用户名: 密码: 验证码:
铁矿球团微波加热煤基直接还原基础与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统钢铁生产流程长、投资大、能耗高、污染严重,而且焦煤资源日益枯竭,开发一种以煤代焦、节能减排、高效紧凑的炼铁新工艺具有重大的战略意义。本文以铁矿球团和无烟煤为主要研究对象,开展了铁矿球团微波加热煤基直接还原的基础与技术研究。论文研究的主要创新点和结论如下:
     研究了铁矿球团和煤的电磁性能及其微波加热升温特性。球团或团块的升温速度快慢顺序是:Fe3O4>FeO≈Fe2O3≈氧化球团>Fe粉;在微波作用下铁矿球团物相及其结构产生了改变,铁氧化物反应活性增强,促进了铁氧化物的还原。无烟煤在微波场中强烈吸收微波,具有还原剂和发热体双重作用,加快了固定碳的气化反应。
     采用光学显微镜、XRD和SEM等现代测试技术研究了铁矿球团微波加热煤基非等温还原过程物相和显微结构变化。结果表明,微波作用下球团中的颗粒出现碎裂,促进了铁氧化物还原反应,以及晶格发生变化而产生内应力,造成球团膨胀。当升温到850℃,还原度为43.06%时膨胀率最大,球团强度最低为320N/个,进一步还原时金属铁增多,铁晶粒迁移、聚集、长大,温度上升到1050℃并恒温50min时,球团的还原度达97%,金属化球团的抗压强度达到1035N/个。
     揭示了微波作用下铁矿球团煤基还原过程的规律。铁矿氧化球团微波加热煤基还原受CO的内扩散控制;当还原气氛不足,铁矿颗粒碎裂后未能快速还原而形成浑圆状FeO并快速长大,当存在Si02时,形成了大量的FeSiO3,阻碍还原进行。
     研究了预还原球团微波加热煤基直接还原新工艺。铁矿氧化球团经预还原后,结构疏松、孔隙发达、体积膨胀小,具有较高的抗压强度;低还原度(金属化率<40%)预还原球团微波加热煤基还原时,表层铁氧化物快速还原形成金属铁壳,阻碍了中心铁氧化物快速还原;对于较高还原度(金属化率>40%)预还原球团微波加热煤基直接还原,球团结构疏松、孔隙发达,提高了CO/CO2扩散速率,加快了铁氧化物还原反应,缩短了还原时间,提高了生产率。当还原度66.90%的预还原球团118g,微波功率1.3kW,配碳量/球团量为0.22,温度上升到1050℃时,球团的还原度和金属化率分别达到94.29%和88.23%。
     采用Φ120mm连续式微波竖炉进行了铁矿球团微波加热煤基直接还原中试研究。结果表明:以氧化球团和无烟煤为原料,在温度1050℃,时间65min时,球团金属化率和生产率分别为95.25%和4.08kg/h;以金属化率42.85%的预还原球团和无烟煤为原料,在温度1050℃,时间41min时,球团金属化率和生产率分别为97.68%和6.33kg/h,高温还原时间缩短了36.92%,生产率提高了55.15%。
The traditional iron and steel production has the disadvantages of long process, great investment, high energy consumption and serious pollution issues. Further more, coking coal is increasingly exhausted. Therefore, the development of a new process, which makes the iron making process replacement of coke by coal, energy saving, environment protecting, high-efficiency and compact, has important strategic meanings. In this research, iron ore pellets and anthracite are taken as the objects to investigate the fundamental and technical research of pellets for coal-based direct reduction by microwave heating. The main innovations and conclusions obtained are as follows:
     The electromagnetic properties of iron ore pellets and coal, as well as the temperature rising characteristics of microwave heating were studied. The descending order of temperature rising rate of briquettes is Fe3O4>FeO≈Fe2O3≈oxide pellets>Fe. Phase and microstructure of iron ore pellets are changed by microwave heating, activity of iron oxide increases and reduction reaction is promoted. In microwave field, due to the strong absorption ability, anthracite has the dual role of both reducing agent and heating element in microwave field and gasification rate of fixed carbon is increased.
