用户名: 密码: 验证码:
渗透胁迫信号传导关键基因对黑穗醋栗遗传转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、高盐及低温等环境条件,都会构成对植物的渗透胁
    迫,使植物缺水受伤害,甚至导致植物死亡,是造成作物减产
    的主要原因。生产上主要采用抗逆性强的品种。黑穗醋栗(Ribes
    nigrum L. )属于多年生木本果树,世代周期长,杂合性高,许
    多重要经济性状属于多基因控制的数量性状,遗传机理不明,
    利用常规方法进行品种选育困难重重。利用基因工程手段将外
    源基因导入作物中,培育出新的品种已成为现代农业和农作物
    育种的发展方向。但是黑穗醋栗属于木本果树,离体培养技术
    还不完善,再生有困难,常常无法获得再生植株,并且缺乏高
    效的遗传转化方法。
     针对以上问题,本研究以黑穗醋栗为试材进行组织培养和
    遗传转化的初步研究,本研究构建了 osCDPK7 基因和
    osMAPK4 基因的植物表达载体;建立了黑穗醋栗茎尖再生体
    系;利用基因枪法和农杆菌介导法将 osCDPK7 基因和
    osMAPK4 基因转化黑穗醋栗,以期获得转基因植株,来增强
    作物抗逆性。
     本研究主要研究结果如下:
    1. 载体构建
     构建了 2 个植物表达载体 PBC7E12 和 PBME12。载体 PBC7E12 上带有组成型启动
    子 E12 调控的 osCDPK7 基因,植物筛选标记为 nptⅡ基因。载体 PBME12 上带有组成型
    启动子 E12 调控的 osMAPK4 基因,植物筛选标记为 nptⅡ基因。
    2. 黑穗醋栗再生体系的建立
    (1) 黑穗醋栗愈伤组织的诱导
     利用黑穗醋栗叶片、叶柄和茎段诱导愈伤组织,研究了
     不同 PGR 配比对黑穗醋栗愈伤组织诱导的影响,为下
     一步通过愈伤组织诱导不定芽奠定了基础。
    (2) 黑穗醋栗茎尖培养培养基的确定
     V
    
    
    摘 要
     确 定 了 黑 穗 醋 栗 茎 尖 最 佳 分 化 和 继 代 培 养 基 为
     MS+1mg/L BA,30g/L 蔗糖,0.8%琼脂,pH5.8。
     最佳从生芽生根培养基为 1/2MS,30g/L 蔗糖,0.8%琼
     脂,pH5.8。
    3. 基因枪法对黑穗醋栗茎尖的遗传转化
     确定茎尖分化阶段卡那霉素的筛选压力为 25mg/L。丛生
    芽生根阶段卡那霉素筛选压力为 20mg/L。利用基因枪法转化
    黑穗醋栗茎尖获得抗性芽,抗性芽率为 8.4%。
    4. 农杆菌介导法对黑穗醋栗茎尖的遗传转化
     利用农杆菌介导法转化黑穗醋栗茎尖获得抗性芽,抗性芽
    率为 10.5%。
    5. 转基因植株的分子检测
     基因枪法转化获得的抗性植株,经 PCR 检测,获得 osCDPK7 基因阳性的植株 1 株,
    获得 osMAPK4,基因阳性的植株 1 株。PCR 阳性率为 9.1%。
     目前,利用农杆菌介导法转化黑穗醋栗茎尖已获得大量抗性苗,正在继续对转化植
    株进行筛选培养。下一步将对利用农杆菌介导法转化黑穗醋栗茎尖获得的抗性芽进行检
    测。
Drought, high salinity and low temperature are common stress condition that adversely
    affect plant growth and crop production. Using new cultivars which had high resistance to
    these stress is a good way to defense the stress. But blackcurrants (Ribes nigrum L. ) are
    perennate woody fruit crops. Because of long life cycles , genetic heterogeneity and most of
    economic traits controlled by quantitative trait loci or multiple genes , genetic improvement in
    blackcurrant by traditional breeding is very difficult., improvement of source strength by
    molecular technology. Transferring extraneous gene to crops by genetic engineering to breed
    new varieties has become the research trend in crop breeding. But as a perennate woody fruit
    crops, technics in tissue culture of blackcurrant still remain many limitations, It is very
    difficult to regeneration and lack of efficient method of transformation.
