for thrombin: activation of the Elk1 transcription factor leads to chemokine gene expression. Blood. 2000 Dec 1, 96(12):3696-706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700