     The microstructure and physical phase of iron ore pellets during microwave heating coal-based direct reduction process were researched detailedly by using advanced testing methods, such as optical microscope, SEM, and XRD. It is found that fragmentations appear under the action of microwave and the reduction reaction of iron oxide is promoted. Inner stress is caused due to change of crystal lattice. And the volume of pellet expands. The expansion volume peaks when the reduction degree and temperature is43.06%and850℃and the lowest value of pellet compressive strength is320N/P. Metallic iron increases when the pellets are further reduced; followed with crystal grains migrate, gather and grow. The compressive strength of metallized pellets with a reduction degree of97%is1035N/P after50min of heating at 1050℃。
     The restrictive step of coal-based direct reduction of iron ore pellets under the action of microwave is revealed. Microwave heating coal-based direct reduction of oxide pellets is limited by internal diffusion of CO. When the reducing atmosphere is insufficient, FeO with an irregularly perfectly round is formed and grows since iron ore grain is not reduced rapidly after cracking. Lots of FeSiO3forms with the existence of SiO2, and reduction reaction is resisted.
     A new iron making process using pre-reduced iron ore pellets by microwave heating has been investigated. The pre-reduced pellet has loose structure, developed pore, small volumetric expansion and high compressive strength. The reduction of center of pre-reduced pellets with lower reduction degree (metallization rate<40%) is limited by the formation of metallic iron shell. The reduction of pre-reduced pellets with higher reduction degree (metallization rate>40%) is promoted because of the higher CO/CO2diffusion rate. The reduction degree and metallization rate are94.29%and88.23%when118g pre-reduced pellets with a reduction degree of66.90%are reduced at1050℃and the power of microwave is1.3kW and ratio of carbon/pellet is0.22.
     The study of microwave heating coal-based direct reduction of iron ore pellets was put forward using a φ120mm pilot-sized continuous microwave shaft furnace. The results indicate that the metallization rate and productivity of oxidized pellets is95.25%and4.08kg/h, respectively after65min of reduction at1050℃; the metallization rate and productivity of pre-reducted pellets with a metallization rate of42.85%is97.68%and6.33kg/h, respectively with41min of reduction at1050℃. The reduction time is shortened by36.92%and the productivity increased by55.15%.
引文
[1]刘树立.国外铁矿石直接还原厂[M].北京:冶金工业出版社,1990.1-3,159-165,171-176,217-223,292-294,296-304