     According to above-mentioned problems, this study make use of blackcurrant as material to
    carry on tissue culture and genetic transformation. In this research construct plant expression
    vectors with osCDPK7 gene and osMAPK4 gene. The regeneration system of blackcurrant
    has been established. Both of the two genes were transformed into Blackcurrant mediated by
    Agrobacterium and particle bombardment, in order to get some transgenic plants to enhance
    the stress-tolerant.
     The main results were summarized as follows.
    1. Vector construction
     Plant expression vector PBC7E12 was constructed, on which osCDPK7 gene was regulated
    by the constitutive promoter E12, and NptⅡ gene as selectable marker. Plant expression
    vector PBME12 was constructed, on which osMACDPK7 gene was regulated by the
    constitutive promoter E12, and NptⅡ gene as selectable marker.
    2. Establishment of Blackcurrant regeneration system
    (1). Callus induction of Blackcurrant
     Callus induction with leaf, petiole and stem segment. Study the effect of different
     PGR on callus induction, it was the basis of the regeneration of callus for the next step.
    (2). Make certain the optimal differentiation medium of blackcurrant shoot tip culture is MS+
     1mg/L BA, 30g/L sucrose, 0.8%agar, pH5.8.
     The optimal medium of root regeneration from shoots was 1/2MS,30g/L sucrose,
     0.8%agar, pH5.8.
    3. Transformation of blackcurrant shoot tip by particle bombardment
     The concentration of Km selection in phase of shoot differentiation was 25 mg/L , in phase
    of root regeneration , this concentration was 20 mg/L. Transformation of blackcurrant shoot
     VII
    
    
    摘 要
    tip by particle bombardment,we get some resistant shoots. The percentage of resistant shoot
    was 8.4%.
    4. Transformation of blackcurrant shoot tip by Agrobacterium mediate
     We get some resistant shoots. The percentage of resistant shoot was 10.5%.
    5. Identification analysis of transgenic plant
     Resistant shoots from particle bombardment were detected. one PCR positive transgenic
    plants with gene osCDPK7 and one PCR positive transgenic plants with gene osMAPK4 were
    acquired.
引文
1. 蔡旭.植物遗产育种学. 北京科学出版社[M],1988.
    2. 陈辉蓉,吴振斌. 植物抗逆性研究进展[J]. 环境污染治理技术与设备,2001,2(3):
     7~13
    3. 程家胜,鄂超苏,等. 转 BT 抗虫基因苹果植株的再生[J].中国果树,1994(4):14~15
    4. 方宏筠,王关林,王火旭等.抗菌肽基因转化樱桃矮化占木获得抗根瘤病的转基因植
     株[J].植物学报,1999,14(11):1192~1198
    5. 傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册[M].中国科学技术出版社,1994
    6. 何军贤,傅家瑞. 种子Lea蛋白的研究进展[J].植物生理学通讯,1996,32(4):241~246
    7. 侯彩霞,汤章城. 细胞相容性物质的生理功能及其作用机制[J].植物生理学通
     讯,1999,35(1):1~7
    8. 黄璐,卫志明.不同基因型玉米的再生能力和胚性与非胚性愈伤组织 DNA 的差异
     [J].植物学报,1999,25(4):332~338
    9. 辉蓉,吴振斌. 植物抗逆性研究进展. 环境污染治理技术与设备,2001,2(3):7~
     13
    10. 贾士荣等.转基因植物[J],植物学通报,1992,9(2):3~15
    11. 蒋思婧. 枯草芽孢杆菌寡聚1, 葡萄糖苷酶基因的克隆及其在大肠杆菌中的表达[J].
