用户名: 密码: 验证码:
气候变化对中国玉米生产的影响及适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化是气候要素在连续几十年或者更长的时间的长期统计结果的任何系统性变化。2007年IPCC第四次评估报告中更明确地指出全球平均温度的升高超过90%的可能性是由于人为温室气体浓度的增加引起的,1906~2005年全球平均地面气温升高了(0.74±0.18)℃。目前全球气候正经历一场以变暖为主要特征的显著变化,它对经济和社会发展的影响是当前人类面临的重要挑战。农业是对气候变化最为敏感和脆弱的部门之一。因此,气候变化对农业的影响评估及适应性研究成为气候变化领域的重大课题。
     研究中利用田间观测资料对CERES-Maize模型的玉米品种遗传参数进行调试和校准,对作物模型本身进行时间范围和空间区域上的验证。在经过验证的诸多站点中随机挑选了13个代表站点,模拟了各站点当前气候条件Baseline(1961-1990年)和A2、B2两种气候情景下2020s、2050s、2080s时段下的雨养玉米和灌溉玉米的生长。对模拟结果对比分析,评价了气候变化对玉米产量的影响效果。本文还结合相关育种和引种理论,从品种改良和引进新品种两方面对未来玉米生产适应气候变化提出相应的对策。
     本文主要是利用PRECIS模拟生成政府间气候变化委员会(IPCC)排放情景特别报告(SRES)的A2和B2情景下天气数据日值的天气数据,通过区域气候模式PRECIS和作物模式CERES相嵌套,模拟了我国五个玉米主产区(北方春玉米区、黄淮海夏播玉米区、西南山地丘陵玉米区、南方丘陵玉米区、西北内陆玉米区)内13个玉米站点玉米主产区未来2020s(2011-2040年)、2050s(2041-2070年)和2080s(2071-2100年)三个时段的玉米产量变化情况;并在此基础上对玉米生产适应未来气候变化适应性措施进行探讨。
     本文研究的基本结论如下:
     A2、B2两种排放情景下、三个评价时段内,除了少数个别站点在2020s时段有小幅度增产现象外,大多数产量是下降的,且2020s时段的变化幅度最小,2080s时段的变化幅度最大。灌溉对玉米的增产作用还是比较明显的。在考虑CO2肥效作用时,A2和B2两种排放情景下,雨养玉米的产量下降幅度较灌溉玉米明显小很多,与不考虑CO2肥效作用时的雨养玉米相比,减产幅度也有减小。
     选择代表站点在减产幅度较大的2050s、2080s时段进行品种改良分析。提高玉米作物品种吐丝到生理成熟阶段对温时的需求量(P5)和参数G2 (每株最大可能的籽粒数),产量都有不同程度的增加。改良后的品种均表现为2050s时段的产量高于2080s时段。因此,在原有品种的基础上改变品种的某些特性得到新的改良品种可以减轻因生长环境的改变带给玉米生产的负效应。
     依据气候相似原理引进新品种,A2、B2情景下,考虑CO2肥效作用和不考虑CO2肥效作用都能在一定程度上降低玉米的减产幅度,甚至转减产为增产。
Climate change is the climate factor for several decades or longer period of time the long-term results of any systemic changes. The Intergovernmental Panel on Climate Change Fourth Assessment Report issued in the more clear that the global average temperature increase of more than 90 percent possibility is because of the man-made the increase in greenhouse gas concentrations. During 1906-2005 global mean surface temperature rose higher (0.74±0.18)℃. The current global climate is experiencing a warming as the main characteristics of the significant changes. The impacts on economic and social development are the important challenges facing humanity. Therefore, impacts of these changes have been become an urgent need to address the major issues. Agriculture is one of the most sensitive sectors to climate change and it is significant to evaluate impacts of climate change on maize (one of main three foodstuff crop).
     Field observations were used to calculate and calibrate the cultivar genetic parameters by put into CERES-Maize crop model. And crop model was verified with long-time data at several sites and short-time data at large scale. Then, after verification of the many sites 13 randomly selected representative sites were used to simulated and analyzed the yield changes under different weather condition in the future. They are conditions of the current climate Baseline (1961-1990) and the A2, B2 two climate scenarios 2020s, 2050s, 2080s of rainfed-maize and irrigated-maize. Comparative analysis of the simulation results and the evaluation of climate change on maize production effects were conducted. This article is also associated with breeding and cultivar introduction theory. Based on it, improved varieties and introduction of new varieties of corn were approached to adapt to climate change as corresponding countermeasures in the future.
