用户名: 密码: 验证码:
封闭差动人字齿轮传动系统均载及动力学特性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
载荷均衡分配对于提高行星齿轮传动系统寿命、增大可靠性和减小振动尤为重要,强非线性的行星齿轮传动系统需要应用非线性动力学理论研究其振动特性,鉴于此,行星齿轮传动系统均载及非线性动力学特性已成当前研究的热点和难点问题。本文以封闭差动人字齿轮传动(大型舰船主减速器)为研究对象,通过研究其均载及非线性动态特性,为该传动系统的设计提供理论和技术支持。
     在传动系统的啮合与切向刚度研究中,确定了传动系统两级啮合齿轮的各种相位关系,引入基于齿轮副瞬时总接触线长度推导出的斜齿轮时变啮合刚度公式按刚度并联方式计算人字齿时变啮合刚度,分析了人字齿轮啮合刚度波动小的原因。应用材料力学原理计算由单位载荷引起的轮齿位移即柔度,进而确定中间浮动构件人字齿轮接触切向刚度。
     在传动系统的齿轮误差等效位移研究中,采用简谐函数推导了偏心误差、齿频误差转化到齿轮副啮合线上的等效位移公式;提出了一种齿轮传动几何误差转化为啮合线上的等效位移计算方法,按此方法推导出了传动系统两级各齿轮安装误差转化到啮合线等效位移的计算公式,进而建立了传动系统两级各齿轮误差转化到啮合线上等效位移的完整公式体系。
     在传动系统的静力学均载特性研究中,建立了包含中间浮动构件的封闭差动人字齿轮传动系统静力学计算模型;确定了传动系统静力学均载系数计算公式,计算了传动系统的静力学均载系数;分析了传动系统主要参数对传动系统静力学载荷分配的影响,获得主要参数对传动系统静力学均载特性的影响规律。
     在传动系统的动力学均载特性研究中,考虑了齿轮重量、时变啮合刚度、各种误差的影响,建立了包含中间浮动构件的封闭差动人字齿轮传动系统动力学计算模型;把动力学方程线性化,采用傅立叶级数法求解;确定了传动系统动力学均载系数计算公式,计算了传动系统的动力学均载系数;分析了传动系统主要参数对传动系统动力学载荷分配的影响,获得封闭差动人字齿轮传动系统动力学均载特性的变化规律。
     在传动系统的动力学浮动特性研究中,建立了封闭差动人字齿轮传动系统动态浮动量的计算方法,计算了传动系统两级各齿轮动力学浮动量,分析了传动系统的各种参数对传动系统动力学浮动量的影响。获得封闭差动人字齿轮传动系统动力学浮动特性的变化规律。
     在传动系统的非线性动力学特性研究中,建立了多齿侧间隙、时变啮合刚度的封闭差动人字齿轮传动系统的多自由度扭转非线性动力学方程;应用Newmark数值法求解非线性动力学微分方程组,得到了传动系统的非线性动态响应结果;综合运用位移响应时间历程图、啮合力响应时间历程图、相图、庞加莱截面,分析了齿侧间隙、时变啮合刚度、阻尼、综合误差对封闭差动人字齿轮传动系统非线性动态特性的影响;获得了齿侧间隙、时变啮合刚度、阻尼、综合误差对啮合轮齿的受力、运动状态的影响规律。
The load sharing is particularly important for improving the life of planetary gear train, increasingreliability and reducing vibration. The theory of nonlinear dynamics is required to study the vibrationmechanism of the strong nonlinear planetary gear train. So the load sharing and nonlinear dynamicscharacteristics of the planetary gear train have become the current hotspots and difficult issues. Thepaper mainly studies the load sharing and nonlinear dynamics characteristics of encased differentialherringbone train (main reducer of large ships) to provide theoretical and technical support for thedesign of this train.
     In the research on the meshing and tangential stiffness, the phase relationships of the meshinggears are determined in the train, and the mesh stiffness formula of the helical gear which is derivedbased on the instantaneous total length of the contact line for the gear pair is introduced to calculatethe time-varying mesh stiffness of the herringbone on the stiffness parallel. So the cause of the smallfluctuation of the herringbone meshing stiffness is analyzed. In the meantime the materials mechanicsprinciple is applied to calculate the tooth displacement which is also called as flexibility caused by theunit load. And then the herringbone tangential stiffness of the intermediate floating component for thistrain is calculated.