     6-
     微生物学报,2002,42(2)
    12. 焦芳婵,毛雪. 转基因改良植物的胁迫耐性[J]. 生物技术通讯 2001 (4)135~139
    13. 焦平林,陈萍等.纤维素酶制剂对肉牛增重及奶牛产奶影响的研究[J].中国饲料,
     1996,(19):15~17
    14. 李银心,常凤启,杜立群等.转甜菜碱脱氢酶基因豆瓣菜的耐盐性.植物学报,2000,
    15. 李勇. 黑穗醋栗(Ribes nigrum L.)未受精胚珠培养诱导体细胞胚状体和植株再生的研
     究[J].植物研究.1993,13(3):262~267.
    16. 梁峥,骆爱玲. 甜菜碱和甜菜碱合成酶[J]. 植物生理学通讯,1995,31(1):1~8
    17. 刘 强,赵南明. DREB 转录因子在提高植物抗逆性中的作用[J] 科学通报 2000(1)
     11~16
    18. 刘春林,董延瑜. 美味猕猴桃遗传转化研究除报[J]. 湖北农学院学报,1994(3):
     215~221
    19. 刘大文. 转 Zm13-Barnase 基因玉米的获得及其花粉育性研究[J]. 植物学报,2000,
     42(6):611~615
    20. 刘家尧,王学臣,梁峥 .植物基因表达的代谢调控[J].植物学通报, 1999, 16(1):1~10
    21. 刘强、张勇、陈受宜.干旱、高盐及低温诱导的植物蛋白激酶基因[J].科学通报,
     2000,45(6):561~566
    22. 刘强、赵南明、K. Yamaguch-ShinozakiDREB 转录因子在提高植物抗逆性中的作用
     [J].科学通报,2000,45(1):11~16
     42
    
    
    参考文献
    23. 刘岩,王国英,刘俊君,等. 大肠杆菌基因转入玉米及耐盐转基因植株的获得[J]. 中国
     科学(C辑), 1998, 28(6): 542~547
    24. 马凤桐. 黑穗醋栗茎尖离体培养及其应用的研究[J].西北农业学报,1995,4(1):34.
    25. 彭艳华等. 低温胁迫下凤眼莲叶片的适应-脱落酸和可溶性蛋白质含量升高[J].武汉
     植物学研究,1992,10(2):123~127
    26. 彭志红, 彭克勤. 渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报 2002(4)
     80-83
    27. 萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T著.金冬雁等译.分子克隆实验指南(第
     二版) [M].北京:科学出版社,1992
    28. 师校欣, 王斌, 杜国强等. 根癌农杆菌介导豇豆胰蛋白酶抑制剂基因转入苹果主栽
     品种[J]. 园艺学报,2000,27(4):282~284
    29. 史永忠,等.RAPD技术与果树种质资源及育种研究[J].中国果树,1997(2):46~48.