     This paper is mainly to use the weather data simulated by PRECIS of the SRES A2 and B2 scenarios to validate the linkage approach of PRECIS outputs with crop model. And then the weather data of 2020s(2011-2040 ), 2050 s (2041-2070) and 2080 s (2071-2100), together with 13 sites maize observation data were put into crop model to calculate the yield changed under different scenarios and different water conditions. On this basis for corn production to future climate change adaptation measures were discussed.
     Conclusion were as follows:
     Most simulated yield is declining under future climate conditions with both A2 and B2 greenhouse gases emissions scenarios, except for a small number of individual site in 2020s. And the minimum rate of yield change is in 2020s, the biggest period of change is 2080s. Irrigation on the production of corn is quite obvious. In considering the role of CO2 fertilizer efficiency, declining rate of rainfed maize production is smaller than irrigation’s under both A2 and B2 two emissions scenarios. The declining rate is also smaller than that of rainfed maize without including CO2 fertilizer efficiency in simulation.
     Improved varieties was applied to adapt the changed climate in future 2050s, 2080s period at represent stations. Improving the values of genetic parameters P5(Thermal time from silking to physiological maturity) and G2(Maximum possible number of kernels per plant) would increase maize yield. Both improvement of parameters were more effective to increase maize yield at 2050s than that at 2080s. Therefore, changes of certain characteristics on species could reduce the negative effects to maize yield bought by climate environmental changes.
     Based on principle of agro-climatic similarity, species introduction could reduce the rate of production of corn, or even to increase production to production under A2, B2 scenarios with or without considering CO2 fertilizer effects.
引文
1. 陈泮勤, 郭裕福. 全球气候变化的研究与进展.环境科学.1993,14(4):16~23
    2. 陈 峪 , 黄 朝 迎 . 气 候 变 化 对 东 北 地 区 作 物 生 产 潜 力 影 响 的 研 究 . 应 用 气 象 学报.1998,9(3):314~320
    3. 陈怀亮,冯定原,毛留喜,张雪芬,付祥健. CERES~玉米模拟模式的数值试验及应用[J]. 南京气象学院学报, 1997,20(4):522~528.
    4. 崔巧娟,许吟隆.利用田间实验资料检验 CERES~Maize 模型在中国区域的模拟能力.中国农业科学.2005,26(增刊):37~41
    5. 崔巧娟.未来气候变化对中国玉米生产的影响评估[硕士学位论文].中国农业大学.2005
    6. 车永和. 青海省带田玉米引种与高产制种技术研究[硕士学位论文]. 西北农林科技大学,2001: 2~5
    7. 杜尧东,何健,梁凤娟等. 热带、亚热带作物引种气候咨询系统. 热带气象学报,2006, 22(5): 510~514
    8. 丁一汇,任国玉,石广玉等. 气候变化国家评估报告(I):中国气候变化的历史和未来趋势.气候变化研究进展.2006,2(1):3~9
    9. 丁一汇,张晶,赵宗慈.一个改进的陆面过程模式及其模拟试验研究第二部分:陆面过程模式与区域气候模式的耦合模拟试验.气象学报.1998,56(4):385~400
    10. 段红平,赵正雄. 中国农业可持续发展与粮食安全问题的分析. 耕作与栽培.2002,2:58~60
    11. 邓根云. 气候变化对中国农业的影响[M]. 北京:北京科学技术出版社,1993,9:297~311
    12. 符淙斌,叶笃正.全球变化和我国未来的生存环境[J].大气科学.1995,19(2):116~126
    13. 韩湘玲主编. 农业气候学. 山西: 山西科学技术出版社, 1999,54~57
    14. 高亮之,金之庆.RCSODS~水稻栽培计算机模拟优化决策系统.计算机农业应用,1993(3):14~20
    15. 高亮之.农业模型学基础[M]. 香港:天马图书有限公司. 2002: 170~175
    16. 葛道阔,金之庆,石春林,高亮之.气候变化对中国南方水稻生产的阶段性影响及适应性对策.江西农业学报. 2002,18(1):1~8
    17. 顾节经.气候变化对作物产量影响的动态统计评价模式.气象.1995, 21(4):50~53
    18. 国家地图集编纂委员会.中华人民共和国国家农业地图集[M].北京:中国地图出版社, 1989:100~101
    19. 金之庆.评价全球气候变化对我国玉米生产的可能影响.作物学报. 1996, 22(5): 513~524
    20. 金之庆,葛道阔,郑喜莲,陈华.评价全球气候变化对我国玉米生产的可能影响[J].作物学报,1996,22(5):513~524.