     The equivalent displacement formulas of the run-out and meshing-frequency errors along themeshing line are deduced by using harmonic function. An equivalent displacement calculation methodof the geometric errors for the gear transmission is proposed and the equivalent displacement formulaof the gear installation error along the meshing line is deduced based on this method. So the completeequivalent displacement formula system of the gear errors along the meshing line is set up in thistrain.
     The static model which includes the intermediate floating component of this train is set up. Thestatic formulas of load sharing coefficients for this train are defined. The static load sharingcoefficients are calculated and the impact of the main parameters on the static load sharing isanalyzed.
     The impact of the gear weight, the time-varying mesh stiffness, the gear errors on this train hasbeen considered, and the dynamics model which include the intermediate floating component of thistrain is set up. The dynamic equation is linearized and the Fourier series method is used to solve thisequation. The dynamics formulas of load sharing coefficients for this train are defined. The dynamics load sharing coefficients are calculated and the influence of the main parameters on the dynamics loadsharing for this train is analyzed. The dynamics load sharing characteristics for the encaseddifferential herringbone train are obtained.
     The calculating method of the dynamics floating displacements for this train is established.Thedynamics floating displacements of the gears for the train are calculated, and the impact of the mainparameters on dynamics floating displacements of the train are analyzed. The dynamics floatingcharacteristics for the encased differential herringbone train are obtained.
     A nonlinear torsional dynamic equation with multi-backlash, time-varying mesh stiffness,multi-degree of freedom is set up. The Newmark numerical integration method is used to solve thenonlinear dynamics differential equations from which the result of the nonlinear dynamic response isgot. The influences of the backlash, time-varying mesh stiffness, meshing ratio of damping, integrateerror on nonlinear dynamics characteristics for the encased differential herringbone train are analyzedby using time process diagram of displacement response, time process diagram of meshing forceresponse, phase diagram, Poincaré section. This impact on the gear meshing force, motion state is got.
引文
[1] CUNLIFFE F, SMITH J D, WELBOURN D B. Dynamic tooth loads in epicyclic gears[J]. Journalof Engineering for Industry,1974,5(95):578~584.
    [2] AUGUST R, KASUBA R. Torsional vibrations and dynamic loads in a basic planetary gearsystem[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design,1986,108(3):348~353.
    [3] OZGUVEN H N, HOUSER D R. Mathematical-models used in gear dynamics a review[J].Journal of Sound and Vibration,1988,121(3):383~411.
    [4] KISH J G. Sikorsky aircraft advanced rotorcraft transmission (ART) program-final report[R].NASA CR-191079, NASA Lewis Research Center,1993.
    [5] KAHRAMAN A. Planetary gear train dynamics[J].Transactions of the ASME, Journal ofMechanical Design,1994,116(3):713~720.
    [6] SAADA A, YELEX P. An extended model for the analysis of the dynamic behavior of planetarytrains [J]. Mechanical Design,1995,117(6):241~247.
    [7]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [8]马从谦,陈自修,张文照,等.渐开线行星齿轮传动设计[M].北京:机械工业出版社,1987.
    [9]饶振刚.行星齿轮传动设计[M].北京:化学工业出版社,2003.
    [10]朱增宝,朱如鹏,李应生,等.安装误差对封闭差动人字齿轮传动系统动态均载特性的影响[J].机械工程学报,2012,3(12):55~58.
    [11]孙智民,季林红,沈允文.2K-H行星齿轮传动非线性动力学[J].清华大学学报,2003,3(5):636~639.
    [12]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报,2002,38(2):44~48.
    [13]卜忠红,刘更,吴立言,等.封闭式人字齿轮行星传动的自由振动特性分析[J].中国机械工程,2009,20(20):2420~2424.
    [14]卜忠红,刘更,吴立言.滑动轴承支承人字齿轮行星传动固有特性分析[J].机械工程学报,2011,47(1):80~88.
    [15] TUPLIN W A. Gear tooth stresses at high speed[J]. Proceedings of Institution of MechanicalEngineers,1950,16:162~167.
    [16] CHIANG T, BADGLEY R H. Reduction of vibration and noise generated by planetary ringgears in helicopter aircraft transmissions[J].ASME Journal of Engineering for Industry,1973,1149~1158.