    [2]Midrex Direct Reduction Corporation.2011 world direct reduction statistics [EB/OL]. www.midrex.com. 2011. 2-4
    [3]王筱留.钢铁冶金学(炼铁部分)[M].北京:冶金工业出版社,2005.245
    [4]Midrex Direct Reduction Corporation. 2008 world direct reduction statistics [EB/OL]. www.midrex.com. 2008. 3-7
    [5]赵庆杰,储满生.电炉炼钢原料及直接还原铁生产技术[J].中国冶金,2010,20(4):26
    [6]Duarte P,代书华,姜鑫,等.HYL(希尔)工艺采用焦炉煤气或合成气生产直接还原铁DRI [J].2006年中国非高炉炼铁会议,2006.155-156
    [7]阴继翔.煤基直接还原技术的发展[J].太原理工大学学报,2000,31(3):314-316
    [8]魏国,赵庆杰,董文献,等.直接还原铁生产概况及发展[J].中国冶金,2004,82(9):16-20
    [9]Haruyasu M, Hidetoshi T. Prospects for coal-based direct reduction process [J]. Kobelco Technology Review, 2010, 29 (12) : 69-76
    [10]庞建明,郭培民,赵沛.煤基直接还原炼铁技术分析[J].鞍钢技术,2011,(3): 1-7
    [11]Schnabel W, Schlebusch D, Elsenheimer G SL/RN coal-based direct reduction-the state of the art [J]. Ironmaking Proc, Metall. Soc. AIME, 1983, 42(1): 163-170
    [12]BornmanC.J.南非SL/RN海绵铁生产九年的经验[J].烧结球团,1994,(2):42-43
    [13]赵建虹,吕振华.国内煤基回转窑直接还原工艺及装置述评[J].山西冶金,2002,86(2):1-4
    [14]许晓杰,包向军,赵鹏.我国煤基直接还原铁发展现状及前景[J].第七届中国钢铁年会论文集,2009.316-320
    [15]梁文阁.我国煤基隧道窑直接还原铁生产现状及发展[J].特殊钢,1999,20(3):68-74
    [16]徐培勋,李德旗,张海涛.新型高温隧道窑的设计与应用[J].耐火材料,2004,38(3):211-218
    [17]David C, Thomas H, James A, et al. Method for rapid reduction of iron oxide in a rotary hearth furnace, United States Patent,5730775 [P],1998-03-24
    [18]黄洁.谈转底炉的发展[J].中国冶金,2007,17(4):23-25
    [19]Ishikawa H, Kopfle J, Mcclelland J, et al. Rotary hearth furnace technologies for iron ore and recycling applications [J]. Archives of Metallugy and Materials, 2008,53 (2):541-545
    [20]周渝生,郭玉华,许海川,等.我国转底炉工艺技术发展现状与前景浅析[J].攀枝花科技与信息,2010,35(4):11.15
    [21]Lepinski J, Griscom F. Producing direct reduced iron utilizing rotary hearth furnace [J]. Industrial Heating,1994,61 (1):28-31
    [22]Yokohama F, Funabashi K, Yukosuka M. Direct reduction process for iron ores with fluidized bed system. United States Patent,4224056 [P],1980-09-23
    [23]Hassan A, Whipp R. The Finmet process-an operational and technical update [J]. Stahl und Eisen,2004,124 (4):53-58.
    [24]范建峰,李维国,周渝生,等.流化床处理粉铁矿工艺研究[J].钢铁,2007,42(11):17-20
    [25]胡俊鸽,周文涛,赵小燕.铁矿粉还原用流化床类型及其应用[J].世界钢铁,2009,9(3):1-5
    [26]陈守明,黄超,魏盛远,等.PF法直接还原铁半工业性试验[C].2001中国钢铁年会论文集,2001.400-404
    [27]陈守明,黄超,张金良.PF法直接还原铁新工艺[C].2007中国钢铁年会论文集,2007.83
    [28]陈守明,杨景武,张志敏,等.PF法煤基直接还原工艺与主体设备[J].万方数据库,2010.162-166
    [29]邱冠周,黄柱成,姜涛,等.新型煤基竖炉直接还原工艺的探讨[J].烧结球团,1998,23(5):21-24
    [30]陈守明,黄超,张金良.煤基竖炉直接还原工艺[C].中国金属学会2008年非高炉炼铁年会文集,2008.132-135
    [31]LIU Gui-su, Strezov V, Lucas J, et al. Thermal investigations of direct iron ore reduction with coal [J].Thermochimica Acta,2004,410:133-140