    30. 汤章城,余叔文主编. 植物生理与分子生物学(第二版).北京,科学出版社,1998,
     739~751
    31. 天津轻工业学院等编.食品生物化学[M].北京:中国轻工业出版社,1981.64
    32. 王关林,方宏筠.植物基因工程[M], 科学出版社,2002
    33. 王国英等.用基因枪法将 Bt 毒蛋白基因转入玉米及转基因植株再生[J].中国科学,
     1995,25(1):71~61 展.作物杂志.2000,6
    34. 王景雪,孙毅,农杆菌介导的植物基因转化研究进展[J].生物技术通报,1999(1):
     7~13
    35. 王艳青,陈雪梅.物抗逆中的渗透调节物质及其转基因工程进展[J]. 北京林业大学学
     报,2001,23(4):66~70
    36. 王以柔等.对水稻和黄瓜幼苗 SOD,GR 活性及 GSH,ASA 含量的影响[J].植物学
     报,1995,37(10):76— 780
    37. 薛淮,刘敏,等. APD分子标记在园艺植物遗传学研究中的应用[J].生物技术.2003,13
     (2):42~43
    38. 曾黎辉 吕柳新. 木本果树遗传转化研究进展[J].果树学报 2002,19(3)191~198
    39. 张克忠,鲍雪珍,白永延,等苏云金杆菌内毒素蛋白基因转入葡萄胚性愈伤组织细胞及
     转基因植株再生的研究[J].实验生物学报,1997,30(30):303~308
    40. 张献龙. 转基因植物生产研究现状、问题及展望. 华中农业大学 2003
    41. 张秀海 黄丛林.植物抗旱基因工程研究进展[J].生物技术通报 2001(4)21~25
    42. 赵正阳,付润民.植物基因工程在果树遗传改良上的应用[J].西北农业学报,1996, (4):
     82-88
    43. Alia kondo Y,Sakamoto A et al. Enhanced tolerance to light stress of transgenic
     Arbidopsis plant that express the coda gene for a bacterial choline oxidase[J]. Plant
     Molecular Biology,1999,(40): 279~288
    44. Antonelli N M. Stadle J.Genomic DNA can be used with cation method. forlrighIy
     efficient transfonnation of maize protoplasts[J]. Theor Appl Genel,1990,(80):395
     43
    
    
    参考文献
    45. Aono M. Paraquat tolerance of transgenic nicotiana tabacum with enchanced activities
     of glutathione reductase and superoxide dismutase[J]. Plant Cell Physiol,1995, 36:
     1687
    46. Benson, E. E., B. M. Reed, et al. Use of thermal analysis in the evaluation of
     cryopreservation protocols for Ribes nigrum L. germplasm[J]. Sch. Molecular Life
     Sci,1996,17(6): 347-362
    47. Bera C Gene sequence analysis and properties of EGC afamilyE(a) endoglucanase from
     Fibrobacter succinogends BL2[J]. Microbiol lect, 1996 Feb1,136(1): 79-84
    48. Brennan, R., D. Davidson, et al. An assessment of the in-vitro multiplication rates of
     fourteen black currant cultivars[J].Journal Of Horticultural Science, 1989,64(6): 679-682
    49. Buttner M,Singh K B. Arabidopsis thaliana ethylene-responsive element binding
     protein(AtEBP),an ethylene-inducible,GCC box DNA-binding protein interacts with an
     ocs element binding protein[J].Proc Ntl Acad Sci USA,1997, (94): 5961-5966
    50. Caimi PG, Mccole l M, Kisin T M et al. Cytosolic expression of the Bacillus
     amyloliquefaciens SacB protein inhibits tissue development in transgenic tobacco and
     patato[J].The New Phytologist,1997,(136): 19~28
    51. Cheng M, Joyce E Fty, et al.Genetic transformation of wheat mediated by
     Agrobacterium tnmefacien[J]s. Plant Physiol.1997,115: 971~980
    52. Christowp. Strategies for varidty-independent genetil transformation of important
     cereals[J]. Euphytica,1995,(85): 13~27
    53. Denman S. Charactoization of a Neocallimastix patriciarum cellulase cDNA(celA)
     homologos to Trichoderma reesei cellobiohydrolaseII[J]. AppI Environ Microbiol 1996,
     Jun,62(6): 1889-1896
    54. Drews G N, Bowman J L, Meyerowitz E M.Negative regulation of the Arabidopsis
     homeotic gene AGAMOUS by the APETALA2 product[J].Cell,1991,(65): 991-1002
    55. Durette P L et al. Advancesin Carbohydrate Chem,1971, (26): 490
    56. Elliott R C, Betzner A S,Huttner E, et al.Aintegumenta,an APETALA2-like gene of
     Arabidopsis with pleiotropic rles in ovule development and foral organ growth[J]. Plant
     Cell,1996,(8): 155-168
    57. Gielkens MM Twocellobiohydrolase-encoding genes from Aspergillus niger reguire
     D-xylose and the xylanolytic transcriptional activator XlnR for their expression[J]. Appl
     Environ Microbiol, 1999,Oct,65(10): 4340-4345
    58. Goeran et al. Int Symp Wood Pulping chem.1981,(3): 39~42