    [17] BADGLEY R H, HARTMAN R M. Gearbox noise reduction: predictionand measurement ofmesh-frequency vibrations within an operating helicopter rotor-drive gearbox[J]. ASME Journalof Engineering for Industry,1974,567~577.
    [18] BOTMAN M. Epicyclic gear vibrations[J]. ASME Journal of Engineering for Industry,1976,811~815.
    [19] BAHGAT B M, OSMAN M O M, Dukkipati R V. On the dynamic gear tooth loading ofplanetary gearing as affected by bearing clearances in high-speed machinery[J]. Journal ofMechanisms, Transmissions, and Automation in Design,1985,107(3):430~436.
    [20] SEAGER D L. Conditions for the neutralization of excitation by the teeth in epicyclic gearing[J].Journal of Mechanical Engineering Science,1975,17(5):293~298.
    [21] WEBER H. The deformation of loaded gears and the effect on their load-carrying capacity[R].Sponsored Research, British Scientific and Industrical Research, London, Report No.3.1949.
    [22]日本机械学会.齿轮强度设计资料(李茹贞,赵清慧译)[M].北京:机械工业出版社,1984.
    [23] PARKER R G. A physical explanation for the effectiveness of planet phasing to suppressplanetary gear vibration[J]. Journal of Sound and Vibration,2000,236(4):561~573.
    [24] PARKER R G, LIN J. Mesh phasing relationships in planetary and epicyclic gears[J].Journal ofMchanical Design,2004,126(3):365~370.
    [25]王成,方宗德,贾海涛,等.修形人字齿轮传动误差计算与试验研究[J].中国机械工程,2009,20(20):2427~2430.
    [26]杨绍普,申永军,刘献栋.基于增量谐波平衡法的齿轮系统非线性动力学[J].振动与冲击,2005,24(3):40~43.
    [27]胡海岩.分段光滑机械系统动力学的进展[J].振动工程学报,1995,8(4):331~341.
    [28] KAHRAMAN A, SINGN R. Nonlinear dynamics of a spur gear pair[J].Journal of Sound andVibration,1990,142(1):49~75.
    [29] KAHRAMAN A. Natural modes of planetary gear trains[J].Journal of Sound and Vibration,1994,173(1):125~130.
    [30] LIN J, PARKER R G. Analytical characterization of the unique properties of planetary gear freevibration[J]. Journal of Vibration and Acoustics,1999,121(3):316~321.
    [31] LIN J, PARKER R G. Structured vibration characteristics of planetary gears with unequallyspaced planets[J]. Journal of Sound and Vibration,2000,233(5),921~928.
    [32] AMBARISHA V K,PARKER R G. Suppression of planet mode response in planetary geardynamics through mesh phasing[J]. Journal of Vibration and Acoustics,2006,128(2):133~142.
    [33] KIRACAFE D R, PARKER R G. Structured vibration modes of general compound planetarygear systems[J]. Journal of Vibration and Acoustics,2007,129(1):1~16.
    [34] GUO Y C,PARKER R G. Purely rotational model and vibration modes of compound planetarygears[J]. Mech Mach Theory,2010,45:365~377.
    [35] ERITENEL T, PARKER R G. Modal properties of three-dimensional helical planetary gears[J].J. Sound Vib,2009,325(1):397~420.
    [36]杨通强,宋轶民,张策,等.斜齿行星齿轮系统自由振动特性分析[J].机械工程学报,2005,41(7):50~55.
    [37] LIN J, PARKER R G. Natural frequency veering in planetary gears[J]. Mech Struct Mach,2001,29(4):411~429.
    [38]王世宇,张策,宋轶民,等.行星传动固有特性分析[J].中国机械工程,2005,16(16):1461~1465.
    [39]鲍君华,何卫东,卢琦,等.针轮输出摆线针轮行星传动研究[J].中国机械工程,2010,21(19):2339~2344.
    [40]朱浩,成伟,贾国海,等.风电变桨行星减速机的动力学性能仿真[J].中南大学学报(自然科学版),2011,42(10):3059~3065.
    [41]焦映厚,孔霞,蔡云龙,等.基于FEM和BEM法的大型立式齿轮箱振动噪声计算及测试分析[J].振动与冲击,2012,31(4):123~127.