    [32]Narcin N, Aydin S, Sesen K, et al. Reduction of iron ore pellets with domestic lignite coal in a rotary tube furnace [J]. Int.J.Miner.Process,1995,43:49-59
    [33]Coetsee T, Pistorius P, Viliers E. Rate-determining steps for reduction in magnetite-coal pellets [J]. Minerals Engineering,2002,15:919-929
    [34]Bahgat M, Khedr M. Reduction kinetics, magnetic behavior and morphological changes during reduction of magnetite single crystal [J]. Materials Science and Engineering B,2007,138:251-258
    [35]Kikuchi S, Kobayashi D, Tsuge O, et al. ITmk3 process [J]. Kobelco Technology Review,2010,29 (12):77-84
    [36]Seki K, Tanaka H. Development of iron and steel industry by applying coal based DR processes:Fastmelt and ITmk3 [J]. Kobe Steel Ltd, Tokyo,2008.1-14
    [37]Lepinski J. Development of the Fastmet direct reduction process [C]. Proceeing-Ironmaking Conference,1993,52:349-352
    [38]Hoffman G, Harada T. A status report on the Fastmet process from the Kakogawa demonstration plant [C]. Proceeing-Ironmaking Conference,1997, 56:553-555
    [39]Joyner K, Landow M. Fastmet/Fastmelt:the final steps in waste recovery [J]. Revue de Metallurgie,2000,97 (4):1-19
    [40]张绍贤,强文华,李前明FINEX熔融还原炼铁技术[J].炼铁,2005,24(4):49-52
    [41]徐书刚,李子木,吕庆.浦项FINEX熔融还原工艺技术考察[J].炼钢,2008,27(5):59-62
    [42]KANG Chang-Oh. The FINEX process emerging at new steel Era [C]. Proceedings of the 5th International Congress on the Science and Technology of Ironmaking,2009:89-94
    [43]林华.煤基回转窑直接还原对还原用煤性能的要求[J].浙江冶金,1990,(3):14-21
    [44]张清岑,邱冠周,肖奇.煤种对低品位铁矿煤基直接还原的影响[J].中南大学学报,1997,28(2):126-129
    [45]黄柱成,徐经沧,宗遐贵,等.冷固结球团直接还原工艺对入炉原料的要求[J].烧结球团,1999,24(6):24-27
    [46]周玉珩,温彦明.煤基直接还原用煤的选择[C].全国直接还原铁生产及应用学术交流会,1999:89-92
    [47]周红,陈启元,邱冠周,等.磁铁精矿冷固结球团的等温还原动力学及其与球团强度的关系[J].中国稀土学报,1998,16(8):610-614
    [48]邱冠周,姜涛,徐经沧,等.冷固结球团直接还原[M].长沙:中南大学出版社,2001.1,184-193
    [49]金永龙,徐南平,邬士英,等.改善固体碳直接还原动力学条件的探讨[J]. 中国稀土学报,1998,16(8):621-624
    [50]文明,赵增武,李保卫.反应罐直接还原铁精矿的动力学研究[J].内蒙古科技大学学报,2010,29(3):195-199
    [51]方觉,储满生.矿煤混合流化还原反应[J].东北大学学报,2000,21(1):80-82
    [52]储满生,方觉.循环流化床铁矿石直接还原动力学[J].东北大学学报,2002,23(1):32-34
    [53]黄典冰,孔令坛.内配碳赤铁矿球团反应动力学及模型[J].钢铁,1995,30(11):1-6
    [54]刘松利.钒钛铁精矿转底炉直接还原-电炉熔分工艺与理论研究[D].重庆:重庆大学,2010
    [55]朱德庆,徐小锋,欧英钦,等.润磨强化磁铁矿球团一步法直接还原工艺及机理研究[J].钢铁,2007,42(10):6-10
    [56]崔维刚.“链篦机-回转窑”煤基一步法工艺扩大化生产实践[J].新疆有色金属,2011,(2):68-72
    [57]路朝晖,陈煜,陈代明,等.回转窑一步法直接还原铁生产的试验研究[J].钢铁研究学报,2011,23(5):11-14
    [58]赵守强.两步法煤基回转窑直接还原半工业性试验研究[J].烧结球团,1988,(1):15-17
    [59]ZHU De-qing, QIU Guan-zhou, JIANG Tao, et al. An innovative process for direct reduction of cold-bound pellets from iron concentrates with a coal-based rotary kiln [J]. Journal of Central South University of Technology,2000,7(2): 68-71
    [60]朱德庆,邱冠周,姜涛,等.铁精矿冷固球团矿煤基回转窑直接还原新工艺[J].钢铁,2001,36(2):4-7