    59. Golovkin M V. Production of transgenic maize plants by direct DNA uptake into
     embryogenic prolplasts[J].Plant Sci,1993,(90):41~45
    60. Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G and Smith RH (b) Transformation
     of Zea mays L., using Agrobacterium tumefaciens and the shoot apex. Plant Physiol,
     1991 95: 426–434
     44
    
    
    参考文献
    61. Gould J, Zhou Y, Shen Y, Magallanes-Cedeno M and Luo J. Shoot apex transformation
     of cotton using Agrobacterium. Beltwide Cotton Production Conferences, National
     Cotton Council, Memphis TN. 1997, 432–434
    62. Gould L Transformation of Iea may SL.using Agrobacterium tumefaciens and the shoot
     apex[J] Plant physiol, 1991,(95): 426-434
    63. Gould L. Transformation of Zea mays L.using Agrobacterium tumefaciens and the shoot
     apex[J]. Plant Physiol,1991,(95): 426~434
    64. Graham, J. and R. J. McNicol. Regeneration and transformation of Ribes[J]. Plant Cell
     Tissue And Organ Culture, 1991 ,24(2): 91-96.
    65. Grimsley N II.Meristematic tissues of maize plants are most Susce ptibletoagroifection
     with maize streak vius [J].Bio/Technology,1988,(6): 185~189
    66. Hao D Y,Ohmetakagi M,Sarai A .Unique mode of GCC box recognition by the
     DNA-binding domain of ethyleneresponsive element-binding factor(ERF domain)in
     Plant[J].J Biol Chem,1998,(273): 2657-2661
    67. Hare P D,Cress W A,Van Stdaden J.Dissecting the roles of osmolyte accumulation
     during stres[J]. Plant Cell and Environment,1998,(21):535~553
    68. Hayashi J et al. J P olym. Sci,1975,(13): 236
    69. Hemphill JK, Maier CG and Chapman KD Rapid in-vitro plant regeneration of cotton
     (Gossypium hirsutum L.). Plant Cell Rept, 1998, 17: 273–278
    70. Hirofumi okada Molecular characterization and heterologous expression of the gene
     encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414
     [J].Environ Microbiol,February,1998,64(2): 555-563
    71. Hodges T K, et al. In; Biotechnology in plant Science, Relevance to Agriculture in the
     Eighties. [M].Zaitlin M, et al .eds. Academie Press,INC. 1985.15~34
    72. Hodges T K,Kamo K K,Imbrie C W,Becwar M R..Genotype specificity of so matic
     embryogenesis and regeneration in maize [J].Bio Tech nol. 1986,4: 219~223
    73. Ishida Y.lligh efficiency transformation of maize mediated by Agrobacterium
     tumefaciens  [J]. Nature Biotech. 1996. 14: 745~750
    74. Jaglo-Ottosen K R,Gilmour S J,Zarka D G,et al.Arabidopsis CBF1 overexpression
     induces cor genes and enhances freezing tolerance[J].Cell,1991,(65): 991-1002
    75. Jean H, Gould, et al.. Adaptation of Cotton Shoot Apex Culture to
     Agrobacterium-Mediated Transformation[J]. Plant Molecular Biology Reporter, 1998. 16:
     1–10
    76. Jones D W. J P olym Sci,1958,(32): 371
    77. Jules J., et al. Plant breeding rev [J].New York: John wiley & Sons. Ins. Volume 1995,
     13: 235~264
    78. Kaeppler II F. Silicom carbide fiber- mediated stable transformation of plant cells [J] 
     Theor Appl Genet. 1992,(84):560 ~ 566
     45
    
    
    参考文献
    79. Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing
     tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature
     Biotechnology, 1999,(17):287~292
    80. Kasuga M, Liu Q,Miura S et al.Improving plant drought,salt,and freezing tolerance by
     gene transfer of a single stress inducible transcription factor [J]. Nature Biltechnology,
     1999,(17): 287~292
    81. Kiegerl,S,Cardinale,F,Siligan,C,Gross,A,Baudouin,E,Liwosz,A,Eklof,
     S,Till,S,Bogre,L.,Hirt,H.,and Meskiene,I. SIMKK,a mitogen-activated protein
     kinase (MAPK) kinase,is a specific activator of the salt stress-induced MAPK,SIMK[J].