    [42] LIN J, PARKER R G. Sensitivity of planetary gear natural frequencies and vibration modes tomodel parameters[J]. J Sound Vib,1999,228(1):109~128.
    [43] GUO Y C, PARKER R G. Sensitivity of general compound planetary gear naturalfrequencies and vibration modes to model parameters[J]. ASME Journal of Vibration andAcoustics,2010,132(1):1~13.
    [44]杨建明,张策.行星齿轮传动的固有频率对设计参数的灵敏度分析[J].机械设计,2001,4:40~43.
    [45]王世宇,宋轶民,沈兆光,等.行星传动系统的固有特性及模态跃迁研究[J].振动工程学报,2005,18(4):412~417.
    [46]蔡仲昌,刘辉,项昌乐,等.车辆行星传动系统扭转振动固有特性及灵敏度分析[J].中国机械工程,2011,22(1):96~101.
    [47] HIDAKA T, TERAUCHI Y. Dynamic behavior of planetary gear (1st report: Load distributionsin planetary gear)[J]. Bulletin of JSME,1976,19:690~698.
    [48] HAYASHI Y, LI X, HAYASHI I, et al. Measurement and some discussions on the dynamic loadsharing in planetary gears[J]. Bulletin of the JSME,1986.29:2290~2297.
    [49] SERGER D L. Load sharing among planet gears[J]. SAE Paper,1970,700178.
    [50] PALMER W E, FUEHRER R R. Noise control in planetary transmissions[J]. SAE Paper,1977,770561.
    [51] TODA A, BOTMAN M. Planet indexing in planetary gears for minimum vibration[C]//ASMEDesign Engineering Technical Conference,Stiouis,1979:35~78.
    [52] VIJAYAKAR S. A Combined surface integral and finite element solution for athree-dimensional contact problem[J]. International Journal for Numerical Methods inEngineering,1991,31(3):525~545.
    [53] GRADU M, LANGENBECK K, BREUNIG B. Planetary gears with improved vibrationalbehavior in automatic transmissions[J].VDI Berichte NR1230,1996:861~879.
    [54] PARKER R G, AGASHE V, VIJAYAKAR S M. Dynamic response of a planetary gear systemusing a finite element/contact mechanics model[J]. Journal of Mechanical Design,2000,122:304~310.
    [55] CHAARI F, FAKHFAKH T, Hbaieb R. Influence of manufacturing errors on the dynamicbehavior of planetary gears [J].International Journal of Advanced Manufacturing Technology,2006,27:738~746.
    [56]孙涛.行星齿轮系统非线性动力学研究[D].[博士学位论文],西安:西北工业大学,2000.
    [57] SUN T, HU H Y. Nonlinear dynamics of a planetary gear system with multiple clearances[J]. Mechanism and Machine Theory,2003,38:1371~1390.
    [58]孙智民.功率分流齿轮传动系统非线性动力学研究[D].[博士学位论文],西安:西北工业大学,2002.
    [59]鲍和云.两级星型齿轮传动系统分流特性及动力学研究[D].[博士学位论文],南京:南京航空航天大学,2006.
    [60]杨通强.斜齿行星传动动力学研究[D].[博士学位论文],天津:天津大学,2003.
    [61]日高照晃,山本信行,石田武.行星齿轮装置均载机构中各种误差和载荷分配的关系[C]//日本机械学会论文集(C编),汪立言,译,1986,52(48):2200~2206.
    [62]肖铁英,袁盛治,陆卫杰.行星齿轮机构均载系数的计算方法[J].东北重型机械学院学报,1994,16(4):290~295.
    [63] KAHRAMAN A. Static load sharing characteristics of transmission planetary gear sets: Modeland Experiment[J]. Society of Automotive Engineers,1999:1954~1963.
    [64] BODAS A, KAHRAMAN A.Influence of carrier and gear manufacturing errors on static loadsharing behavior of planetary[J].JSME International Journal:Series C,2004, l47(3):908~915.
    [65]袁擎宇,朱如鹏,朱自冰,等.两级星型齿轮传动静力学均载分析[J].机械科学与技术,2004,23(7):789~792.
    [66]陆俊华,李斌,朱如鹏.行星齿轮传动静力学均载分析[J].机械科学与技术,2005,24(6):702~709.