    [61]张汉泉,朱德庆.冷固结球团煤基直接还原新工艺及其应用[J].钢铁研究,2003,(1):58-61
    [62]徐南平,邬士英,金永龙,等.我国改进型DRI隧道窑的设计研究[J].烧结球团,1997,22(6):24-26
    [63]邬士英,徐南平,金永龙,等.隧道窑直接还原工艺的节能途径[J].炼铁,1998,17(1):46-47
    [64]郭明威,朱荣,周振华.采用转底炉生产金属化球团的工业试验[J].炼铁,2010,29(1):59-62
    [65]赵红全.转底炉生产金属化球团工业性试验[J].云南冶金,2010,39(1): 50-53
    [66]齐渊洪,许海川.还原流化床内铁的析出形态与铁矿粉的粘结行为[J].钢铁研究学报,1996,8(5):7-11
    [67]范莉娟.循环流化床煤基铁矿石粉直接还原的试验研究[D].北京:中国科学院研究生院,2011
    [68]陈守明,黄超,杨景武,等.煤基竖炉直接还原铁炉料粘结机理及控制[C].2005中国钢铁年会论文集,2005:397-399
    [69]Kundak M, Lazic L, Crnko J. CO2 emissions in the steel industry [J]. Metalurgija,2009,48 (3):193-196
    [70]Sastri M, Viswanath R, Viswanathan B. Studies on the reduction of iron oxide with hydrogen [J]. Int. J. Hydrogen Energy,1982,7 (12):951-955
    [71]Rao Y, Moinpour M. Kinetics of reduction of hematite with hydrogen gas at modest temperatures [J]. Metallurgical transactions B,1983,14B:711-723
    [72]Tacke K, Steffen R利用氢气还原铁矿石[C].第一届中德(欧)冶金技术研讨会,2004,10:1-5
    [73]Wagner D, Devisme O, Patisson F, et al. A laboratory study of the reduction of iron oxides by hydrogen [C]. Sohn International Symposium, San Diego for TMS,2006,2:111-120
    [74]庞建明,郭培民,赵沛,等.低温下氢气还原氧化铁的动力学研究[J].钢铁,2008,43(7):7-11
    [75]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社,1999.13,17-20,86-88,287-288,289-291,304-311
    [76]周克省.镧锰氧化物与铁氧化体改性体系的微波吸收特性研究[D].长沙:中南大学,2008:4-5,9-12
    [77]Krokida M, Maroulis Z. Effect of microwave drying on some quality properties of dehydrated products [J]. Drying Technology:1999,17(3):449-466
    [78]Park M, Komarneni S, Roy R. Microwave-hydrothermal decomposition of chlorinated organic compounds [J]. Materials Letters,2000,43:259-263
    [79]Bengtsson N, Ohlsson T. Microwave heating in the food industry [J]. Proceedings of the IEEE,1974, (1):44-54
    [80]Khraisheh M, Mcminn W, Magee T. Quality and structural changes in starchy foods during microwave and convective drying [J]. Food Research International,2004,37:497-503
    [81]刘全军,熊燕琴.微波在铁矿石选择性磨细中的应用机理研究[J].云南冶 金,1997,6(3):25-28
    [82]Kingman S, Vorster W, Rowson N. The influence of mineralogy on microwave assisted grinding [J]. Minerals Engineering,2000,13 (3):313-327
    [83]Jones D, Kingman S, Whittles D, et al. Understanding microwave assisted breakage [J]. Minerals Engineering,2005,18:659-669
    [84]GUO Sheng-hui, CHEN Guo, PENG Jin-hui, et al. Microwave assisted grinding of ilmenite ore[J]. Trans.Nonferrous Met.Soc.China,2011,21:2122-2126
    [85]牟群英,李贤军.微波加热技术的应用与研究进展[J].物理,2004,33(6):438-442
    [86]Metaxas A, Meredith R. Industrial microwave heating [M]. London:Peter Peregrinus Ltd.,1983
    [87]步文博,徐洁,丘泰,等.吸波材料的基础研究及微波损耗机理的探讨[J].材料导报,2001,15(5):16