     Plant Cell ,2000,(12):2247~2258
    82. Klein T M et al. Factors influencing gene delivety into zea mays cell by high velocity
     microjectiles [J].Bio. Technology.1986,559~563
    83. Klein TM.Genetic trans form ationo fmaizecell sparti clebombar dment[J].Plant Physiol,
     1989,91:440~444
    84. Klucher K M, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis
     required for ovule and female gametophyte development is related to the floral homeotic
     gene APETALA2[J]. Plant Cell. 1996,8: 137~153
    85. Koziel M G. Field penonnance of elite transgenic maize plant expressing an insecticidal
     protein derived from Bacillns thuringiensis[J]. Bio/Technolgy.,1993,(1l): l94
    86. Lambert C,Tepfer D,Use of Agribacterium rhizogenes to creat transgenic apple tress
     having an altered organogenic response to hormones[J].Theor Appl Genet,1992,85:
     105~109
    87. Lanham, P. G. Estimation of heterozygosity in Ribes nigrum L. using RAPD markers[J].
     Genetica Dordrecht, 1996,98(2): 193-197
    88. Lanham, P. G., A. Korycinska, et al.Genetic diversity within a secondary gene pool for
     Ribes nigrum L. revealed by RAPD and ISSR markers[J].Journal of Horticultural
     Science and Biotechnology, 2000,75(4): 371-375
    89. Lanham, P.G., R.M.Brennan, et al. RAPD fingerprinting of blackcurrant (Ribes nigrum
     L.) cultivars[J]. Theoretical and Applied Genetics,1995,90(2): 166-172
    90. Lee J H,Van Montagu M,Verbruggen N. A highly conserved kinase is an essential
     component of stress tolerance in yeast and plant cells[J]. Proc NaCl Acad Sci USA,
     1999,96(10): 5873~5877
    91. Leon-Kloosterziel K M,Keijzer C J, Koornneef M.A seed shape mutant of Arabidopsis
     that is affected in integument development[J].Plant Cell,1994,(6): 3895-392
    92. Leubnermetzger G, Petruzzelli L, Waldvogel R et al. Ethylene-responsive element
     binding protein (DREBP) expression and the transcriptional regulation of class I bata-1,
     3-glucanase during tobacco seed germination[J]. Plant Mol Biol,1998,(38):785~795
    93. Linshce et al. Ferment Technol.1979,57(3):163~168
     46
    
    
    参考文献
    94. Liu Q, Kasuga M, Sakuma Y et al. Two transcription factors, DREB1 and DREB2,
     with an DREBP/AP2 DNA-binding domain separate two cellular signal transduction
     pathways in drought-and low-temperature-responsive gene expression in Arabidopsis[J].
     Plant Cell. 1998,(10):1391~1406
    95. McCabe D E, Swain W F, Martinell B J. Stable transformation of soybean by particle
     acceleration. Bio/Technol, 1988, 6:923~926
    96. Marchessault R H,et al. Advancesin Carbohydrate Chem,1967,(22):421
    97. Mayer R, Koncz K Z, Nawrath C. T-DNA integration: a mode of illegitimate
     recombination in plants. EMBO J, 1991, 10: 697~704
    98. Mikolajczyk,M.,Olubunmi,S.A.,Muszynska,G.,Klessig,D.F.,and Dobrowolska,
     G.. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and
     a homolog of protein kinase ASK1 in tobacco cells[J]. Plant Cell 2000,(12):165~178.