    21. 居辉,熊伟,许吟隆. IPCC SRES A2 和 B2 情景下我国小麦产量变化模拟. 作物学报,2005,31(8): 24~29.
    22. 居煇,李三爱,严昌荣等. 北方旱农区玉米自然降水生产潜力研究. 自然资源学报[J], 2006,21(4):632~637
    23. 李军.作物生长模拟模型的开发应用进展.西北农业大学学报.1997, 8(4):102~107
    24. 李军 , 王立祥 , 邵明安 , 樊廷录 . 黄土高原地区玉米生产潜力模拟研究 [J]. 作物学报 , 2002,28(4):555~560.
    25. 林而达,许吟隆等. 气候变化国家评估报告(II): 气候变化的影响与适应.气候变化研究进展.2006,2(2):51~56
    26. 林而达,张厚瑄,王京华. 全球气候变化对中国农业影响的模拟. 北京:中国农业科技出版社,1997
    27. 刘步春. 国外作物模型区域应用研究进展. 气象科技[J], 2002,30(4):194~203
    28. 刘黎平,钱永甫,吴爱明.区域模式和 GCM 对青藏高原和西北地区气候模拟结果的对比分析.高原气象.2000,19(3):313~322
    29. 刘文泉. 农业生产对气候变化的脆弱性研究方法初探.南京气象学院学报.2002, 25(2):214~220
    30. 陆其峰,潘晓岭,钟科等.区域气候模式研究进展.南京气象学院学报.2003, 26(4):557~565
    31. 潘家驹主编. 作物育种学总论. 北京:农业出版社, 1994, 35~39
    32. 彭少麟.全球变化与可持续发展[J]. 生态学杂志.1998, 7(2):32~37
    33. 番兴明,杨峻芸,谭静,黄云霄. 用 CERES 玉米生长模型预测优质蛋白玉米生物产量的形成. 西南农业大学学报, 2001,23(1):1~4.
    34. 秦大河,陈宜瑜,李学勇.中国气候与环境演变(下卷):气候与环境变化的影响与适应、减缓对策[M]北京:科学出版社 2005.
    35. 全国农业技术推广服务中心. 中国玉米新品种动态——2007 年国家级玉米品种区域报告. 北京. 中国农业科学技术出版社. 2007, 19~33, 96~145.
    36. 唐国平,李秀彬,GuentherFische 等:气候变化对中国农业生产的影响. 地理学报.2000, 55(2):130~138
    37. 王春乙,潘亚茹,白月明,等.CO2 浓度倍增对中国主要作物影响的试验研究.气象学报,1997,55(1):86~94
    38. 王馥棠.我国气候变暖对农业影响研究的进展.气象科技.1994,4:19~25
    39. 王修兰,徐师华,梁红.CO2 浓度增加对 C3、C4 作物生育和产量影响的实验研究.中国农业科学,1998,31(1):55~61
    40. 王亚莉, 贺立源. 作物生长模拟研究和应用综述.华中农业大学学报[J], 2005,24(5):529~535
    41. 吴金栋,王馥棠.气候变化情景生成技术研究综述.气象.1998,24(2):3~8
    42. 吴金栋、王馥棠.利用随机天气模式及多种插值方法生成逐日气候变化情景的研究.应用气象学报.2005,11(2):129~136
    43. 吴绍洪 , 尹云鹤 , 赵慧霞等 . 生态系统对气候变化适应的辨识 [J]. 气候变化研究进展 . 2005,1(3):115~118
    44. 谢云,James R Kiniry. 国外作物生长模型发展综述.作物学报.2002.28(2):190~195
    45. 熊伟 , 陶福禄 , 许吟隆, 林而达 . 气候变化情景下我国水稻产量变化模拟 . 中国农业气象.2001,22(3):1~5
    46. 熊伟,许吟隆,林而达,卢志光.IPCC SRES A2 和 B2 情景下我国玉米产量变化模拟.中国农业气象.2005,(1):1~5
    47. 熊伟,许吟隆,林而达等.区域气候模式与作物模型连接的影响评估模拟实验及不确定性分析.生态学杂志.2005,24(7):741~746
    48. 熊伟.未来气候变化情景下中国主要粮食作物生产模拟[博士学位论文].北京:中国农业大学.2004
    49. 熊伟,许吟隆,林而达等,IPCC SRES A2 和 B2 情景下我国玉米产量变化模拟. 中国农业气象,2005,26(1): 11~15.