    [88]段爱红,毕先钧,阚家德.金属氧化物吸收微波辐射的能力与其结构的关系[J].云南化工,1998,(2):34-36
    [89]段爱红.晶体的缺陷结构与物质吸收微波的能力[J].云南师范大学学报,1998,18(3):89-91
    [90]张兆镗,钟若青编译.微波加热技术基础[M].北京:电子工业出版社,1988:1
    [91]段洁利.微波干燥食品的现状及其发展前景[J].现代农业装备,2006,(6):36-39
    [92]苏慧,郑明珠,蔡丹,等.微波辅助技术在食品工业中的应用研究进展[J].食品与机械,2011,27(2):165-167
    [93]Tinga W, Voss W. Microwave power engineering [M]. New York:Academic Press,1968:28-37
    [94]曲世鸣,张明.微波混合加热技术及应用前景[JJ].物理,1999,28(2):117-119
    [95]Haala J, Wiesbeck W. Modeling microwave and hybrid heating processes including heat radiation effects [J]. IEEE Transactions on Microwave Theory and Techniques,2002,50 (5):1346-1353
    [96]郭荣辉,杨晓青,秦文峰.微波混合加热制备高纯三氧化钼新工艺[J].矿产综合利用,2006,(4):13-15
    [97]Menezes R, Souto P, Kiminami R. Microwave hybrid fast sintering of porcelain bodies [J]. Journal of Materials Processing Technology,2007,190:223-229
    [98]金曼S.W,汪镜亮,李长根.微波辅助破碎的新进展[J].国外金属矿选矿,2005,42(6):14-20
    [99]Ishizaki K, Nagata K. Selectivity of microwave energy consumption in the reduction of Fe3O4 with carbon black in mixed powder [J]. ISIJ International, 2007,47(6):811-816
    [100]华一新,徐养良.软锰矿的微波碳热还原烧结[C].全国第二届微波化学会议论文集,1998:39-40
    [101]宋耀欣,储少军.微波加热在冶金碳热还原中的应用研究现状[J].铁合金,2006,(6):8-12
    [102]夏锋.微波碳热还原钒钛磁铁精矿的研究[D].重庆:重庆大学,2008
    [103]肖劲,周峰,陈燕彬.微波碳热还原法制备氮化铝粉末的工艺研究[J].无机材料学报,2009,24(4):755苏打烧结中的利用[J].稀有金属与硬质合金,
    2003,31(1):51-52-758[104]赵秦生.微波在黑钨精矿的
    [105]醴陵成功使用微波高温窑炉烧制陶瓷[J].现代技术陶瓷,2011,(3):55
    [106]Standish N, Worner H. Microwave application in the reduction of metal oxides with carbon [J]. Journal of Microwave Power and Electromagnetic Energy, 1990,25 (3):177-180
    [107]Standish N, Huang W. Microwave application in carbothermic reduction of iron ores [J]. ISIJ International,1991,31 (3):241-245
    [108]Mourao M, Parreiras de Carvalho I, Takano C. Carbothermic reduction by microwave heating [J]. ISIJ International,2001,41 (S):27-30
    [109]Martins dos Santos D, Mourao M. High-temperature reduction of iron oxides by solid carbon or carbon dissolved in liquid iron-carbon alloy [J]. Scandinavian Journal of Metallurgy,2004,33:229-235
    [110]Jermolovicius L, Mourao M. Equipment for microwave enhanced carbothermic reduction [C]. SBMO/IEEE MTT-S International Microwave and optoelectronics conference,2009:167-170
    [111]Renato de Castro E, Mourao M, Jermolovicius L, et al. Carbothermal reduction of iron ore applying microwave energy [J]. Steel Research International,2012, 83 (2):131-138
    [112]Ishizaki K, Nagata K, Hayashi T. Production of pig iron from magnetite ore-coal composite pellets by microwave heating [J]. ISIJ International,2006, 46 (10):1403-1409