    99. Mittendory V Cloning of an endo-(1->4)-beta-glucanase gene,CelA,from the
     rumenbecterium Clostridium sp(c,longisporm) and characterization of its product CelA,
     in Escherichia coli J[J]. Gen Microbiol,1993 Dec,139(pt12) : 3233-3242
    100. Moose S P, Sisco P H,Glossy15, an APETALA2-like gene from maize that regulates
     lesf epidermal cell identity. Genes & Development. 1996,(10):3018~3027
    101. Ohme-Takagi M,Shinshi H. Ethylene-inducible DNA binding proteins that interact with
     an ethylene-responsive element[J]. Plant Cell. 1995,(7): 173~182
    102. Percival E G V. Structural Carbohydrate Chem. London: J Garnet Miller Ltd.1962,1~63
    103. R.M. Brennan, S.L. Gordon & P.G. Lanham.Blackcurrant breeding and genetics[J].
     Breeding & genetics from Annual Reports of SCRI, 1997/98, 89-92.
    104. Reese E T,et al. Biotechnol Bioeng Symposium,1976,(6): 9~20
    105. Rhodes D, Hanso AD Quaternary ammonium and teritiary sulfonium compounds in
     higher plant[J] Annu Rev Plant Physiol plant MolBiol,1993(44): 357-384
    106. Rontein D, Basset G, Hanson AD. Metabolic engineering of osmoprotectant
     accumulation in plants[J]. Metab Eng Jan2002,4(1): 49~56
    107. Sabi N.Transient and stable electrotransformations of intact black Mexican sweet maize
     cells are obtained after preplasmosis[J]. Plant Cell Rep.1996,(15):924~928
    108. Sanford J C, et al. Particulate. Sei. technol. 1987,(5):27~37.
    109. Smith R, Gould J, Ulian E (1992) Method for transforming plants via the shoot apex. US
     Pat. 5,164,310.
    110. Sprey B, Lambert C Titration curbes of cellulases from Trichoderma reesei:
     demonstration of cellulasexylanase-?-glucosidase containing complex,FEMS[J].
     Microbiol,1983(18): 217-222
    111. Sukhapind K,et al. Transf or mation of maize(Zea mays L.)protoplasts and regeneration
     of haploid  transgenic plants [J].Plant cell rep. Berlin, W. Ger. Springer Internatio-
     nal.1993.13(2):63~68.
     47
    
    
    参考文献
    112. Ulian EC, Smith RH, Gould J and McKnight T. Transformation of plants via the shoot
     apex. In Vitro Cell Dev Bio, 1988: 951–954
    113. Vain P.Osmotic teatment enhances particle bombardment-mediated transient and stable
     transformation of maize[J].Plant Cell Rep,1993,(12):84~88
    114. Walters D , et al. Transformation and inheritance of a hygromycin phosphotransferase
     gene in maize plants [J].Plant Molecular Biology. 1992,18: 189~200
    115. Yamaguchi-Shinozaki K, Koizumi M, Urao S, et al. Molecular cloning and charac-
     terization of nine cDNAs for genes that are responsive to desiccation in Arabidopsis
     thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane
     channel protein[J]. Plant Cell Physiol. 1992,(33): 217~224
    116. Yamaguchi-Shinozaki K, Shinozaki K.A novel cis-acting element in an Arabidopsis
     gene is involved in responsiveness to drought, low-temperature or high-salt
     stress[J].Plant Cell.1994,(6): 251~264
    117. Yao JL, ohen D,Atkinson R,et al.Regeneration of trandgenic plants from the commercial
     apple cultivar Royal Gala[J].Plant Cell Rep,1995,14: 407~412

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700