    [67] SINGH A, KAHRAMAN A, Ligata H. Internal gear strains and load sharing in planetarytransmissions:model and experiments[J]. ASME, Journal of Mechanical Design,2008,130(7):072602.
    [68] KRANTZ T L,DELGADO I R. Experimental study of split-path transmission load sharing[R].NASA Technical Memorandum,107202,1996.
    [69] TIMOTHY L K. A method to analyze and optimize the load sharing of split-path transmissions[R]. NASA Technical Memorandum,107201,1996.
    [70] KAHRAMAN A.Load sharing characteristics of planetary transmissions[J].Mechanism andMachine,Theory,1994,29(8):1151~1165.
    [71] LIGATA H, KAHRAMAN A, SINGH A. An experimental study of the influence ofmanufacturing errors on the planetary gear stresses and load sharing[J]. ASME, Journal ofMechanical Design,2008,130(4):041701.
    [72]方宗德,沈允文,黄镇东.三路功率分流恒星式减速器的动态特性[J].航空学报,1990,11(7):341~350.
    [73]李斌.行星齿轮传动系统均载分析方法的研究[D].[硕士学位论文],南京:南京航空航天大学,2005.
    [74]陆俊华,朱如鹏,靳广虎.行星传动动态均载特性分析[J].机械工程学报,2009,45(5):85~90.
    [75]宁凤莲,高向群,陈冰,等.星形齿传动浮动均载机构浮动量的确定[C]//中国航空学会第十一届机械动力传输学术讨论会.株洲:中国航空学会,2003:112~115.
    [76]鲍和云,朱如鹏.两级星型齿轮传动静力学系统基本浮动构件浮动量分析[J].中南大学学报(自然科学版),2006,37(3):553~557.
    [77] BENTON M, SEIREG A. Simulation of resonances and instability conditions in pinion gearsystems[J].Journal of Mechanical Design,1978,100:26~30.
    [78] BOLLINGER J G, HARKER R J. Instability potential of high speed gearing[J]. Journal of theIndustrial Mathematics,1967,17:39~55.
    [79] AMABILI M, RIVOLA A. Dynamic analysis of spur gear pairs: steady-state response andstability of the SDOF model with time-varying meshing damping[J].Mechanical Systems andSignal Processing,1997,11:375~390.
    [80] TORDION G V, GAUVIN R. Dynamic stability of a two-stage gear train under the influence ofvariable meshing stiffnesses[J]. Journal of Engineering for Industry,1977,99:785~791.
    [81] LIN J, PARKER R G. Mesh stiffness variation instabilities in two-stage gear systems[J]. Journalof Vibration and Acoustics,2002,124:68~76.
    [82] LIN J, PARKER R G. Planetary gear parametric instability caused by mesh stiffness variation[J].Journal of Sound and Vibration,2002,249(1):129~145.
    [83]王春光.行星齿轮传动动态特性的研究[D].[硕士学位论文],哈尔滨:703研究所,2005.
    [84]安子军,张鹏,杨作梅.摆线钢球行星传动系统参数振动特性研究[J].工程力学,2012,29(3):244~251.
    [85]李德葆.结构修改—灵敏度分析和修改结构重分析[J].机械强度,1990,12(2):44~50.
    [86]冯志华.基于灵敏度分析的机械结构动力学修改[J].苏州丝绸工学院学报,2000,120(4):46~50.
    [87] HIDAKA T. Analysis of dynamic tooth load on planetary gear[J].Bulletin of the JSME,1980,176(23):315~323.
    [88]孙智民,沈允文,李素有.封闭行星齿轮传动系统的扭振特性研究[J].航空动力学报,2001,16(2):163~166.
    [89]蔡仲昌,刘辉,项昌乐,等.车辆多级行星传动系统强迫扭转振动与动载特性[J].吉林大学学报(工学版),2012,42(1):19~26.
    [90]孙涛,沈允文.行星齿轮传动非线性动力学模型与方程[J].机械工程学报,2002,38(3):6~9.
    [91]孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报,2002,38(3):11~15.
    [92] KAHRAMAN A. Free torsional vibration characteristics of compound planetary gear sets[J].Mechanism and Machine Theory,2001,36:953~971.
    [93] KAHRAMAN A. Dynamic analysis of a multi-mesh helical gear trains[J]. Journal of MechanicalDesign,1994,116(3):706~712.