    [113]Ishizaki K, Nagata K, Hayashi T. Localized heating and reduction of magnetite ore with coal in composite pellets using microwave irradiation [J]. ISIJ International,2007,47 (6):817-822
    [114]Ishizaki K, Nagata K. Microwave induced solid-solid reactions between Fe3O4 and carbon black powders [J]. ISIJ International,2008,48 (9):1159-1164
    [115]Stir M, Ishizaki K, Vaucher S, et al. Mechanism and kinetics of the reduction of magnetite to iron during heating in a microwave E-field maximum [J]. Journal of Applied Physics,2009,105 (12):901-904
    [116]HUANG Xiao-di, HWANG Jiann-Yang. Method for direct metal making by microwave energy. United States Patent, US 6,277,168 B1 [P],2001-08-21
    [117]QU Shao-long. Microwave application and modeling in direct reduction of iron oxide [D]. USA:Michigan Technological University,2004
    [118]WANG Yong-qing. Direct steelmaking through microwave and electric arc heating [D]. USA:Michigan Technological University,2005
    [119]HWANG Jiann-Yang, HUANG Xiao-di, QU Shao-long, et al. Iron oxide reduction with conventional and microwave heating under CO and H2 atmospheres [C]. TMS annual meeting,2006:219-227
    [120]HWANG Jiann-Yang, HUANG Xiao-di. Microwave heating method and apparatus for iron oxide reduction. United States Patent, US 2008/0087135 A1 [P],2008-04-17
    [121]SUN Xiang, HWANG Jiann-Yang, HUANG Xiao-di. The microwave processing of electric arc furnace dust [J]. Journal of Minerals, Metals and Materials Society,2008,60 (10):35-39
    [122]SUN Xiang, HWANG Jiann-Yang, HUANG Xiao-di, et al. Petroleum coke particle size effects on the treatment of EAF dust through microwave heating [J]. Journal of Minerals and Materials Characterization and Engineering.2009,8 (4):249-259
    [123]Aguilar J, Gomez I. Microwaves applied to carbothermic reduction of iron ore pellets [J]. Journal of microwave power and electromagnetic energy,1997,32 (2):67-73
    [124]YANG Jian, Tomoyuki M, Mamoru K. Mechanism of carbothermic reduction of hematite in hematite-carbon composite pellets [J]. ISIJ International,2007, 47 (10):1394-1400
    [125]陈津,刘浏,曾加庆,等.微波加热-电炉直接炼钢新工艺探讨[J].热能 工程,2003,(4):1-3,8
    [126]陈津.微波加热还原自熔性含碳球团的应用基础研究[D].北京:钢铁研究总院,2003
    [127]CHEN Jin, LIU Liu, ZENG Jia-qing, et al. Experiment of microwave heating on self-fluxing pellet containing coal [J]. Journal of Iron and Steel Research, International,2003,10(2):1-4
    [128]陈津,刘浏,曾加庆,等.微波加热还原含碳铁矿粉试验研究[J].钢铁,2004,39(6):1-5
    [129]陈津,刘浏,曾加庆,等.微波加热含碳铁矿粉还原矿相结构研究[J].电子显微学报,2005,24(2):114-119
    [130]陈津,李宁,王社斌,等.含碳铬铁矿粉在微波场中的升温特性[J].北京科技大学学报,2007,29(9):880-883
    [131]李宁.含碳铬铁矿粉微波加热体还原热力学及动力学研究[D].太原:太原理工大学,2007
    [132]冯秀梅.微波加热含碳铬铁矿粉体还原过程中电磁性能研究[D].太原:太原理工大学,2007
    [133]陈津,张猛,赵晶,等.含碳铬矿粉微波加热体还原显微矿相结构的研究[J].电子显微学报,2008,27(1):26-32