    50. 熊 伟,居 辉,许吟隆等. 气候变化对中国农业温度阈值影响研究及其不确定性分析[J]. 地球科学进展, 2006,21(1): 70~76.
    51. 徐影,丁一汇,赵宗慈. 近 30 年人类活动对东亚地区气候变化影响的检测与评估.应用气象学报.2002,13(5):513~525
    52. 许吟隆,崔巧娟.利用 CERES~Maize 模型检验应用高分辨率气候变化情景进行影响评估的方法.中国农业气象.2005,26(增刊):42~48
    53. 许吟隆,黄晓莹,林而达等.中国 21 世纪气候变化情景的统计分析.气候变化研究进展.2005,1(2):80~84
    54. 许吟隆,张勇,林一骅等.利用 PRECIS 分析 SRES B2 情景下中国区域的气候变化响应.科学通报.2006,51(17):2068~2074
    55. 许吟隆. 中国 21 世纪气候变化的情景模拟分析.南京气象学院学报.2005,28(3):323~329
    56. 许吟隆,Richard Jones. 利用 ECMWF 再分析数据验证 PRECIS 对中国区域气候的模拟能力.中国农业气象,2004,25(1): 5~9.
    57. 许吟隆,张勇等. 利用 PRECIS 分析 SRES B2 情景下中国区域的气候变化响应.科学通报,2006,17: 2068~2074.
    58. 姚凤梅,许吟隆,徐宾.中国东北稻区气象产量时空分布和周期性变化特征分析.中国农业气象.2005,26(增刊):31~36
    59. 叶笃正,吕建华.气候研究进展和 21 世纪发展战略.自然科学进展.2003,13(1):42~46
    60. 袁福香,马树庆,王馥棠,王石立,气象条件对玉米生长发育影响的试验与评估模式研究.吉林气象.2001,3:37~42
    61. 曾青,朱建国,刘刚,等.开放式空气 CO2 浓度增高条件下 C3 作物与 C4 杂草的竞争关系.应用生态学报,2002,13(10):1231~1234
    62. 张炜银,彭少麟,王伯荪等.利用RS与GIS研究气候变化对植被的影响(综述).热带亚热带植物学报.2001, 9(3):269~276
    63. 张宇,王石立,王馥棠.气候变化对我国小麦发育及产量可能影响的模拟研究.应用气象学报.2000,11(3):265~270
    64. 赵海燕.气候变化对长江中下游地区水稻生产的影响及适应性研究[硕士学位论文].北京:中国农业科学院.2005
    65. 赵宗慈,罗勇,R.Leung 等.东亚夏季风的模拟研究—3 个区域气候模式的对比.应用气象学报.1997,8(增刊):116~123
    66. 赵宗慈,罗勇.二十世纪九十年代区域气候模拟研究进展.气象学报.1998,56(2):225~242
    67. 赵宗慈:全球气候变化预估最新研究进展.气候变化研究进展.2006,2(2):68~71
    68. 郑 洪 建 , 董 树 亭 . 生 态 因 素 与 玉 米 产 量 关 系 的 研 究 . 东 农 业 大 学 学 报 ( 自 然 科 学版),2000,31(3) :315~319
    69. 张艳红. 基于 CERES 玉米模型的黄淮海夏玉米水肥管理技术研究[硕士学位论文]. 中国农业大学. 2004
    70. A.S. du Toit, J. Booysen, J.J. Human. Use of Linear Regression and a Correlation Matrix to Evaluate CERES3 (Maize)[A]. In: Jeffrey W. White and Peter R. Grace . Modeling Extremes of Wheat and Maize Crop Performance in the Tropics[C]. Proceedings of a Workshop, CIMMYT ,2001.
    71. Alexandrov V.A., Hoogenboom G.. Vulnerability and adaptation assessments of agricultural crops under climate change in the southeastern USA. Theoretical and Applied Climatology. 2000. 67:45~63
    72. Alexandrov, Hoogenboom. Evaluation of the CERES Model for Maize and Winter Wheat in Southeastern Europe. In: Proc International Symposium Modeling Cropping Systems, 1999, Spain: 131~132
    73. Arakawa A, Lamb V R. Computational design of the basic dynamical processes of the UCLA general circulation model. In:Chang J. ed. Methods in Computational Physics. New York: Academic Press, 1997. 173~265.