    [94] KAHRAMAN A, SINGH R. Interactions between time-varying mesh stiffness and clearancenon-linearities in a geared system[J]. Joumal of Sound and Vibration,1991,145(2),239~260.
    [95]巫世晶,刘振皓,王晓笋,等.基于谐波平衡法的复合行星齿轮传动系统非线性动态特性[J].机械工程学报,2011,47(1):55~61.
    [96]胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
    [97]闻邦椿,刘树英,张纯宇.机械振动学(第2版)[M].北京:冶金工业出版社,2011.
    [98] MIDHA A, ERDMAN A G, FROHRIB D A.A closed-form numerical algorithm for the periodicresponse of high-speed elastic linkages[J]. Journal of mechanical design,1979,101:154~162.
    [99]方宗德,沈允文,黄振东,2K-H行星减速器的动态特性[J].西北工业大学学报,1990,18(4):361~370.
    [100]王世宇.基于相位调谐的直齿行星齿轮传动动力学理论与实验研究[D].[博士学位论文],天津:天津大学,2005.
    [101]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
    [102] LAU S L, CHEUNG Y K. Amplitude incremental variational principle for nonlinear vibrationof elastic system[J]. ASME Journal of Applied Mechanics,1981,48:959~964.
    [103] COMPARIN R J, SINGH R. Frequency response characteristics of a multi-degree-of-freedomsystem with clearances[J]. ASME Journal of Sound and Vibration,1990,142(1):101~124.
    [104]张志华.动力装置振动数值计算[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [105]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2008.
    [106]段福海,胡青春,谢存禧.钢/塑齿轮组合行星传动的振动特性[J].机械工程学报,2010,4(1):62~67.
    [107]朱恩涌,巫世晶,王晓笋,等.含摩擦力的行星齿轮传动系统非线性动力学模型[J].振动与冲击,2010,29(8):217~236.
    [108]韩林山,沈允文,董海军,等.2K-V型传动装置动态传动精度理论研究[J].机械工程学报,2007,43(6):81~86.
    [109] GUO Y C, PARKER R G. Mesh phase relations of general compound planetary gears[C]//Proceedings of the ASME International Design Engineering Technical Conferences andComputers and Information in Engineering Conference. New York: American Society ofMechanical Engineering,2008(7):631~646.
    [110] AL-SHYYAB A, ALWIDYAN K. A nonlinear dynamic model for compound planetary gearsets[C]//3rd WSEAS International Conference on Applied and Theoretical Mechanics. Puertode la Cruz, SPAIN:World Scientific and Engineering Acad and Soc,2007:84~89.
    [111]赵永强,李瑰贤,常山,等.船用大功率两级人字齿行星传动系统的振动特性研究[J].船舶力学,2009,13(4):621~627.
    [112] MAATAR M, VELEX P. An analytical expression for the time-varying contact length in perfectcylindrical gears: some possible applications in gear dynamics[J]. Journal of MechanicalDesign,1996,118(12):586~589.
    [113]国家标准局. GB3480-83渐开线圆柱齿轮承载能力计算方法[S].北京:国家标准局,1983.
    [114]陈振,王庆武.材料力学[M].北京,北京航空航天大学出版社,2011.
    [115]鄂峻峤著.互换性与测量[M].沈阳:辽宁科学技术出版社,1990.
    [116]刘继胜,罗姜.齿轮加工常见误差问题分析[J].机床与液压,2009,37(8):55~60.
    [117]黄镇昌.互换性与测量技术[M].广州:华南理工大学出版社,2001.
    [118]朱增宝,朱如鹏,鲍和云,等.偏心与安装误差对封闭差动人字齿轮传动系统静力学均载特性的影响[J].华南理工大学学报(自然科学版),2011,39(8):19~25.
    [119]石瑞伟.机械动力学[M].北京:中国电力出版社,2007.
    [120]朱增宝,朱如鹏,鲍和云,等.封闭差动行星传动系统中心轮动力学浮动量分析[J].中南大学学报(自然科学版),2012,43(2):497~504.
    [121]陈玲莉.工程结构动力分析数值方法[M].西安:西安交通大学出版社,2006.
    [122]黄文虎,夏松波,焦映厚,等.旋转机械非线性动力学设计基础理论与方法[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700