    [134]CHEN Jin, WANG She-bin, ZHANG Meng, et al. Kinetics of voluminal reduction of chromium ore fines containing coal by microwave heating [J]. Journal of Iron and Steel Research, International,2008,15(6):10-15
    [135]马莽原,白晨光,邱贵宝,等.温度对微波碳热还原钒钛磁铁矿的影响研究[J].金属矿山,2010,(10):81-84
    [136]王国雄.煤基DR技术在印度的发展[J].武汉钢铁学院学报,1992,15(1):8
    [137]PENG Zhi-wei, HWANG Jiann-Yang, MOURIS J. Microwave penetration depth in materials with non-zero magnetic susceptibility [J]. ISIJ International, 2010,50(11):1590-1596
    [138]陈津,赵晶,冯秀梅,等.微波冶金耐火材料研究[J].工业加热,2006,35(3):58
    [139]王绍林,蔡耀辉.微波炉知识问答.机械工业出版社[M],北京:机械工业出版社,1998.第一版:51,59-60,83
    [140]David E, Diane C, Jon K. Processing materials with microwave energy [J]. Materials Science and Engineering, A287,2000:153-158
    [141]Roussy G, Bennani A, Thiebaut J. Temperature runaway of microwave irradiated materials [J]. J.Appl.Phys,1987, (62):1167-1170
    [142]Hill J, Marchant T. Modelling microwave heating [J]. Appl.Math.Modelling, 1996,20 (1):3-15
    [143]Alpert Y, Jerby E. Coupled thermal-electromagnetic model for microwave heating of temperature dependent dielectric media [J]. IEEE Transaction on Plasma Science,1999,27 (2):555-562
    [144]应海松,李斐真.铁矿石取制样及物理检验[M].北京:冶金工业出版社,2007.200-204
    [145]胡希明,李兴,谷云骊,等.微波诱导快速磷酸锌合成研究[J].化学通报,1998,(12):33-34
    [146]石蔼如,贾云发.微波固相反应的扩散增强机理[J].青岛大学学报,1998,11(1):64-67
    [147]吴浩波,彭金辉,何蔼平.微波在陶瓷材料制备中的应用[J].能源研究与利用,2000,(3):23-26
    [148]Senise J, Jermolovicius L. Microwave chemistry-a fertile field for scientific research and industrial applications [C]. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, Brazil,2003:1-4
    [149]麻园,张惠灵,柳海波,等.微波诱导催化MnO/MgO的制备及其活性研究[J].环境科学与管理,2011,36(2):121-124
    [150]张家芸,邢献然,宋波,等.冶金物理化学[M].北京:冶金工业出版社,2004.第1版:158-160
    [151]TAO Dong-ping, LIU Chun-peng. Kinetics of oxidative dearsenication of niccolite ore with microwave radiation [J]. Journal of Materials Science and Technology,1992,8:115-118
    [152]Stir M, Ishizaki K, Vaucher S, et al. Mechanism and kinetics of the reduction of magnetite to iron during heating in a microwave E-field maximum [J]. Journal of Applied Physics,2009,105 (12):901-904
    [153]斯梅勒R.M,斯蒂芬森R.L.直接还原铁生产和应用的技术与经济[M].浙江:浙江省冶金工业总公司出版,1985.52
    [154]秦洁.竖炉生产海绵铁过程的还原特性及碳行为研究[D].重庆:重庆大学,2008.55-56
    [155]Bykov Y.V, Rybakov K.I, Semenov V.E. High-temperature microwave processing of materials [J]. Journal of physics D:applied physics,2001:34-57
    [156]王夏.微波加热强化铁矿氧化球团煤基还原研究[D].长沙:中南大学,2010
    [157]吕丽丽.铁矿预还原球团微波加热煤基直接还原研究[D].长沙:中南大学,2010
    [158]吴锴.氧化球团矿在微波场中的还原行为研究[D].长沙:中南大学,2011
    [159]张富宽,罗发,朱冬梅,等.莫来石陶瓷的制备、微波介电特性及其材料吸波性能的影响[J].航空学报,2005,26(2):250-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700