    74. Bacsi Z, Hunkar M. Assessment of the impacts of climate change on the yields of winter wheat and maize, using crop models. Id?járás. 1994,98(22):119~134
    75. Cox P M, Betts R A, Bunton C B, et al. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn, 1999, 15: 183~203.
    76. Daniel C. One~at~a~Time~Plants. Journal of the American Statisctical Association, 1973 ,68: 353~360
    77. Downing TE. Climate change and world food security. Global Environmental Change. 1996,37, 666
    78. Gao Xuejie, Zhao Zongci, Ding Yihui, et al. Climate change due to greenhouse effects in China as simulated by a regional climate model[J]. Advances in Atmospheric Sciences, 2001, 18 (6): 1224~1230
    79. Gyanendra B. Dhakhwa, C. Lee Campbell, S.K. LeDuc etc. Maize growth: Assessing the effects of global warming and CO2 fertilization with crop models. Agricultural and Forest Meteorology.1997,87:253~272
    80. Houghton J T, Ding Y H, Griggs D G, et al. Climate Change 2001: The Science Basis. Contribution of working Group I to Third Assessment Report of Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2001.811
    81. Hulme M. eds. Climate Change and Southern Africa. Norwich. United Kingdom: Climatic Research Unit. University of East Anglia.1996:104~115
    82. Iglesias. Modeling the effects of climate change on crops at the regional scale~effects on wheat and maize in Spain. In: Harrison PA, Butterfield RE, Downing TE (eds) Climate Change andAgriculture in Europe~Assessment of Impacts and Adaptations. Research report No.9, Environmental Change Unit, University of Oxford, UK,1995:310~319
    83. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt,M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
    84. J. Timsina, E. Humphreys. Performance of CERES~Rice and CERES~Wheat models in rice–wheat systems: A review[J]. Agricultural Systems,2006,(90): 5~31.
    85. Jamieson P.D, Jamieson J.R., Porter J.R., Goudriaan J. etc. A comparison of the models AFRCWHEAT2, CERES~Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Research. 1998,55:23~44
    86. Jones CA, Kiniry JR. CERES~Maize: A simulation model of maize growth and development. TX: Texas A&M University Press, College Station, 1986: 194
    87. Jones R G, Noguer M, Hassell D C, et al. Generating high resolution climate change scenarios using PRECIS, Met Office Hadley Centre, Exeter, UK, 2004. 35.
    88. Mearns L O , Mavromatis T , Tsvetsinskaya E , Hays C, Easterling W. Comparative responses of EPIC and CERES crop models to high and low spatial resolution climate change scenarios. J Geophysics Res, 1999, 104: 6623~6 646
    89. Met Office: The Hadley Centre regional climate modeling system: PRECIS~Updata 2002, Providing Regional Climates for Impacts Studies,2002:16.
    90. Morris M D. Factorial sampling plants for preliminary computational experiments. Technometrics , 1991, 33(2): 161~173
    91. Nakicenovic N,Alcamo J, Davis G, et al. Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press, USA, 2000.599
    92. Peter G.Jones,Philip K, Thornton. The potential impacts of climate change on maize production in Africa and Latin America in 2055.Global Environmenta Changel.2003,13:51~59
    93. Q Luo,Martin A.J. Williams, William Bellotti et al. Quantitative and visual assessments of climate change impacts on South Australian wheat production. Agricultural systems.2003,77:173~186
    94. Rosenberg N J. Methodology for assessing regional agricultural consequences of climate change. Special Issue of Agric for Meteorol, 1992 , 59:1~127
    95. Rosenzweig C, Iglesias A. The use of crop models for international climate change impact assessment. In: Tsuji G Y, Hoogenboom G, Thornton P K eds. Understanding Options for Agricultural Production. London: Kluwer Academic Publishers, 1998. 267~292
    96. Willmott, C.J.. Some comments on the evaluation of model performance[J]. Bulletin of the American Meteorological Society, 1982:1309~1313.
    97. Zalud Z, Dubrovsky M. Modeling climate change impacts on maize growth and development in the Czech Republic[J]. Theoretical and Applied Climatology, 2002,72: 85~102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700